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We describe a versatile mechanism that provides tight-binding models with an enriched, topolog-
ically nontrivial bandstructure. The mechanism is algebraic in nature, and leads to tight-binding
models that can be interpreted as a non-trivial square root of a parent lattice Hamiltonian—in
analogy to the passage from a Klein-Gordon equation to a Dirac equation. In the tight-binding
setting, the square-root operation admits to induce spectral symmetries at the expense of broken
crystal symmetries. As we illustrate in detail for a simple one-dimensional example, the emergent
and inherited spectral symmetries equip the energy gaps with independent topological quantum
numbers that control the formation of topologically protected states. We also describe an imple-
mentation of this system in silicon photonic structures, outline applications in higher dimensions,
and provide a general argument for the origin and nature of the emergent symmetries, which are

typically nonsymmorphic.

PACS numbers: 42.55.Sa, 42.55.Ah, 42.60.Da

I. INTRODUCTION

As the story goes, in 1927 Niels Bohr asked Paul Dirac
“What are you working on Mr. Dirac?” to which Dirac
replied “I’'m trying to take the square root of something.”
Once Dirac achieved his goal, to identify the desired op-
erator that squares to the Klein-Gordon equation, he had
not only laid down a description of relativistic electrons
replete with spin and antimatter [I 2]. As it emerged
later, Dirac’s very same operator also plays a central
role for topological considerations in differential geome-
try, where the Atiyah-Singer index theorem addresses its
zero modes [3]. The zero modes in the topological mate-
rials considered today are a direct extension of this con-
nection [4, 5]. Fundamental symmetries can guarantee
that all positive-energy states are paired with negative-
energy states, with the exception of a protected set of
zero-energy states whose number |v] is obtained from a
topological invariant. These properties may follow from
a charge-conjugation symmetry, as encountered in su-
perconductors [0, [7], or from a chiral symmetry, as en-
countered for the Dirac operator [8, [9]; both operations
anticommute with the Hamiltonian and therefore single
out a spectral symmetry point. In combination with
possible invariance under time-reversal, these spectral
symmetries determine a ten-fold system of universality
classes [7, [10], which can be further extended by includ-
ing aspects of dimensionality [I1,[12] and the space group
(i.e., crystal symmetries) [13]—for example, nonsymmor-
phic symmetries involving fractional lattice translations
can replace fundamental symmetries normally associated
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with fermionic systems [14]. Depending on the univer-
sality class, the topological invariant may take the values
v € {0,1}, leading to the notion of a Z, invariant, or
be any integer, leading to the notion of a Z invariant.
These topological features are not present in the Klein-
Gordon equation, from which Dirac had started to take
the square-root of, a task which was non-trivial as it re-
quired him to introduce extra components and matrices.

Here we describe how rich topological effects arise
when one takes an analogous non-trivial square root on
a tight-binding lattice. Tight-binding lattices provide an
ubiquitous description of electronic bands in crystalline
solids, but also extend to atoms and photons in suitably
engineered optical and photonic lattices. This includes
topological systems in all universality classes, such as the
paradigmatic Su-Schrieffer-Heeger model, originally pro-
posed for polyacetylene [I5], and non-topological vari-
ants such as the Rice-Mele model for conjugated poly-
mers [I6], both of which have been implemented on a
wide range of platforms [I7H20]. Both models possess
two bands in their clean incarnation. The SSH model
features a chiral symmetry which constraints the Bloch
states and allows to define a topological winding num-
ber [2I]. Defects between regions of different winding
number introduce localized, square-normalisable defect
states of a fixed chirality that are pinned to the midgap
energy. The procedure of taking square roots of lattice
systems proposed here provides a mechanism to gener-
ated a wider class of models, including models with mul-
tiple band gaps, where some of the topological properties
can be traced back to features of a parent system while
others emerge from the square-root operation. Given
a suitable parent system with energy bands at positive
energies, taking the non-trivial square root provides us
with a symmetric arrangement of energy bands at pos-
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itive and negative energies. If the original system har-
boured 2|v| protected modes around a spectral symme-
try point E2, the new system will harbour |v| protected
modes around energy F = Ej and |v| such modes around
energy F = —Fjy. Furthermore, the resulting system
can also have topologically protected states around the
newly emergent spectral symmetry point £ = 0, whose
formation is controlled by an independent topological in-
variant. As we will show, these features arise because
the square-root operation allows us to induce (typically
nonsymmorphic) spectral symmetries at the expense of
broken crystal symmetries.

