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We show that the out-of-time-order correlation (OTOC) 〈W (t)†V (0)†W (t)V (0)〉 in many-body
localized (MBL) and marginal MBL systems can be efficiently calculated by the spectrum bifurcation
renormalization group (SBRG). We find that in marginal MBL systems, the scrambling time tscr
follows a stretched exponential scaling with the distance dWV between the operators W and V :
tscr ∼ exp(

√
dWV /l0), which demonstrates Sinai diffusion of quantum information and the enhanced

scrambling by the quantum criticality in non-chaotic systems.

The out-of-time-order correlation (OTOC)1–7 was re-
cently proposed to quantify the scrambling and the but-
terfly effect in quantum many-body dynamics, and has
attracted great research interests in quantum gravity8–11,
quantum information12 and condensed matter13–17 com-
munities. Consider two local unitary operators W and V ,
along with the many-body Hamiltonian H of the system;
the OTOC is defined as

F (t) = 〈W (t)†V (0)†W (t)V (0)〉, (1)

where W (t) = eiHtWe−iHt and V (0) = V are the
operators at time t and time 0 respectively. The
notation 〈· · · 〉 stands for either the expectation value
on a pure state of interest (typically a short-range
entangled state), or the ensemble average over a mixed
state density matrix. The OTOC is closely related to
the squared commutator2,3,11 of the operators: C(t) =

〈|[W (t), V ]|2〉 = 2(1 − ReF (t)). If W are V are far
apart local operators, then their squared commutator
C(t) should vanish initially (for t = 0). As time evolves,
the operator W (t) will grow in size and complexity, and
eventually spread to the location of the operator V , at
which point C(t) develops a finite value. So the growth
of the squared commutator C(t), or the decay of the
OTOC F (t), characterizes the growth of local operators
and the spreading of quantum information, which is a
phenomenon known as scrambling18–21. Typically, the
OTOC will remain large until the scrambling time20 tscr

and decay rapidly once t > tscr. The scrambling time
tscr generally depends on the distance dWV between W
and V operators. If we treat W as a perturbation to
the system, then the OTOC also describes how a local
perturbation W spreads to affect the measurement of V
at a distance dWV , which can be viewed as a quantum
version of the butterfly effect.2 The function tscr(dWV )
describes the onset of the butterfly effect in space-time
and traces out the boundary of the butterfly light-cone.

Although the OTOC was originally proposed to di-
agnose quantum chaos, recently there has been a grow-
ing interest to study the OTOC in non-chaotic quan-
tum many-body systems as well, such as in rational
conformal field theories13,22 and in many-body local-
ized (MBL) systems23–28. In MBL systems,29–34 en-

ergy, charge, and other local conserved quantities can
not defuse due to the localization of excitations in the
presence of strong disorder. Nevertheless, the quantum
information can still propagate, as first demonstrated
by the unbounded growth of entanglement35–39 after a
global quench. The propagation of quantum informa-
tion in MBL systems was also observed from OTOC
measurements.23,24,27 Compared to quantum chaotic sys-
tems, where the scrambling time scales linearly with the
spatial separation between the operators tscr ∼ dWV ,
MBL systems were found to be a much slower scrambler
with a scrambling time that scales exponentially with the
operator separation tscr ∼ exp(dWV /ξ). On the other
hand, it was conjectured40 that quantum critical fluctua-
tions can enhance scrambling in chaotic systems. In this
work, we found that criticality also enhances scrambling
in non-chaotic MBL systems. We will demonstrate that
the scrambling time follows a stretched exponential scal-
ing tscr ∼ exp(

√
dWV /l0) for marginal MBL systems41

(i.e. quantum critical MBL systems), which is different
from both the quantum chaotic and the MBL behaviors
mentioned above.

