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We present a theory of magnetoconductivity for general three-dimensional non-magnetic metals
within the Berry-curvature-corrected semiclassical and Boltzmann framework. We find a new con-
tribution, which is intrinsic in the sense that its ratio to the zero-magnetic-field conductivity is fully
determined by the intrinsic band properties, independent of the transport relaxation time, showing
a clear violation of Kohler’s rule. Remarkably, this contribution can generally be positive for the
longitudinal configuration, providing a new mechanism for the appearance of positive longitudinal
magnetoconductivity besides the chiral anomaly effect.

I. INTRODUCTION

Magnetoconductivity, the field-dependent part of the
diagonal component in the conductivity tensor: δσ(B) ≡
σ(B)− σ0, where σ0 is the conductivity under zero mag-
netic field, has long been a focus in solid-state physics
due to its fascinating complexity and the rich informa-
tion it could offer about the underlying electronic dy-
namics.1,2 Depending on the relative orientation between
the current flow and the magnetic field, the magnetocon-
ductivity can be differentiated as transverse or longitu-
dinal. While the magnetoconductivity under transverse
configuration (E ⊥ B) can be naturally expected from
the Lorentz force, the appearance of the magnetoconduc-
tivity under longitudinal configuration (E ‖ B) is a bit
surprising, because at first look one expects that the elec-
tron’s motion along the B-field should not be affected.3

In the high-magnetic-field regime (ωcτ � 1, where
ωc is the cyclotron frequency and τ is the transport re-
laxation time), the electronic states are quantized into
discrete Landau levels, for which the longitudinal mag-
netoconductivity can arise from the dramatic change in
the states and the spectrum.4,5 However, in the low-field
semiclassical regime (ωcτ � 1), where the external fields
can be treated as perturbations to Bloch bands with-
out Landau quantization, the mechanism for longitudinal
magnetoconductivity is more subtle.

Indeed, in the simple Drude-Sommerfeld model for
metals,1 the longitudinal magnetoconductivity vanishes
identically. One possible mechanism was identified
in Ref. 6, arising due to certain special Fermi sur-
face anisotropy. Recently, the interest in magneto-
transport was further fueled by the discovery of topo-
logical semimetals.7–11 Particularly, in the semiclassical
regime, it was predicted that the chiral anomaly effect12

associated with the topological band-crossing points can
produce a positive longitudinal magnetoconductivity.13

This generates great interest in the magneto-transport
studies.14–22 Experimentally, such positive signal was in-
deed observed in several doped topological semimetal
candidates, and has been interpreted as compelling evi-
dence for their topological band structures.23,25–29,38

For non-magnetic metals in the semiclassical regime,

due to the constraint of time reversal symmetry and On-
sager’s relation, δσ(B) = δσ(−B), the leading order mag-
netoconductivity is of B2, hence its theoretical formula-
tion necessarily requires semiclassical equations of mo-
tion that are accurate to second order. However, previ-
ous theories (including Refs. 6 and 13) are based on semi-
classical equations of only first-order accuracy, hence the
obtained results are not complete. One naturally won-
ders: is there any important contribution missing from
the picture? Meanwhile, peculiar positive longitudinal
magnetoconductivity appears in recent experiments on
several metallic materials.30–32 These materials are not
topological semimetals, and the possibility of anisotropic
Fermi surface contribution is also ruled out in experi-
ment, clearly pointing to the existence of new contribu-
tions missing in the previous theory.

Here, based on the recently developed semiclassical
theory with second-order accuracy,33,34 we formulate a
theory of magneto-transport in non-magnetic metals for
both transverse and longitudinal configurations in the
semiclassical regime. We find that besides the previously
obtained contributions, there is a new contribution to
the magnetoconductivity that is linear in the transport
relaxation time. We name it the intrinsic magnetocon-
ductivity because its ratio to σ0 is independent of scatter-
ing, only consisting of intrinsic band quantities including
Berry curvature, orbital magnetic moment and so on.
This intrinsic magnetoconductivity is generally nonzero
regardless of the Fermi surface geometry, and it offers a
new mechanism for the violation of Kohler’s rule. Impor-
tantly, in systems without topological band-crossings and
strong surface Fermi anisotropy, this contribution domi-
nates the longitudinal magnetoconductivity, and further-
more, its sign could be positive, offering a new mecha-
nism for positive longitudinal magnetoconductivity be-
sides chiral anomaly.