We justify this proposition with some general prepara-
tory remarks (Section [[J), and then demonstrate the
resulting features by deriving a simple minimal model
that complies with the properties mentioned above (Sec-
tion . Applying a Zy gauge transformation, the de-
rived system takes the form of a bow-tie chain (see
Fig. , which displays a chiral symmetry involving a frac-
tional lattice translation; the system can also be inter-
preted as a topological extension of the Rice-Mele model
shown in Fig. 2] The bow-tie chain allows to explic-
itly demonstrate the topological nature of the different
bands, band gaps and interfaces, as expressed via topo-
logical Zak phases, generalized Witten indices, and their
mismatch at boundaries and defects (see Section [[V] and
Figs. as well as the Appendix detailing the utilized
scattering approach). To demonstrate that our construc-
tion is experimentally accessible and applies to practical
devices beyond the tight-binding assumption, we describe
the realization of the model in silicon photonics struc-
tures, where the Zs gauge freedom guarantees that all
effective couplings can be made positive (see Section
and Figs. |§| and . Beyond the setting of this paradig-
matic model, we then consolidate our general criterion
whether a square root of a tight-binding system quali-
fies as non-trivial — the resulting system has to exhibit
reduced crystal symmetries, manifested e.g. via addi-
tional components that give rise to an increased number
of bands with newly emerging spectral symmetries — and
identify a number of systems in higher dimensions where
this is encountered as well (see Section |[V]] as well Figs.
and E[) As our findings also transfer to analogous real-
izations in atom-optical and electronic systems (see our
concluding Section [VII)), they provide a general route to
the design of topologically rich and robust systems with
multiple types of protected modes.

II. PREPARATORY REMARKS AND PREMISE

A. Topological versus non-topological band
structures

To develop our ideas we consider quasi one-dimensional
tight-binding systems with nearest-neighbour couplings.
Such systems are defined on a chain of cells labelled by
an integer n, each associated with an M-component am-
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FIG. 1. Minimal model of a non-trivial square root.
(a) The bow-tie chain is composed of a sequence of dimers (tri-
angles), each supporting two nondegenerate modes (onsite en-
ergies = and intradimer coupling ) where one mode couples
to the left and the other couples to the right (interdimer cou-
pling ). In the regular case the dimer orientations alternate,
resulting in a periodic system with four bands. The depicted
orientation defect generates robust states in both of the finite
energy bands. Here this is illustrated for 8 = v =k = 1, cor-
responding to the change of the topological index & (see text);
further defect configurations are shown in Figs. |4/ and [5] (b)
Interpretation of the dimer chain as a non-trivial square root
of a two-legged ladder system (a tight-binding system with
B = p%++%+ K & =28k, v = k). The parent system
has two sites per unit cell, thus only features two bands. After
taking the non-trivial square root we obtain a tight-binding
system with four sites per unit cell, which can be unfolded into
a linear chain with nearest-neighbor couplings. The bow-tie
chain emerges after a Z, gauge transformation, which renders
all couplings positive.

plitude %,, (components ¥y, 1 ...%n ar), where M takes
care of the number of sites in the cell, including internal
degrees of freedom such as polarization or spin. The ener-
gies F of the system are obtained from the tight-binding
equations

E¢n = nwn + TJ—l"?bn—l + T",l?bn-i-l (1)

with on-site Hamiltonians H, = H! and nearest-
neighbor coupling matrices T),. A band structure emerges
when the system is periodic. We then can write the
eigenstates as Bloch waves v, = (k)e™* with wave
number k, and find the k-dependent eigenvalue problem
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FIG. 2. Example of a trivial square root. The Rice-
Mele model, a non-topological system proposed to describe
conjugated polymers, is composed of the same dimers as the
bow-tie chain (Fig. , but placed in an non-alternating fash-
ion. The Rice-Mele model can also be interpreted as a square
root, but possesses the same number of sites per unit cell as
its parent system (a system of two uncoupled chains, with ef-
fective parameters defined in the same way as in Fig. . The
illustrating band structures correspond to § = v =k = 1,
hence 8 = 3 and v = 2.

E(k)e(k) = H(k)p(k) with Bloch Hamiltonian H (k) =
Hy + TOTe’“C + Tye**. The number M of sites in the unit
cell determines the dimensions of the Bloch Hamiltonian,
and thereby also the number of energy bands E(k), as-
sociated with eigenvectors (k).

A useful prepatory example is the the Rice-Mele model
(shown in Fig. [2]), where M = 2 and

ne(25) m=(00)

It will be convenient to represent this system as a se-
quence of asymmetric dimers with onsite energies — g3, 3,
intradimer coupling v and interdimer coupling x; these
dimers are depicted symbolically as triangles in all fig-
ures. (Note that these dimers combine two sites of ad-
jacent cells, i.e., an amplitude %, o with an amplitude
Unt1,1; see the Appendix and Fig. for further de-
tails.) The two bands E(k) = ++/8% + |k + ve's|? are
arranged symmetrically in energy, which can be associ-
ated with the property H(k) = —o,[H(k)]*o,, where o
denotes the standard Pauli matrices. This band struc-
ture is not classified as topological as the line § = 0,
|v| = |k|, where the gap closes, does not divide the pa-
rameter space (3,7, k) into disconnected segments. For
fixed 8 = 0, however, the system reduces to Su-Schrieffer
Heeger model, whose band structure is topological as the
gap-closing lines |k| = |y| now indeed divide the reduced
parameter space (7, k) into disconnected segments. The
passage across a gap-closing line is known as a band in-
version. The topological properties of the Su-Schrieffer-
Heeger model can be associated with the chiral symme-
try 0. H(k)o, = —H (k) [2I], which lifts the system into
a topologically non-trivial universality class. It is also
useful to note that the chiral operator o, constitutes
a special case of a Zy gauge transformation, in general
given by Z¢y m = OpmWn,m with independently chosen
onm = *1. Such a gauge transformation allows to change

the sign of off-diagonal elements (couplings) in a tight-
binding Hamiltonian.