We used the spectrum bifurcation renormalization
group (SBRG)42,43 approach to calculate the OTOC in
MBL and marginal MBL systems. SBRG is an efficient
numerical approach to construct the MBL effective
Hamiltonian from a given disordered quantum many-
body Hamiltonian. The idea of SBRG is similar to
the real space renormalization group for excited states
(RSRG-X)44–49. At each RG step, the leading energy
scale term H0 in the Hamiltonian is identified and the
whole Hamiltonian is rotated to the (block) diagonal
basis of H0; then the terms in the off-diagonal blocks
are reduced by the 2nd order perturbation. SBRG uses
Clifford gates to boost the calculation efficiency for qubit
models, such that the full spectrum is obtained in one run
of RG (in contrast to RSRG-X which targets a single
eigenstate at a time). With SBRG we can push the
calculation of OTOC to much larger system size (e.g. 256
spins in this work) than exact diagonalization, hence
verifying the scaling behaviors of the butterfly light-cones
over a much larger scale.

We start by deriving the formula for the OTOC that
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can be used in the SBRG calculations. The output
of SBRG42 is the MBL effective Hamiltonian,38,45,50–54

which can be written in terms of the stabilizers (l-bits)
τza (a = 1, 2, · · · , L labels the stabilizers) as,

HMBL =
∑
a

εaτ
z
a+
∑
a,b

εabτ
z
a τ

z
b +
∑
a,b,c

εabcτ
z
a τ

z
b τ

z
c · · · , (2)

which contains single-body terms εaτ
z
a , two-body terms

εabτ
z
a τ

z
b and higher-body terms. The key difference

between Anderson and MBL insulators is that the two-
body and higher-body terms are absent in the former
while present in the later. HMBL can also describe the
marginal MBL system, where the major modification is
that the stabilizers τza will be quasi-long-ranged (The
chance of finding a stabilizer decays as a power-law with
its length), instead of exponentially localized in the MBL
system.

The stabilizers all commute with each other and
also commute with the Hamiltonian, i.e. [τza , τ

z
b ] =

[τza , HMBL] = 0. To simplify the notation, we denote
each product of stabilizers as τzabc··· = τza τ

z
b τ

z
c · · · . We

may further bundle the subscript indices together and
write

HMBL =
∑
A

εAτ
z
A, (3)

where A = abc · · · stands for a sequence of stabilizer
indices and τzA =

∏
a∈A τ

z
a . Since the Hamiltonian HMBL

is a sum of commuting terms εAτ
z
A, the time-evolution

operator U(t) can be factorized to the product of unitary
operators generated by every τzA operator independently,

U(t) = e−itHMBL =
∏
τz
A

e−itεAτ
z
A . (4)

The product runs over all τzA operators in the Hamilto-
nian HMBL. The time-dependent operator W (t) is then
given by W (t) = U(t)†WU(t).

We begin by transforming the W and V operators
to the τz basis, which involves a unitary transforma-
tion composed of Clifford rotations with perturbative
Schrieffer-Wolff corrections42. In this basis, W and V are
then linear combinations of products of Pauli operators.
For simplicity, we will neglect the perturbative Schrieffer-
Wolff corrections, which are small in the limit of large
disorder. In Ref. 42 we tested this approximation by
restoring the many-body wave function from the Clifford
rotation only, and benchmarking the result with exact
diagonalization. Good wave function fidelity is achieved
as long as the disorder is strong. We will only consider W
and V which are products of Pauli operators (called Pauli
strings) in the physical basis, which implies that they will
remain Pauli strings in the τz basis (since Clifford rota-
tions map Pauli strings to Pauli strings). Therefore their
algebraic relations with τzA is rather simple: W and V
can either commute or anticommute with τzA

71. Let CW
(or AW ) be the set of τzA that commute (or anticommute)

with W . Any τzA in HMBL either belongs to CW or AW
for any given W . With this setup, we can calculate the
time-evolution of W as follows

W (t) =
∏
τz
A

eitεAτ
z
AW

∏
τz
A

e−itεAτ
z
A

= W
∏

τz
A∈AW

e−2itεAτ
z
A .

(5)

The unitary operators generated by τzA ∈ CW will
annihilate each other by commuting through W , so only
those generated by τzA ∈ AW will survive. Suppose W
is a local operator (e.g. an on-site Pauli operator); then
Eq. 5 indicates that the support (or the size) of W (t) will
grow in time. W (t) starts out with W (0) = W initially,
and as time evolves, W will expand via a product of non-
local operators e−2itεAτ

z
A . Each of them gradually evolves

from 1 to iτzA in the time scale ∼ ε−1
A . τzA terms that are

more non-local typically have smaller energy scales εA in
the local Hamiltonian HMBL, and thus take longer time
to contribute to W (t). So the operator W (t) will grow
gradually. Accordingly, as W (t) becomes non-local, the
quantum information associated with W will be spread
throughout the system and can not be retrieved by local
measurements, which illustrates the idea of quantum
chaos7,12,55,56 and scrambling18–20.