Our paper is organized as follows. In Section II, we de-
rive the magnetoconductivity based on the second-order
semiclassical theory and the Boltzmann transport equa-
tion. In Section III, we analyze our main results and
point out several important points. In Section IV and V,
we apply our theory to two model examples. Especially,
we demonstrate that a positive longitudinal magnetocon-



2

ductivity could result from the intrinsic magnetoconduc-
tivity in the semiclassical regime. Some discussion and
our conclusion are presented in Section VI.

II. MAGNETOCONDUCTIVITY FROM
SECOND ORDER SEMICLASSICAL THEORY

In the semiclassical theory, the Bloch electron dynam-
ics is described by tracing the electron wave-packet center
(rc,kc) in the phase space.35 Assuming the simple case
where the Fermi level insects with a single band, the elec-
tric current can be expressed as

j = −
∫

d3k

(2π)3
Dṙf , (1)

where D is a correction factor for the density of states,36

and f is the distribution function. Here and hereafter, we
set e = ~ = 1 and drop the subscript c of the wave-packet
coordinates.

As we mentioned, for non-magnetic metals in the semi-
classical regime, the leading order contribution in δσ(B)
is of B2. This means that we have to keep the third-order
terms in the current (Eq. (1)) that are ∝ EB2. To this
end, as we will show in a while, the following second-order
semiclassical equations of motion are sufficient:33

ṙ = ∂kε̃− k̇ × Ω̃ , (2)

k̇ = −E − ṙ ×B . (3)

Here ε̃ is the band energy including field-corrections up to
second order,34 Ω̃ is the modified Berry curvature includ-
ing first-order field corrections. Due to the non-canonical
structure of the equations of motion, the correction factor
D in Eq. (1) takes the form D = 1+B · Ω̃.33 It should be
noted that although the semiclassical equations of motion
are of a single-band form, the information of interband
coherence is actually included through the geometrical
quantities such as Berry curvature and orbital magnetic
moment, which are indispensable for an accurate descrip-
tion of the Bloch electron dynamics.35

The remaining factor in in Eq.(1), i.e. the distribu-
tion function f , is typically solved from the Boltzmann

equation. For a homogeneous system at steady state, it
reads

k̇ · ∂f
∂k

=
df

dt

∣∣∣∣
collison

. (4)

Here k̇ can be substituted from Eq. (3), and the collision
integral on the right hand side describes the relaxation
due to the various scattering processes in the system.
To proceed analytically, we take the relaxation time ap-
proximation such that the right hand side of Eq.(4) be-
comes −(f − f0)/τ , where f0 is the equilibrium Fermi
distribution and relaxation process is characterized by a
single transport relaxation time τ . Note that in Eq.(4),
the argument of the equilibrium distribution function f0
must be the band energy including the magnetic field
corrections, such that it guarantees a vanishing current
at E = 0. Then the solution of the Boltzmann equation
can be generally written as

f =

∞∑
m=0

(−τ k̇ · ∂k)mf0(ε̃) . (5)

It is important to note that Eq.(5) does not imply an ex-
pansion in terms of τ . The solution to Boltzmann equa-
tion is expanded in terms of the external fields which are
assumed to be small in the semiclassical regime. In con-
trast, we do not make any assumption on the value of
the relaxation time.

Eqs. (2), (3), and (5) offer all the necessary and suffi-
cient ingredients in evaluating the current in Eq. (1) to
third order in external fields. To see this, one notes that
since the equilibrium distribution f0 does not contribute
to the current, the factor f in Eq. (1) is at least of first

order (k̇ in Eq. (5) is at least of first order according to
Eq. (3)). Hence each of the other two factors D and ṙ in
Eq. (1) only needs to be accurate to second order. This

is why it is sufficient to have the Berry curvature Ω̃ in
both D and ṙ to be corrected to first order and ε̃ in ṙ
and f0 to be corrected to second order.