B. General considerations

For further motivation, let us have a more general look
at periodic tight-binding systems with Bloch Hamilto-
nian H(k), which may include an arbitrary range of the
couplings, and explore a particular consequence of a chi-
ral symmetry H (k)X (k) = =X (k)H (k). It will be consis-
tent with the following discussions to set the dimensions
of this Hamiltonian to 2M, as it is our goal to relate it to
a parent Hamiltonian with only M components. As indi-
cated, we acknowledge that the chiral operator X (k) may
be k dependent. In a suitable, possibly k-dependent basis
(viz., gauge), however, we can fix X(k) =0, @ 1y = X
[22], upon which the Bloch Hamiltonian takes the form

.Hw)=<_4%% _é&)>’ {vum::—vw» ¥

For any eigenvector (k) = (u(k),v(k))T with energy

E(k), we have a partner state Xp(k) = (v(

with energy —FE(k); also, uf(k)v(k) + vT(k)u(
Note now that the squared Hamiltonian

U2(k) — V2(k)

) U(k)V (k) — V(k)U (K
H(“—(mmwm—vaw AR

U%(k) — V2(k)

(4)
commutes with X' (k). The joint eigenvectors are the su-
perpositions

s vo- () - (250). o

where E?(k)u/y (k) = H/ (k)u/ (k) with the reduced
Hamiltonian H', (k) = (U(k) FV(k))(U(k) £V (k)).
Normally, we would expect U(k 4+ nko) = U(k) and
V(k4+nko) = V (k) be both periodic when cycling through
the Brillouin zone of size ky. However, as we will con-
firm in our concrete example, the gauge choice that ren-
ders X (k) constant can render V (k) antiperiodic, V (k +
nko) = (—1)"V (k). In this case, traversing the Brillouin
zone joins H' (k) = H' (k+ko) and u’_(k) = u/_(k+ ko),
so that it is natural to double the size of the Brillouin
zone and describe the Bloch waves by a reduced set of M
(instead of 2M') components. Furthermore, applying the
transformation (k) — diag (e'™*/2ko e=imk/2ko) (k) we
can revert to a gauge where H (k) is periodic, and then
find that X (k) = [cos(nk/ko)oy + sin(nk/ko)oy,] @ Ly
takes the form of a fractional lattice translation, i.e., can
be interpreted as a nonsymmorphic chiral symmetry.
Upon retracing our steps, the upshot of this discussion
is the following proposition: taking a square root of a par-
ent tight-binding system as described by H’, (k), it can be
possible to break crystal symmetries, at the expense of an
expanded unit cell with twice as many components and

)



a Brillouin zone half in size, and in the process generate
a chiral symmetry X that induces spectrally symmetric
bands. We will show that this can indeed be achieved,
including in cases where the band structure is already
topological, resulting in a non-trivial square-root system
which displays richer topological features. In particular,
we construct a practically realisable model system that
only features nearest-neighbour couplings.

III. THE BOW-TIE CHAIN

A. Construction of the minimal model

According to the features described in the preceding
Section, we require that our minimal parent system fea-
tures a band gap about a spectral symmetry point; the
unit cell therefore needs to comprise at least two sites
(M = 2). To be non-trivial, the square-root system will
have to have four bands, thus, be periodic with period
2 in the original unit-cell indices. Together with the re-
quired spectral symmetries, this allows to identify a min-
imal model, which will turn out to correspond to the
bow-tie chain depicted in Fig.

To implement these constraints we start with the pu-
tative non-trivial square root system (termed the ‘candi-
date’) and iterate the tight-binding equations once,
giving

Eldjn = H;zfdjn—"_Tr/LTf 1’1/)”7 1 +Tr/7,¢n+1 +Trr/j—2¢n72+f7lz¢n+2

(6)
where
E' = E?, (7a)
H, = H?+T}_ T, +T,T}, (7b)
T, = H, Ty + T Hp1, (7c)
T =T Tpis. (7d)

We interpret this as a new tight-binding system, de-
scribing the parent system with a positive energy spec-
trum. This parent system should be periodic, H) = H,
T! = T}, with vanishing next-nearest neighbour cou-
plings T,’L = 0. As shown in Fig. [2| taking the Rice-Mele
model as the candidate this construction leads to a par-
ent system consisting of two uncoupled chains with onsite
energies ' = 32 + 7% + k2 and couplings 7' = vk; the
Rice-Mele model then constitutes a trivial square root
without any newly emerging topological features, consis-
tent with the fact that it still has the same period as its
parent.