The OTOC was proposed to quantify the growth of the
operator and the scrambling effect. Here let us discuss
the OTOC at “infinite temperature” where the density
matrix of the system is simply identity, so that

F (t) = TrW (t)V (0)W (t)V (0), (6)

(the daggers are omitted as we assume both W and V
are Hermitian Pauli operators). Following the similar
calculation in Eq. 5, we find

F (t) = TrWVWV
∏

τz
A∈AW∩AV

e4itεAτ
z
A , (7)

where τzA are the terms in HMBL that anticommute with
both W and V . As both W and V are Pauli strings,
regardless of whether they commute or anticommute, this
just amounts to an overall sign in WVWV = ±1, which
is not important. So we might as well assume [W,V ] = 0
(which is the case for far apart local operators), then
the OTOC simply reads F (t) = Tr

∏
τz
A∈AW∩AV

e4itεAτ
z
A .

The unitary operators can be expanded, i.e.

F (t) = Tr
∏

τz
A∈AW∩AV

(cos(4εAt) + iτzA sin(4εAt)). (8)

We take an approximation by dropping all the sin(4εAt)
terms in the expansion (to be justified shortly),24,26 and
arrive at a simple formula for the OTOC of MBL and
marginal MBL systems,

F (t) '
∏

τz
A∈AW∩AV

cos(4εAt). (9)
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In numerics, we first run the SBRG on a given quantum
many-body Hamiltonian to generate the MBL effective
Hamiltonian HMBL. From HMBL we filter out all terms
εAτ

z
A that anticommute with both W and V (recall

that W and V are Pauli strings in the τzA basis since
we dropped the perturbative Schrieffer-Wolff corrections)
and collect their energy coefficients εA. Then the OTOC
can be evaluated very efficiently according to Eq. 9.
We must bear in mind that Eq. 9 does not apply to
the thermalized system, because our starting point, the
MBL effective Hamiltonian HMBL, breaks down in the
thermalized phase.

The approximation we made in Eq. 9 is to drop
all terms in the expansion that contain the product
of sin(4εAt). Such terms will only arise when several
different τzA operators product to identity so as to survive
the trace. However note that all τzA in Eq. 9 are taken
from the set AW ∩ AV , within which one must have at
least four τzA product together to reach the identity (as
long as W and V commute). Thus the sin(4εAt) factors
appear as products of four or more, whose short-time
behavior is suppressed by ∼ t4 (as t→ 0). In conclusion,
such terms will never dominate the expansion until after
tscr.

To calculate the OTOC of more general operators W
and V , or to include the perturbative Schrieffer-Wolff
corrections, one can expand the operators as a sum of
Pauli strings in the τz basis, and express the OTOC as
a sum of these operators. In the following, we will only
focus on the OTOC of Pauli strings without Schrieffer-
Wolff corrections.

The OTOC starts out at 1 and decays to 0. The time
for the onset of the decay is defined as the scrambling
time tscr.

15,20 One can estimate the scrambling time
based on Eq. 9. At short-time, cos(4εAt) can be Taylor
expanded to 1− 1

2 (4εAt)
2 + · · · , so the OTOC behaves as

F (t) = 1− 1

2
(4‖εA‖W,V t)

2 + · · · , (10)

where the energy scale ‖εA‖W,V is defined via

‖εA‖2W,V =
∑

τz
A∈AW∩AV

ε2A. (11)

So the scrambling time tscr is set by this energy scale
as tscr = ‖εA‖−1

W,V . The energy scale ‖εA‖W,V is
not just a Frobenius norm of the energy coefficients
in HMBL, it also sensitively depends on the operators
W and V . If W and V are local operators, then
the scrambling time scales only with the distance dWV

between W and V . The scaling behavior can be used to
distinguish Anderson localization, MBL, marginal MBL
and ergodic57–60 systems, as concluded in Tab. I.