Straightforward substitution and calculation yields the
following contributions to the current up to third order
(see Appendix A for details):

j(a) = −τ3
∫

d3k

(2π)3
v0(v0 ×B · ∂k)2(E · ∂k)f0(ε0)− τ

∫
d3k

(2π)3
[ṽ + (ṽ · Ω̃)B][E + (E × Ω̃)×B] · ∂kf0(ε̃) . (6)

Here we group the various terms into two compact terms
according to their τ dependence, ε0 is the unperturbed
band energy, v0 = ∂kε0 and ṽ = ∂kε̃ are the band ve-
locities for the unperturbed and perturbed band disper-
sions, respectively. Note that both terms here are Fermi
surface contributions, i.e., carrying the derivative of the

Fermi distribution function. Hence the result can only
be nonzero for a metal, and must vanish for insulators.
We observe that the first term in Eq. (6) just recovers
the contribution from Fermi surface anisotropy identified
in Ref. 6, while the second term is new.

In addition, at second order, external fields induce a
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shift δµ in the chemical potential (the linear-order cor-
rection vanishes as in usual first-order transport theory),
which could lead to additional contributions to the cur-
rent. Since δσxx ∼ B2, there are only two possible field-
dependence in δµ that could contribute, δµ ∼ EB or ∼
B2. The first possibility happens only with special band-
crossings, i.e., in the chiral anomaly effect for doped Weyl
semimetals.13 In that case, the parallel E and B fields
pump charges between a pair of Weyl points, shifting
the chemical potential around each Weyl point in oppo-
site ways. The current contributed from each Weyl point

can be expressed as: jCA =
∫

d3k
(2π)3B(v0 · Ω0)δµf ′0.13

Here Ω0 is the usual (unperturbed) Berry curvature, and
δµ ∝ τvχE ·B where χ is the chirality of the Weyl point
and τv is the intervalley scattering time that sustains the
electron population imbalance between the pair of Weyl
points.

The other possible contribution from δµ ∼ B2 is more
general, regardless of the band topology (see Appendix
B for details). It yields the following current that con-
tributes to the magnetoconductivity:

j(b) = τδµ

∫
d3k

(2π)3
v0(v0 ·E)f ′′0 . (7)

The shift δµ can be fixed from the particle number con-
servation. For example, when the conduction band is
separated from the valence band, the electron number n
in the conduction band should be conserved. Under B-
field, the shift δµ compensates the field correction of the

band dispersion to ensure that n =
∫

d3k
(2π)3Df0(ε̃−µ−δµ)

is a constant, from which we can solve out δµ. Note that
without E-field dependence, this shift δµ is an equilib-
rium property and is the same across the Brillouin zone.

This completes our general analysis for all possible con-
tributions to the magnetoconductivity. Since we did not
specify the directions of the fields, the result holds for
both longitudinal and transverse magnetoconductivities.

III. ANALYSIS OF MAIN RESULT

For conventional metals (without chiral anomaly), the
current up to third order is given by j = j(a) + j(b).
One observes that the current at third order only has τ -
dependence as ∼ τ or ∼ τ3. This is because τ is coupled
with k̇ in Eq. (5), its power cannot exceed τ3. Meanwhile,

the term proportional to τ2 is given by −τ2
∫

d3k
(2π)3 [ṽ +

(v0 ·Ω0)B](v0×B ·∂k)(E ·∂k)f(ε̃), which is odd under
time-reversal operation hence vanishes identically.

As mentioned, the first term in j(a) recovers the re-
sult obtained in Ref. 6. It can be shown that its contri-
bution to the transverse magnetoconductivity is always
negative. For longitudinal configuration, its contribu-
tion is nonzero only when the Fermi surface has special
anisotropy.6

Besides recovering the previously known contributions,
most importantly, we discover new contributions, includ-

ing j(b) and the second term in j(a). These terms only
appear when using a complete second-order semiclassical
theory, hence they are missing in previous works. Due to
their common τ -linear dependence, we combine the two
terms together, and name their resulting contribution to
δσ as the intrinsic magnetoconductivity (δσint), because
the ratio δσint/σ0 is independent of τ , consisting entirely
of intrinsic band quantities (apart from the B2 factor).