To ensure that we obtain a non-trivial square root,
with four bands arranged symmetrically about £ = 0,
we demand that the candidate system has a period of
two, and possesses a chiral symmetry which maps E to
—FE. This can be enforced by the choice

H,, = Ho(-1)",

T, = To(-1)". (8)

The chiral symmetry is induced by a translation X, =
Y, 1, thus, a fractional translation by half a period of
the candidate system. This spectral symmetry is trivial
in the parent system, and therefore emerges only upon
taking the square root, at the expense of a reduced trans-
lational crystal symmetry. The constraint 7, = 0 re-
quires T¢ = 0. The freedom to choose the basis in every
cell then allows us to write

Hn:(—l)"<§ g) Tn:(—l)"<3 8) (9)

which defines the minimal non-trivial square root system.
Its parent system is given by

242 4K 28k

H,g:(ﬁ g e L) o)
k 0

T;L_<70 —w)' (10b)

Via a suitable Z, gauge transformation we can enforce
that the couplings v,k > 0 are real and nonnegative,
which we will assume from hereon.

B. Interpretation and band structure

With help of Fig. b), we now can confirm that the
parent Hamiltonian corresponds to a two-legged ladder,
with onsite energies 8/ = 82 +~2 + k2, couplings 7' = V&
and —' along the two legs and coupling k' = 23k along
the rungs. Given the opposite couplings along the legs,
each plaquette is penetrated by a flux phase of m. The
Bloch Hamiltonian of the parent is

rin [ B +29 cosk K
H'(k) = ( K B — 2+ cosk )’ (11)

and the two energy bands are

E, (k) ="+ pVE? + 492 cosk, p=+1. (12)

As depicted in the figure, the non-trivial square root
system can be unfolded into a linear chain, where all
couplings are still restricted to nearest neighbours (see
the Appendix for a very detailed description). Along
the chain, the system then displays a repeating coupling
sequence k, v, —k, —, and a repeating sequence of on-
site energies 8, 8, —3, —(B. We interpret this as an ex-
tended Rice-Mele model, but with topological features
that we establish in the next Section. For the photonic
implementation we will make all couplings positive by an
additional Zs gauge transformation; schematically, the
system is then composed of oppositely orientated dimers
that form the repeating bow-tie pattern shown in Fig.
For the analytical considerations, it is more convenient to
retain the system with the coupling sequence as derived.

The Bloch Hamiltonian of the unfolded linear chain is

B K 0 —re ik
K B etk 0
0 ve*ik -0 —K ’

—p

(13)



and the four energy bands are

Eu,n<k) =M/ Eﬁ(k)

= n\/ﬁ2 + 79+ K% + 2uk/ B2 4+ 7 cos? k,

(14)

where the label n = %1 selects the bands at positive and
negative energies. The four bands thus come in two pairs,
covering the ranges

fe_ <|E| <& ¢ (inner bands, p = —1), (15a)
g <|E|<eq (outer bands, p = 1), (15b)
separated by gaps at
|E| < &e_ (central gap), (16a)
£ e<|El<é (finite-energy gaps). (16Db)
The band edges are given by
e+ =/ B2+ 7% £k, (17a)
Ex =2+ (BEr)2 (17h)
These expressions feature an index
€ =sgne_ =sgn (B +7° — r?), (18)

which changes its sign when the central gap closes while
parameters are steered through a band inversion of the
inner bands. Analogously, the index

{=sgn(é4 —&-) =sgnp (19)
changes its sign in a band inversion in which the finite-
energy gaps close (8 = 0, where we recover the Su-

Schrieffer-Heeger model with only a single, central, gap).

The indices ¢ and §~ encode information which cannot
be inferred by simply inspecting the band structure —
the same band structure is found when one changes the
sign of 3, which changes the sign of £; the band structure
is also invariant when one passes over to parameters

E=+B>+7% B=pBkr/k, 7=1k/R, (20)

which changes the sign of £&. In Figs. the four cases
delivering the same band structure are distinguished via
the orientation of the dimers (which effectively controls
the sign of 8 and thus 5)7 while dimers with £ = 1 are
denoted in orange-brown, and dimers with § = —1 are
denoted in blue. As we show next, the indices £ and &
indeed capture the topological features of the band struc-
ture.

IV. TOPOLOGICAL CHARACTERIZATION

To establish the topological features of the bow-tie
chain, we identify its symmetries and describe how they

relate to the associated topological indices. The index
& arises from the chiral symmetry that emerges by tak-
ing the square root, while the index ¢ is inherited from
the chiral symmetry of the parent system and translates
into an uncommon algebraic property of the linear chain.
These indices can be expressed in terms of winding num-
bers in the bands and in the gaps, while interfaces be-
tween regions with different indices give rise to topologi-
cally protected defect states.

A. Symmetries

The spectral symmetry E, _(k) = —FE, (k) of the
band structure ((14) about E = 0 is a consequence of the

chiral symmetry (8]), which for the Bloch Hamiltonian
takes the form

(21)

o= OO
_ o OO
oo o

0
1
0
0

As mentioned before, this symmetry originates from a
fractional lattice translation, by half a period of the sys-
tem. We also note the relations

01 0 O
. 100 o0
RH(F)R=H(—k) = H*(k), R=| .0 o 1 |
00 -1 0
(22)

which correspond to a reflection symmetry and a con-
ventional time-reversal symmetry. Both entail that the
bands also are symmetric in &, which simplifies the de-
termination of topological indices [23] [24].