For Anderson insulators, if the spacial separation
between W and V is much greater than the localization
length, then AW ∩ AV is usually an empty set, i.e.
there is almost no stabilizer that can anticommute with
both W and V because all stabilizers are exponentially

TABLE I: Scaling of scrambling time tscr with the operator
distance dWV as dWV →∞ in different types of systems.

Anderson MBL Marginal MBL Ergodic

ln tscr ∞ ∼ dWV ∼ d1/2WV ln dWV

localized within the localization length. (Recall that
all terms in HMBL (Eq. 2) are stabilizers for Anderson
insulators, and that we’re approximating the stabilizers
as a product of Pauli operators by neglecting the
perturbative corrections.) In this case ‖εA‖W,V → 0 and
hence tscr →∞. So the OTOC will remain finite and not
decay in time for far apart W and V , meaning that there
is no scrambling in Anderson insulators.

The situation is different if we add interactions. For
MBL systems, far apart W and V operators can be
connected by many-body interaction terms in HMBL.
A typical contribution comes from the two-body terms
εabτ

z
a τ

z
b with τza localized around W and τzb localized

around V . Then ‖εA‖W,V ' ‖εab‖ ∼ e−xab/ξ, where xab
is the distance between τza and τzb , which is also roughly
the distance dWV between W and V . So the scrambling
time tscr follows ln tscr ∼ dWV /ξ, leading to a logarithmic
butterfly light-cone in the MBL system.23–27

Another direction out of Anderson insulators is to
consider quantum critical systems, i.e. marginal MBL
systems. In these systems, each stabilizer τza itself
becomes power-law quasi localized, and can connect
spatially far separated W and V . Then the energy
scale can be dominated by the single-body energy

‖εA‖W,V ' ‖εa‖ ∼ e−
√
l/l0 , which follows the “stretched

exponential” scaling with respect to the length l of the
stabilizer (where l0 is a length scale depending on the
initial disorder strength). This scaling is an exact result
in the free limit by RSRG and has been shown to apply
to interacting cases in Fig. 2 as well in Ref. 42. l is also
roughly the distance dWV between W and V . Therefore
the scrambling time tscr follows ln tscr ∼

√
dWV , leading

to a squared logarithmic butterfly light-cone in the
marginal MBL system. Because the scrambling in the
marginal MBL system is determined by the single-body
energy scale, the butterfly light-cone is not much affected
by the absence or presence of the interaction.

To verify the above theoretical proposals, we numer-
ically measure the OTOC in MBL and marginal MBL
systems by SBRG. The model we study is the XYZ spin
chain with strong disorder on a periodic 1D lattice. The
Hamiltonian is given by43

H =

L∑
i=1

(Ji,xσ
x
i σ

x
i+1 + Ji,yσ

y
i σ

y
i+1 + Ji,zσ

z
i σ

z
i+1), (12)

where σµi (µ = x, y, z) are the spin operators on ith site
of a 1D lattice of length L = 256. The random couplings
Ji,µ ∈ [0, Jµ] are independently drawn from the power-

law distribution PDF(Ji,µ) = 1/(ΓJi,µ)(Ji,µ/Jµ)1/Γ,
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FIG. 1: A ternary plot (copied from43) of the disorder and
energy averaged Edwards-Anderson correlator vs coupling
constants (0 < J̃x,y,z < 1) for the XYZ spin chain of length
L = 256. We use this plot to sketch the phase diagram.
When J̃z > max(J̃x, J̃y), the system is in an MBL Z2 spin

glass state. When J̃z < J̃x = J̃y, the system is in a marginal
MBL phase. (The other phases are given by permutations of
x, y, z.) The white dots correspond to the points in the phase
diagram that are shown in Fig. 3.