Our result has important implications on Kohler’s
rule.2 Kohler’s rule states that the ratio δσ/σ0 de-
pends on the B-field through the quantity ωcτ . Since
σ0 ∝ τ , samples with different relaxation times can be
related by plotting the ratios against a rescaled field
Bσ0: δσ/σ0 = F (Bσ0). Kohler’s rule can be derived
in the first-order semiclassical theory by assuming a sin-
gle species of charge carriers and a single relaxation time.
Any deviation from Kohler’s rule is usually interpreted as
from factors beyond the semiclassical description or from
the presence of multiple types of carriers or multiple scat-
tering times.40 Here, we see that the first term in j(a),
which is previously obtain from first-order semiclassical
theory, indeed obeys Kohler’s rule. Denoting its contri-
bution to the magnetoconductivity as the extrinsic one
δσext, we have δσext/σ0 ∼ (ωcτ)2. However, the new in-
trinsic contribution clearly violates Kohler’s rule because
δσint/σ0 is independent of τ . Instead, we may regard
δσint/σ0 ∼ (ωcτb)

2 by replacing τ with another intrinsic
time scale τb = ~/ε, where ε is an intrinsic energy scale
such as the band gap or the chemical potential. Since
our theory is within the semiclassical framework and un-
der the same conditions on carrier type and relaxation
time, it represents a new mechanism for the violation of
Kohler’s rule. Hence, the validity of Kohler’s rule would
need the intrinsic contribution to be insignificant com-
pared with the extrinsic one. This could happen at least
for two cases: (i) due to their different τ -dependence,
δσext generally dominates over δσint in clean samples
where τ is large; (ii) since δσint depends on nontrivial
geometrical quantities such as Berry curvature and or-
bital magnetic moment, it becomes insignificant when
these quantities are small on the Fermi surface.

Another important consequence of the intrinsic con-
tribution is that it offers a new origin of the peculiar
longitudinal magnetoconductivity. Compared with the
chiral anomaly contribution, they both depend on geo-
metric quantities such as the Berry curvature, but chi-
ral anomaly contribution requires the special Weyl-point
band structure, whereas the intrinsic contribution does
not have this restriction—it can be present for conven-
tional metals. Consequently, for systems with relatively
isotropic Fermi surfaces and without Weyl points, the in-
trinsic contribution can dominate the longitudinal mag-
netoconductivity. As illustrated in the following exam-
ples, it can be quite sizable for bands with nonzero Berry
curvatures and orbital magnetic moments, and more re-
markably, it can be positive. Therefore, our theory pro-
vides a new mechanism for positive longitudinal magne-
toconductivity in conventional metals.
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IV. EXAMPLE I: WEYL SEMIMETAL

In the following, we apply our theory to two concrete
examples. In the first example, we consider the low-
energy model of a doped Weyl semimetal. Near the Fermi
energy, Weyl semimetals have isolated Weyl points, each
described by a Weyl Hamiltonian: H = χvFk·σ, where σ
is the vector of Pauli matrices denoting the two crossing
bands, χ = ±1 gives the chirality, and vF is the Fermi ve-
locity. When time reversal symmetry is preserved, there
are at least two pairs of Weyl points in the Brillouin zone.

Consider electron-doped case with µ > 0, and assume
that the B-field is along the z-direction. With two pairs
of Weyl points, we find that the intrinsic magnetocon-
ductivity is given by (see Appendix C for details)

δσint
‖ =

2

15
σ0(ωcτb)

2 , δσint
⊥ = −17

30
σ0(ωcτb)

2 , (8)

for longitudinal and transverse configurations respec-
tively. Here the zero-magnetic-field conductivity σ0 =
2µ2τ/(3π2vF ), ωc = v2FB/µ, and τb = 1/µ is the Fermi
time scale. One observes that the intrinsic magnetocon-
ductivity takes different signs for the two configurations,
and more importantly, the intrinsic longitudinal magne-
toconductivity can be positive.