The spectral symmetry Egn(k) =208 - Ein(kj) of
the squared bands about E? = g’ is the consequence of
the chiral symmetry o,H'(k)o, = 25’ — H'(k) in the
parent system. For the unfolded linear chain, this gives
the remarkable algebraic relation

0

0
0

0
0

—_

XH?*(k)X = 28" — H*(k), X =

—
_ o oo

oo O

0

(23)
a property which would be difficult to interpret without
knowledge of the underlying parent system. This inher-
ited spectral symmetry plays an important role through-
out the remainder of this work.

Given these symmetries, applying the conventional
classification of free-fermion models we expect that the
topological features in the central gap can be captured
by the symmetry class BDI for chiral systems with a con-
ventional time-reversal symmetry [I1], i.e., the same sym-
metry class as for the SSH model. As explained in the
Appendix by adapting the considerations in Ref. [25],
the same expectation is born out when we take into ac-
count that the chiral symmetry encountered in our model
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FIG. 3.

Witten index in different configurations. The left panel shows the identical band structure for four different

parameter combinations, corresponding to the four combinations of the topological index & = +1, §~ = #£1. The remaining
panels show the winding of the reflection phase, obtained from the reflection coefficient , and the Witten index in each
of the bands. For (E,é) = (1,1) we set 8 = v = k = 1, while for ({,é) = (1,-1) we set —3 = v = k = 1, thus change the
sign of B (equivalently, interchange the orientation of the dimers, as shown on the top). For (&, 5) = (—1,1) we transform the
parameters according to Eq. , resulting in 28 = 2y = k = v/2 (the dimers corresponding to these transformed values are
shown in blue). The case (£,&) = (=1, —1) follows by once more changing the value of 3, so that —28 = 2y = sk = v/2; this is

again equivalent to interchanging the orientation of the dimers.

is nonsymmorphic. For the finite-energy gaps, we ar-
rive at the same conclusions starting from the topological
features of the parent system, which also suggests that
the corresponding topological index is independent. To
show that these expectations indeed hold true we explic-
itly construct the topological invariants for the different
bands and band gaps.

B. Zak phase and Witten index

Each band can be associated with a Zak phase [26]

d

z= iﬁz cpT(k)%cp(k) =7Z. (24)

This phase depends on a gauge choice, which can be fixed
by demanding that the component ¢1 (k) is real and pos-
itive. In topological systems, the phase is quantized,
giving rise to an integer index Z = z/m, while in non-
topological systems the phase can take any value [21].

To evaluate the Zak phase we adopt the convenient
scattering formalism (see Refs. [23] [24], 27H29], as well as
the Appendix providing further details for the statements
in the present Subsection). The phase is then expressed
in terms of a reflection coefficient r(E) of a wave enter-
ing a semi-infinite segment of the system. In the band
gaps, including the band edges, the wave will be totally
reflected, so that |r(E)|=1. By inspecting the winding
deep in the bulk of each different topological sector, we
find the remarkably simple relation

1
Z = i[r(lower band edge) — r(upper band edge)] (25)

for the Zak phase in each band.

The reflection coefficient can be obtained from the
transfer matrix of the system. Given the amplitudes 1,
in a cell, the tight-binding equations at fixed energy E
allow to determine the amplitudes in the next cell as
,, = M,(E),,_;. The matrix M(E) = My(E)M;(E)
then describes the transfer by two cells, thus a period of
the square-root system. Unitarity of quantum mechan-
ics enforces the symplectic symmetry MT(E)o,M(E) =
0y, which amounts to flux conservation. This entails
det M(E) 1, so that the two eigenvalues Ay (FE) of
M (FE) are reciprocal, A_(E) = 1/A;(F). In the bands,
these eigenvalues determine the Bloch factors of the prop-
agating waves. In the gap, the modes become evanescent,
where we choose |A;(F)| < 1 to describe the decaying
wave. The reflection coefficient

_ ¢4 1(E) +igy o(F)
b1 2(E) +igy1(E)

follows from the associated eigenvector ¢ (E).

At the band edges, the propagating modes must match
up with the evanescent modes. This enforces Ay = A_ =
lor Ay =A_ =-l,aswellas ¢, = ¢_ = (1,1)7 or
¢, =¢_=(1,-1)T, corresponding to r =1 or r = —1.
At the band edges E = +e_ of the central gap, we find
Ar =1, ¢, =(1,F1)7, thus r = F1. At the band edges
|E| = £+ of the finite-energy gap, we have A, = —1 and
¢, = (1,£1)7, thus » = +1. At the extremal edges
E =+c,, wehave Ay =1and ¢, = (1,£1)T, so that
r = 1. The Zak phase of each band is therefore indeed
quantized, and can be written as

7 (n€ —€)/2, (inner bands, u = —1),
e (775* 1)/2, (outer bands, pu =1).

r(E) (26)

(27)



In particular, we can express £ = —(Z_11+ Z_1,_1) and
E=(Zaa—Za,21) = (211 — Z1,1).