FIG. 2: Disorder average of the log of the stabilizer energy
ln ε vs stabilizer length ` on a periodic lattice of 256 spins
in the marginal MBL phase of the XYZ spin chain. This
figure verifies the scaling − ln ε ∼

√
`. The two rows (of

plots) correspond to different points (B and C) in the phase
diagram Fig. 1 while the two columns correspond to different
horizontal axes: |i− j vs

√
|i− j|. (The fully MBL point (A)

is not shown since it is deep in the MBL phase where nearly all
stabilizers are of very short length.) The stabilizer length is
calculated by writing a stabilizer τza in the physical basis and
dropping all perturbative Schrieffer-Wolff corrections. The
result is a product of Pauli operators at different sites. The
stabilizer length is then the length of the shortest continuous
sequence of sites (on the periodic lattice) that contains all of
the Pauli operators. (Due to a slight even-odd effect, only odd
stabilizer lengths are shown. 216 disorder samples are used.
Error bars denote one standard deviation statistical errors.)

FIG. 3: Disorder average (using a geometric mean
(Eq. 14)) of the out-of-time-order correlation (OTOC) (Eq. 6)
exp avg ln |F (t)| of W = σx

i and V = σy
j showing how the

light cone of the (geometric mean) OTOC depends on the
time t and distance dWV = |i− j| separation of W and V (on
a lattice with 256 spins). Specifically, the light cone grows

like tscr ∼ exp(
√
dWV /l0). As in Fig. 2, the rows (of plots)

correspond to different points in the phase diagram Fig. 1
while the two columns correspond to different horizontal axes:
|i − j vs

√
|i− j|. Fits are shown for the cases when the

scrambling time scaling agrees with the choice of horizontal
axes. As can be seen from Fig. 4, the statistical errors and
finite system size do not significantly affect the linear fit. (29

disorder samples are used.)

where 0 < Γ < ∞ controls the disorder strength. We
define

J̃µ ≡ J1/Γ
µ , (13)

and take J̃ = (J̃x, J̃y, J̃z) as the tuning parameters.
In this work, a large disorder strength of Γ = 4 was
usedRef. 43. The model has three spin glass MBL
phases corresponding to the large J̃x, J̃y or J̃z limits
respectively, as shown in Fig. 1, where the spin flip Z2 ×
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FIG. 4: A dWV = |i − j| = 32 slice of Fig. 3 for different
system sizes (and the same three points of the phase diagram
Fig. 1). That is, we plot the disorder average (using a
geometric mean (Eq. 14)) of the out-of-time-order correlation
(OTOC) (Eq. 6) exp avg ln |F (t)| of W = σx

i and V = σy
i+32

for system sizes L = 64, 128, 256. We see that the OTOC
for |i − j| = 32 converges very quickly with system size and
has essentially completely converged by L = 128, which is
only four times |i − j|. Thus, we expect Fig. 3 (for which
L = 256) to have converged for all |i − j| ≤ 256/4 = 64

(or
√
|i− j| ≤ 8). Even when L = 64, which is only twice

|i − j|, the OTOC has already mostly converged. Error bars
are statistical errors which are calculated using the bootstrap
method61,62 and are small enough to not have a significant
effect on our light cone measurements.

Z2 symmetry is broken in every many-body eigenstate of
the Hamiltonian. The spin glass phases are separated by
three phase boundaries, where all the eigenstates become
quantum critical, and the system is at the marginal MBL
point.

We will focus along the line of J̃x = J̃y and study
the behavior of OTOC by SBRG. Details of the SBRG
algorithm are given in Ref. 42,43. In short, SBRG can
accurately simulate phases with spectrum bifurcation
in the limit of large disorder where the Hamiltonian is

written as a sum of products of Pauli operators where
each product of Pauli operators has an independently
random coefficient. By large disorder, we mean that for
every coefficient hi, the standard deviation of log(hi) is
large. SBRG performs well in both the fully MBL and the
marginal MBL phases. SBRG does not perform well in
or near thermal phases. In this work we keep the largest
1024 additional terms during each RG step.72 Keeping
more terms in Σ2 was beneficial for this work because it
allows SBRG to capture more of the small terms in HMBL

(Eq. 2), which allows us to more accurately calculate the
OTOC at larger distances in Fig. 3.

In Fig. 3 we show the color plots of the OTOC F (t) =
TrW (t)V (0)W (t)V (0) for local operators W = σxi and
V = σyj at sites i and j respectively. The choice of the
operators is quite generic. The primary consideration is
to avoid the operators that commute with most of the
local integral of motions (LIOMs) in the MBL system,
else it is be difficult to observe the decay of the OTOC
within reasonable time scale.23 As the LIOMs in the
large-J̃z spin glass phase are mainly σzi σ

z
i+1, we will not

choose W or V to be σz operators. Other than that, we
have tried several different choices of W and V , and the
resulting OTOC is similar to what is shown in Fig. 3.