In comparison, the extrinsic contribution as from the
first term in j(a) is given by

δσext
‖ = 0 , δσext

⊥ = −σ0(ωcτ)2 . (9)

Here δσext
‖ is zero because the Fermi surface is isotropic,

whereas δσext
⊥ is nonzero and follows Kohler’s rule as ex-

pected.
Finally, in Weyl semimetals, there is a positive longitu-

dinal magnetoconductivity from the chiral anomaly effect
δσCA
‖ . It is interesting to consider the ratio between the

intrinsic contribution and the chiral anomaly one:

δσint
‖

δσCA
‖

=
8

45

τ

τv
. (10)

We observe that it only depends on the ratio between the
two relaxation times. Generally, the intervalley scatter-
ing time τv is much larger than τ ,17 so in doped Weyl
semimetals, the chiral anomaly contribution is more im-
portant than the intrinsic contribution for the positive
longitudinal magnetoconductivity.

When transverse and longitudinal magnetoconductiv-
ities are of different signs, for each B-field strength, by
changing the mutual orientation between E-field and B-
field, there exists a critical angle θc between the two fields
at which the magnetoconductivity changes sign. Using
the result obtained above, we find that the critical angle
for this simple Weyl model is given by

θc(B) = arccot
34 + 60(ωcτ)2

8 + 45(τv/τ)
. (11)
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FIG. 1. (a) Intrinsic magnetoconductivities for model (12)
versus the chemical potential. Here σ⊥0 and σ‖0 are zero-
magnetic-field conductivities under transverse and longitudi-
nal configurations respectively. (b) Ratio between magne-
toconductivity δσ and zero-magnetic-field resistivity σ0 ver-
sus the angle θ between E and B fields, as illustrated in the
inset. Here the model parameters are chosen as B = 2T,
∆ = 50meV, vF = 9.2 × 105m/s, and m∗ = 0.1me (me is the
free electron mass). In (b) we take µ = 60meV.

The point is that although here the intrinsic contribu-
tion to the longitudinal magnetoconductivity is relatively
small, its contribution to the transverse magnetoconduc-
tivity can be important provided that τb/τ is sizable.
Hence the intrinsic contribution must be included in es-
timating the critical angle.

V. EXAMPLE II: METAL WITHOUT
BAND-CROSSING

In the second example, we consider a two-band model
without any band-crossing point. It has two valleys in
the Brillouin zone connected by time reversal symmetry

Hχ = χvF kxσx + vF kyσy +

(
∆ +

k2z
2m∗

)
σz. (12)

Here χ = ±1 labels the two valleys, vF , ∆, and m∗

(assumed to be positive) are model parameters, and the
pseudospin σi here denotes the two-band degree of free-
dom. The two bands are separated by a gap of 2∆. Such
a continuum model can be derived from a lattice model,
e.g., defined on a 3D lattice consisting of 2D honeycomb
lattices AA-stacked along the z-direction (see Appendix
D for details).

Consider the electron-doped case with µ > ∆ and take
the B-field to be along the z-direction. For longitudi-
nal magnetoconductivity, it is clear that there is no chi-
ral anomaly contribution since there is no Weyl point.
And because of the axial symmetry of the Fermi surface,
the extrinsic contribution δσext

‖ also vanishes. The only

nonzero contribution here is the intrinsic one, and we find
that it gives a positive longitudinal magnetoconductivity,
as illustrated in Fig. 1(a). From the figure, we observe
that the magnitude of the intrinsic magnetoconductivity
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decreases as µ increases. It is because the intrinsic con-
tribution is a Fermi surface property that highly depends
on the geometric quantities such as Berry curvature and
orbital magnetic moment, which are concentrated near
the band edge in this model.

In Fig. 1(b), we plot the magnetoconductivity contain-
ing both intrinsic and extrinsic contributions against the
orientation of the E-field. Here B-field is taken to be
fixed along the z-direction, and θ is the angle between the
fields. One observes that the magnetoconductivity grad-
ually changes from positive in the longitudinal case to
negative in the transverse configuration, indicating that
the magnetoresistivity changes from negative to positive
in the process.

VI. DISCUSSION AND CONCLUSION

Our main result has been based on the recently devel-
oped second-order semiclassical theory,33,34 which serves
as a rigorous framework for treating such nonlinear effect.
In the derivation, we have not made any assumption on
the band structure nor the field configuration. So the
obtained result is quite general, which is also manifested
in the application of our theory to the two distinct model
systems.