Similarly, we can associate a topological phase to each
gap. This can normally done, e.g., via the Witten in-
dex [30], which here relates to the reflection phase at a
spectral symmetry point [31H33]. In the finite-frequency
gaps, this information is instead encoded in the wind-
ing of the reflection coefficient r(E) = exp(i¢(E)) as one
crosses the gap from the lower band edge to the upper
band edge (see Fig. [3)). At the band edges, the phase
¢(F) is fixed to the symmetry-protected values 0 or T,
so that r = +1 as discussed above. As one crosses the
gap, the reflection coefficient winds along the unit cir-
cle, which encodes topological information. As dictated
by causality [34], the winding is always in the clockwise
sense, and in the system considered here, is always by
7. A reflection coefficient starting at » = 1 at the lower
band edge therefore need to pass by the point r = —i
before ending at r = —1 at the upper band edge; this
scenario is characterized by the Witten index 1. If the
arc is from r = —1 via r = i to r = 1, we associate this
with an index —1. With these conventions it follows that
the Witten index is equal to the value of r at the lower
band edge,

W=¢
V~V77 = —né (finite-energy gaps).

(central gap), (28a)

(28b)

In each gap, the Witten index is therefore directly related
to the index £ or £ that controls the band inversion. This
establishes the topological features of the bandstructure.
We now turn to the observable consequences, and in par-
ticular the formation of defect states.

C. Topologically protected defect states

The adopted scattering approach to the topological
characterization of the bandstructure sets up an efficient
criterion to infer the existence of topologically protected
defect states.

When we terminate the system as shown in Fig. 4} a
bound state is formed if the decaying state fulfills the
boundary condition ¢ 1(E) = 0, hence r(E) = ¢, which
is guaranteed for a Witten index W = —1 in the central
gap, and W, = —1 in the finite-energy gaps. Since the
Witten index in the finite energy gap at positive energies
is opposite to the one at negative energies, exactly one
such finite-energy bound state exists for any given com-
bination of parameters; in the central gap, the state only
exists for some configurations. In particular, the state
in the central gap can be switched on or off by pass-
ing from the values (8,7,k) to the transformed values
(B,7,F) given in Eq. , which changes the index W
while keeping the bulk bandstructure unchanged. In the
Figure, dimers with W = 1 are again denoted in orange-
brown, while the transformed dimers with W = —1 are
denoted in blue.
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FIG. 4. Edge states. Each figure (a-d) corresponds to a
semi-infinite system with parameters as given in Fig. A
defect state exists whenever the Witten index in a gap equals
= 1. In each figure, the left panel shows the mode profile
of the edge state while the right panel indicates its position
within the spectrum of the system.

These considerations can be extended to more gen-
eral boundary conditions. E.g., a boundary cutting
through the middle of a dimer translates into the con-
dition ¢4 2(E) = 0, hence r(E) = —i, requiring a Witten
index W = 1 in the central gap and W, = 1 in the finite-
energy gaps. Displacing the boundary by a full dimer
amounts to the fractional lattice translation that induces
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FIG. 5. Interface states. Defect states that arise at inter-
faces between systems with opposite index &1, = 1, €p = —1,
corresponding to a change of the parameters by the transfor-
mation (20). In panel (a), the index &, = g = 1 is identical
on both sides, while in panel (b) we have £, = 1, £g = —1.
The parameters are chosen as in Figs. |3[and 4] See Fig. a)
for an interface state between systems with opposite indices
&L =1, &, = —1 but identical {1, = g = 1; as shown in panel
(c), this interface amounts to a coupling defect in the parent
system. No such interface states form when all indices are the
same on both sides of an interface.

the chiral symmetry . Under this translation, the in-
dex W (and hence also €) changes its sign while W (and
hence also £) remains unchanged. This is consistent with
the results shown in Fig. @] where such a translation in-
terchanges panels (a) and (b), as well as panels (c¢) and
(d).

As already anticipated in Fig. [Ifa), defect states can
also form at interfaces between two semi-infinite systems,
denoted as left (L) and right (R). In the parent Hamilto-
nian, this defect amounts to a coupling defect between to
the two ladders, as shown in Fig. [5|(c). Two further inter-
face scenarios are shown in Fig. [5(a,b). In terms of the
corresponding reflection matrices, the general quantiza-
tion condition of states in the gaps can then be writ-
ten as Rpg = rprg = 1. As we traverse through a
gap, this product will rotate by 27 along the unit cir-
cle, and is guaranteed to pass through 1 if at the band
edges Ry gr = —1. This occurs exactly when the Witten
index of the gap differs on the two sides of the inter-
face. The central gap supports a topological defect state
if &5, # &g, while a topological defect state in both of the

silica

silica

FIG. 6. Silicon photonics realization. (a) The bow-
tie chain can be realized in an integrated photonic structure
made of silicon waveguides on top of a silica substrate. Each
dimer consists of two waveguides of different dimensions, giv-
ing rise to detuned propagation constants So + 8, while the
interdimer and intradimer couplings 7, x can be controlled
via the spacings. These parameters can be inferred from the
formation of supermodes in an isolated dimer, as shown in (b)
for a system with fo = 11.24 um~! and 8 = v = 0.06 um ™"
(for the geometric parameters see Table .

finite-frequency gaps appears if §~ L7 §~ r. We recall that
all combinations of these indices can be achieved while
keeping the bandstructure on both sides aligned. In par-
ticular, to set £ # £gr, one can again pass over to the
values from values (3,7, k) on one side to the transformed
values (f3,7,%) on the other side; the different types of
dimers are again indicated by their color.