In our calculation, the disorder averaging is done using
a geometric mean (which measures the typical value of
the OTOC). More specifically, we calculated

exp avg ln |F (t)| = exp

(
1

Nδ

∑
δ

ln |F (t)|

)
(14)

where
∑
δ denotes the summation over Nδ disorder

samples. The typical correlation function in a marginal
MBL phase, and its crucial difference from the arithmetic
mean value (often dominated by rare events) was
discussed in many previous studies63–66 In our case, the
geometric mean was used because it was not possible
to accurately calculate the ordinary mean at large time
and distance separation using our SBRG methods. For
a given disorder sample, sometimes SBRG does not
manage to find enough terms in Eq. 9, which results in
an F (t) that is too large at large time t. This error can
substantially affect the arithmetic mean of |F (t)|, but is
negligible in the geometric mean. Therefore we use the
typical OTOC (i.e. geometric mean) to reduce the rare-
event effect.

We see in Fig. 3 that in general the OTOC starts
out from 1 and decays to 0. The time-scale for the
onset of the decay, i.e. the scrambling time tscr, grows
monotonically with the distance dWV = |i − j| between
the operators W and V . The top row of Fig. 3 is deep
in the MBL spin glass phase with J̃z/J̃x,y = 8, while
the middle and bottom row are at the marginal MBL
critical points with J̃x = J̃y = J̃z or 2J̃z (see Fig. 1
for a phase diagram). The left column is plotted with
|i − j| as the horizontal axis, while the right column

uses
√
|i− j|. The side-by-side comparison shows that

in the MBL phase, the OTOC light cone is logarithmic
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ln tscr ∼ dWV , while the marginal MBL light cone obeys

ln tscr ∼ d
1/2
WV , as expected. On the other hand, if we

treat dWV as a function of time:

dWV ∼ (ln t)2, (15)

then dWV can be viewed as the size of the operator
W (t). So Eq. 15 also describes the slow spreading
of the quantum information of operator W in the
system. Its transport universality class is known as
the Sinai diffusion,67 which governs the transport in
critical Anderson localized system.68 Our calculation
demonstrates that the spreading of quantum information
in marginal MBL systems also follows the Sinai diffusion
rule. Interaction does not seems to affect the diffusion
behavior, probably because the operator growth in
the marginal MBL system is dominated by the single-
body terms

∑
a εaτ

z
a of the MBL Hamiltonian. The

Sinai diffusion of quantum information is also seen in
the entanglement growth S(t) ∼ (ln t)2 for Ising-like
marginal MBL systems, as studied in Ref. 44,48,69.

In summary, we demonstrated how the OTOC in MBL
and marginal MBL systems can be efficiently calculated

using the SBRG approach. The system size can be
pushed to several hundred sites, much larger than the
previous exact diagonalization studies. We confirmed
the logarithmic butterfly light cone ln tscr ∼ dWV in
the MBL system. We found the marginal MBL system
is a faster scrambler due to quantum criticality. Its
scrambling is dominated by single-body terms in the
MBL effective Hamiltonian, which is different from the
MBL cases. Therefore marginal MBL systems have a

different butterfly light cone scaling ln tscr ∼ d
1/2
WV . In

this paper, we focused on the case where W and V are
both local operators. Our calculation can be generalized
to generic operators over regions of finite lengths.

Acknowledgement — We would like to thank Yingfei
Gu, Xiao Chen, Xiao-Liang Qi, Yichen Huang, and
Yu Chen for inspiring discussions. The authors are
supported by the David and Lucile Packard Foundation
and NSF Grant No. DMR-1151208. We acknowledge
support from the Center for Scientific Computing from
the CNSI, MRL: an NSF MRSEC (DMR-1121053) and
NSF CNS-0960316.