We have adopted the relaxation time approximation in
solving the Boltzmann equation. This approach has been
widely used in theoretical studies and in interpreting ex-
perimental results.13,37–39 It has the merit that it is sim-
ple enough to allow the derivation of analytical results,
yet it still captures the most important effect of scatter-
ing, i.e., the tendency to bring the system toward equi-
librium. It is remarkable that our intrinsic magnetocon-
ductivity already appears in this simple approximation.
To go beyond the relaxation time approximation (e.g. to
include possible spin-orbit coupling effects in scattering)
would require a detailed evaluation of the collision inte-
gral, which would be challenging to proceed analytically
unless for very simple models. In future works, it would
be an interesting problem to study and estimate such
additional corrections to our result.

In conclusion, we have formulated a theory of the mag-
netoconductivity for non-magnetic metals in the semi-
classical regime. We obtain an important new contri-
bution that is missing in previous theories. This intrin-
sic contribution provides a new mechanism for the vi-
olation of Kohler’s rule and for a nonzero longitudinal
magnetoconductivity. Particularly, it dominates the lon-
gitudinal magnetoconductivity in systems without strong
Fermi surface anisotropy and topological band-crossings.
Furthermore, its value can be positive, hence offering a
new origin for positive longitudinal magnetoconductivity
besides the chiral anomaly effect. Our result indicates
that positive longitudinal magnetoconductivity measured
in semiclassical regime alone cannot be regarded as a
smoking-gun evidence for the existence of topological
band-crossings. The intrinsic contribution generally ex-

ists in three dimensional metals with nontrivial Berry
curvatures, and should be taken into account when in-
terpreting experimental results. It may already play an
important role behind the puzzling magneto-transport
signals observed in recent experiments on TaAs2 and re-
lated materials.30–32,41–43
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Appendix A: Derivation of Eq.(6) in the main text

From the equations of motion in the main text (also
see Ref. 33), we find that:

Dṙ =
∂ε̃

∂k
+E × Ω̃ +

(
∂ε̃

∂k
· Ω̃
)
B , (A1)

k̇ = −E− ∂ε̃
∂k
×B−(E×Ω̃)×B+(B·Ω0)(v0×B) . (A2)

Based on Eq.(5) in the main text and the above two
equations, the distribution function can be obtained as

f − f0 =τ(1−B ·Ω0)E · ∂ε̃
∂k

f ′0 + τ

(
∂ε̃

∂k
·Ω0

)
(E ·B)f ′0

+ τ2
[(

∂ε̃

∂k
×B · ∂

)
(E · ∂)ε̃

]
f ′0

− τ3(v0 ×B · ∂)2(E · v0)f ′0 . (A3)

Since the magneto-current we need is ∝ EB2, here we
drop the terms that contain E2 or higher power of E.

Combining Eq.(A1) and Eq.(A3), we obtain the cur-
rent up to third order and ∼ EB2. The last term in
Eq.(A3) yields the first term in Eq.(6) in the main text.
The τ2 term in Eq.(A3) vanishes because it is odd under
time reversal. The other terms can be put into a compact
form and yields the second term in Eq.(6) in the main
text.

Appendix B: Calculation of shift in chemical
potential

Here we outline how one can calculate the shift in the
chemical potential due to the second order field correc-
tion. Consider the case when the conduction band is sep-
arated from the valence band, the electron number n in
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the conduction band should be conserved, which means
that ∫

[dk]Df0(ε̃− µ̃) = n . (B1)

Here we use the short-hand notation [dk] to stand for
d3k
(2π)3 . We can write both the corrected band energy and

the corrected chemical potential in the expansion form,
ε̃ = ε0 + ε(1) + ε(2) + · · · and µ̃ = µ + µ(1) + µ(2) + · · · ,
with the superscripts (1) and (2) indicating the order of
corrections. The corrections of band energy can be found
in Ref. 34.