Therefore, by either using a boundary or an interface,
the formation of topological protected bound states can
be controlled independently in any of the three gaps. In
contrast to the SSH model, these states do not display
a sublattice polarization; however, they all decay expo-
nentially and therefore are square normalizable. We next
demonstrate the utility of these states in the specific set-
ting of silicon photonics.

V. PHOTONIC REALIZATION

Topological photonics was incepted by considering the
behaviour of photonic crystals under the influence of



magneto-optical effects [35] B6]. Subsequently, a range of
mechanisms to effectively break time-reversal symmetry
were identified [37HA1], and so were mechanisms to engi-
neer a chiral symmetry [I7HI9] or a charge-conjugation
symmetry [42]. The first experimental realizations uti-
lized microwave structures [43], followed by implementa-
tions at optical frequencies relying on platforms including
resonator arrays [44], waveguide lattices [45], and optical
quantum walks [46]. In most cases the design of these
structures is based on tight-binding models, e.g., within
a coupled-mode description of resonator or waveguide
arrays [47, 48]. The paradigmatic Su-Schrieffer Heeger
model with staggered couplings has received particular
attention on a large variety of platforms, with works
directly probing the topological nature of the bands
[1°7, 18] 20], also in the non-hermitian regime [49-52)], and
utilizing the protected defect states for phenomena such
as mode selection [I9] 50] and on-chip optical diodes [53].
Staggered on-site energies have been implemented using
optical lattices [I8] as well as resonators or waveguides,
e.g., to realize a photonic analogue of a Peierls-spin chain
[54]. Negative couplings can be obtained, e.g., by using
auxiliary components that mediate the coupling [55].

To implement the bow-tie chain, we first apply a Zo
gauge transformation to make all couplings positive. The
desired gauge transformation takes the form of a basis
change

o o )
after which the Bloch Hamiltonian becomes
B K 0 ye ik
Hk) = | 3 765, " Vf; 2 . (30)

~vetk 0 K —p

This corresponds to alternating couplings «, 7, &, v that
now are all positive, while the onsite energies still follow
the sequence 3, 8, —B, —3; topological defects amount
to irregularities in these sequences.

As in the general discussion, we focus on cases where
the structure can be interpreted as a succession of asym-
metric dimers, represented by the triangular elements in
the pictorial description of Figs.[IH5] In a given physical
realization, the components that support the two funda-
mental dimer modes can have a variety of shapes; all that
is required is the existence of two modes that are spec-
trally well isolated from the remaining modes. The effec-
tive tight-binding description employed here then follows
from the application of standard coupled mode theory
[48].

Here we consider the most straightforward implemen-
tation, the ridge waveguide geometry shown in Fig. @(a)
in which each dimer is formed by two distinct waveguides
that operate in the single-mode regime. In this setup, the
diagonal elements of the Hamiltonian represent propaga-
tion constants rather than energies. The onsite elements

parameter| value
w1 600nm

w2 450nm

h 50nm

H 180nm

D 965nm

TABLE I. Geometric parameters for a silicon dimer with
Bo =11.24um™" and B = v = 0.06 um™", giving rise to the
supermodes shown in Fig. @(b)

center-to-center | case (a) | case (b) |case (c)
separation distance|x = 0.5v|k = v/2v| k = 27
dy 1220nm | 870 nm | 750 nm

do 1270nm | 850 nm | 700 nm

TABLE II. Geometric parameters corresponding to three rep-
resentative values of the interdimer coupling «, for fixed dimer
configurations with 8 = v = 0.06 um ™' as given in Table

are controlled via modifying the size or material compo-
sition of the guiding channels, while the coupling coeffi-
cients can be tuned by adjusting their spacings. A benefit
of this waveguide geometry is the possibility to study the
wave dynamics along the structure (designated as the z
coordinate), which in coupled-mode theory is generated
by i dyp(z)/dz = HY(z).

For a realistic modelling, we consider silicon ridge
waveguides on a silica substrate, as depicted in Fig. [6]
which we characterize using a full-wave finite element
method [56]. The waveguides are designed to support a
single fundamental TE mode at a free-space wavelength
of A\g = 1.55 um. The geometric parameters (height and
width) of each waveguide as well as their separation dis-
tance are listed in Table [} These design parameters cor-
respond to a detuning B = 0.06 pm~! that equals the
intradimer coupling strength, so that v = 5. Figure @(b)
illustrates the supermode structure of an isolated dimer
under the above conditions. The field profiles of the su-
permodes are clearly asymmetric, with one supermode
localized mainly in the left waveguide while the other
resides in the right waveguide.