1 Y. N. Larkin, A.; Ovchinnikov, Sov. Phys. JETP 28, 1200
(1969).

2 S. H. Shenker and D. Stanford, Journal of High Energy
Physics 3, 67 (2014), 1306.0622.

3 A. Y. Kitaev (2014), talk at the Fundamental Physics Prize
Symposium.

4 S. H. Shenker and D. Stanford, Journal of High Energy
Physics 12, 46 (2014), 1312.3296.

5 S. H. Shenker and D. Stanford, Journal of High Energy
Physics 5, 132 (2015), 1412.6087.

6 D. A. Roberts, D. Stanford, and L. Susskind, Journal of
High Energy Physics 3, 51 (2015), 1409.8180.

7 D. A. Roberts and D. Stanford, Physical Review Letters
115, 131603 (2015), 1412.5123.

8 A. Kitaev (2015), talk at KITP Program: Entanglement
in Strongly-Correlated Quantum Matter, URL http://

online.kitp.ucsb.edu/online/entangled15/kitaev/.
9 J. Maldacena and D. Stanford, ArXiv e-prints (2016),

1604.07818.
10 J. Maldacena, D. Stanford, and Z. Yang, ArXiv e-prints

(2016), 1606.01857.
11 J. Maldacena, S. H. Shenker, and D. Stanford, Journal of

High Energy Physics 8, 106 (2016), 1503.01409.
12 P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Journal

of High Energy Physics 2, 4 (2016), 1511.04021.
13 Y. Gu and X.-L. Qi, Journal of High Energy Physics 8,

129 (2016), 1602.06543.
14 W. Fu and S. Sachdev, Phys. Rev. B 94, 035135 (2016),

1603.05246.
15 B. Swingle, G. Bentsen, M. Schleier-Smith, and P. Hayden,

ArXiv e-prints (2016), 1602.06271.
16 G. Zhu, M. Hafezi, and T. Grover, ArXiv e-prints (2016),

1607.00079.
17 N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M.

Stamper-Kurn, J. E. Moore, and E. A. Demler, ArXiv e-
prints (2016), 1607.01801.

18 D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
19 P. Hayden and J. Preskill, Journal of High Energy Physics

9, 120 (2007), 0708.4025.
20 Y. Sekino and L. Susskind, Journal of High Energy Physics

10, 065 (2008), 0808.2096.
21 N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and

P. Hayden, Journal of High Energy Physics 4, 22 (2013),
1111.6580.

22 P. Caputa, T. Numasawa, and A. Veliz-Osorio, ArXiv e-
prints (2016), 1602.06542.

23 Y. Huang, Y.-L. Zhang, and X. Chen, ArXiv e-prints
(2016), 1608.01091.

24 R. Fan, P. Zhang, H. Shen, and H. Zhai, ArXiv e-prints
(2016), 1608.01914.

25 B. Swingle and D. Chowdhury, ArXiv e-prints (2016),
1608.03280.

26 Y. Chen, ArXiv e-prints (2016), 1608.02765.
27 R.-Q. He and Z.-Y. Lu, ArXiv e-prints (2016), 1608.03586.
28 X. Chen, T. Zhou, D. A. Huse, and E. Fradkin, ArXiv

e-prints (2016), 1610.00220.
29 R. Berkovits and Y. Avishai, Journal of Physics: Con-

densed Matter 8, 389 (1996).
30 R. Berkovits and Y. Avishai, arXiv preprint cond-

mat/9707066 (1997).
31 I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Physical

Review Letters 95, 206603 (2005), cond-mat/0506411.
32 D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Annals of

Physics 321, 1126 (2006), cond-mat/0506617.
33 J. Z. Imbrie, ArXiv e-prints (2014), 1403.7837.
34 R. Nandkishore and D. A. Huse, Annual Review of

Condensed Matter Physics 6, 15 (2015), 1404.0686.
35 J. H. Bardarson, F. Pollmann, and J. E. Moore, Physical

http://online.kitp.ucsb.edu/online/entangled15/kitaev/
http://online.kitp.ucsb.edu/online/entangled15/kitaev/


7

Review Letters 109, 017202 (2012), 1202.5532.
36 G. DeChiara, S. Montangero, P. Calabrese, and R. Fazio,

Journal of Statistical Mechanics: Theory and Experiment
3, 03001 (2006), cond-mat/0512586.
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