Expanding the left hand side of Eq. (B1) and counting
the order of each term, we obtain the following relations:∫

[dk]B ·Ω0f0 =

∫
[dk](µ(1) − ε(1))f ′0∫

[dk]B ·Ω(1)f0 =

∫
[dk](µ(2)f ′0 − ε(2))

−
∫

[dk]
1

2
(µ(1) − ε(1))2f ′′0 . (B2)

Since the shift of chemical potential does not depend on
k, we can pull it out of the integration. The results are:

µ(1)

∫
dε g(ε)f ′0 =

∫
[dk]ε(1)f ′0 +

∫
[dk]B ·Ω0f0 (B3)

µ(2)

∫
dε g(ε)f ′0 =

∫
[dk]ε(2)f ′0 +

∫
[dk]B ·Ω′f0

+
1

2

∫
[dk](ε(1) − µ(1))2f ′′0

+

∫
[dk]B ·Ω0ε

(1)f ′0 . (B4)

The shift in chemical potential can be solved from these
equations. From Eq.(B3), it is easy to find out that for
systems with time reversal symmetry, µ(1) = 0.

Appendix C: Calculation for the model of Weyl
semimetals

In the first example considered in the main text, we
take the low-energy model of a doped Weyl semimetal.
Near the Fermi energy, Weyl semimetals have isolated
Weyl points, each described by a Weyl Hamiltonian:
H = χvFk · σ, where σ is the vector of Pauli matrices
denoting the two crossing bands, χ = ±1 gives the chi-
rality, and vF is the Fermi velocity. We assume that the
chemical potential µ is in the conduction band and the
magnetic field is along the z-direction. The basic quan-
tities entering our formula include the conduction band
energy ε = vf |k|, the Berry curvature (take χ = +1 here)

Ω0 = −v
3
Fk

2ε3
, (C1)

the orbital magnetic moment

m = −v
3
Fk

2ε2
, (C2)

the energy corrections,

ε(1) = − v
3
F

2ε2
B , ε(2) =

v4FB
2

8ε5
v2F (k2x + k2y) . (C3)

and the first order correction to Berry curvature

Ω(1) =
v4FB

2ε6

(
v2F kxkz, v

2
F kykz,

1

2
(ε2 − 2v2F k

2
x − 2v2F k

2
y)

)
.

(C4)
Using Eq.(B3) and (B4), we find that the change in chem-
ical potential is µ(1) = 0 and

µ(2) = − v4F
12µ3

B2 . (C5)

The zero-magnetic-field conductivity for two pairs of
Weyl points can be easily calculated as:

σ0 = −2τ

∫
dk

π3

v4F k
2
x

ε2
=

2µ2

3π2vF
τ . (C6)

Plugging the above quantities into our formula (Eqs.(6)
and (7) in the main text), we can obtain the results pre-
sented in the main text. For example, the transverse
magnetoconductivity from the extrinsic contribution is

δσext
xx = −τ3

∫
[dk](v0)1(v0 ×B)i(v0 ×B)j∂ij(v0)1

+ τ3
∫

[dk](v0)1(v0 ×B)i∂i(v0 ×B)j∂j(v0)1]f ′0

= − 1

3π2
τ3B2v3F = −σ0(ωcτ)2 , (C7)

where ωc = Bv2F /µ.

Appendix D: Lattice model for the second example

Here we show that the continuum model of the second
example in the main text (Eq.(12)) can be realized on a
3D lattice. For example, we take a 3D lattice consisting of
2D honeycomb lattices AA-stacked along the z-direction.
Then the lattice model can be constructed as

H = −t
∑
〈i,j〉,`

c†i,`cj,`− t⊥
∑
i,`

ξic
†
i,`ci,`±1 +M

∑
i

ξic
†
i,`ci,`.

(D1)
Here the subscript (i, `) labels the lattice site: i labels
the site location within each honeycomb layer and ` is
the label of the layer. ξi = ±1 depending on the sublat-
tices in each honeycomb layer. The first term is the in-
tralayer nearest neighboring hopping, the second term is
the interlayer hopping, and the last term is an intralayer
staggered sublattice potential.
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After Fourier transform, one finds that for this lattice
model, there are two inequivalent valleys located at the
boundary of Brillouin zone connected by time reversal
symmetry. It can be written in the form of Eq.(12) in
the main text, with the following correspondence:

vF =
3

2
at, ∆ = M − 2t⊥, m∗ =

1

2t⊥c2
. (D2)

Here a is the intralayer nearest neighbor distance, and c
is the interlayer distance.
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