For the extended system, we discuss three different ar-
ray designs, giving rise to the representative band struc-
tures shown in the bottom panels of Fig. These sce-
narios are obtained by choosing the inter-dimer distances
according to the values given in Table [[I] which selects
the interdimer coupling « while keeping 3 = ~ fixed. In
case (a) k = v/2, hence £ = £ = 1, for which one topo-
logical edge state exists at the left side of the array (see
Fig. [fla); another such state exists at the right edge).
This edge state also exists in case (b) where k = /2, at
which still € = 1 but the central bandgap is closed. In
case (¢), kK = 27, so that now £ = —1; then two local-
ized modes having different eigenvalues and residing in
different band gaps coexist at each edge (see Fig. c))
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FIG. 7. Probing edge states in wave propagation.

The top panels show the predicted evolution of light intensity
when an optical beam is launched into the leftmost waveguide
of a silicon photonics structure of 18 waveguides, designed as
shown in Fig. @a). The dimers are configured to 8 = vy =
0.06 um™*, while the interdimer coupling is set to (a) x = /2,
(b) kK = /27, and (c) kK = 2v (see geometric parameters in
Tablesand for the structure shown in Fig. |§[) The results
of the simulations coincide well with the predictions of couple-
mode theory, shown in the middle panels. The band structure
underlying the couple-mode theory is shown in the bottom
panels, with edge states at the left and right edge indicated
by solid and dashed horizontal lines. In case (a), only a single
edge state exists at the left edge [cf. Fig. a)]; this state is
clearly seen in the propagation. In case (b), the central gap
closes, leading to a locally linear dispersion that gives rise to
a characteristic diffraction pattern. In case (c), the gap is
reopened, and the band inversion results in the formation of
a second edge state [cf. Fig. c)] Both edge states are clearly
seen to interfere in the propagation intensity pattern.

As shown in the top panels of Fig. [7 these modes can
be probed by investigating the intensity evolution when
an optical beam is launched into the leftmost waveguide.
To mimic realistic experimental conditions, we consider
an integrated silicon device made of 18 waveguides, each
of which is 170 um long. In case (a), the intensity is
guided by the edge state in the finite-frequency gap. In
case (b), where the central gap is closed, a secondary
emission appears that resembles diffraction in uniform
waveguide arrays [57]. The subsequent appearance of a
second localized mode in the central gap, case (c), can be
inferred from the beating pattern of the optical intensity
in the leftmost waveguide. The results for the integrated
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silicon device agree well with those using coupled-mode
theory, which are shown in the middle panels.

The construction of the bow-tie chain, invoking a non-
trivial square root, is intimately linked to a tight-binding
picture. The results in the present Section show that
such considerations indeed transfer to realistic continu-
ous systems, as long as they are suitably patterned to
justify the coupled-mode description.

VI. POSSIBLE GENERALIZATIONS

As already mentioned in the discussion of Fig. [2 the
Rice-Mele model itself can be viewed as an example of a
trivial square root, where the parent system consists of
two uncoupled chains; both the square root and the par-
ent system possess two sites per unit cell. Starting from
the bow-tie chain, further generalization can be achieved
by expanding the underlying algebra beyond the square-
root operation. E.g., a spectrally shifted spectrum is ob-
tained by starting from a parent tight-binding Hamilto-
nian written as H' = H? + oH + o/, which we exploited
implicitly for the photonic realization with a reference
propagation constant 3y. In the construction of the bow-
tie chain, we also restricted our attention to systems with
couplings between adjacent unit cells. More remote cou-
plings introduce non-monotonous bands, which is a pre-
requisite to generate multiple defect states in selected
band gaps and realize the full scope of a topological quan-
tum number v € Z. These features require the general-
ization

By = [ H2 + > T T | tn (31)
m¥#n
+ Z (H n Tn m + Tn m H m ) ’Q%n + Z Tn m Tml ’Ul 3
m#n l#n;m#l,n

of the relations Egs. @ and (7)) between the parent
and the child system, obtained by iteration of a tight-
binding equation with couplings T,,; between cells m
and [. Additional bands can be created by increasing
the period in the child system, so that the unit cell en-
compasses more components. Alternatively, one could
shift the spectrum of the child to positive energies and
take additional square roots, effectively generating poly-
nomials of higher order. The unifying key feature in this
general one-dimensional setting is the observation that
the square root operation allows to replace lattice sym-
metries by spectral symmetries, and that these can be
interpreted as fractional lattice translations, as described
in Sec. [IBl

To see how our considerations can be further extended
beyond this one-dimensional setting, we now briefly de-
scribe non-trivial examples in two dimensions, as illus-
trated in Figs.[8land[9] The first system [Fig. [§(a)] high-
lights a typical feature of topologically non-trivial models
in higher dimensions, namely, the role of gauge configu-
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FIG. 8. Extensions to two-dimensional square lattices. (a) The m-flux square lattice, a systems which has gained
considerable attention due to its topological and statistical features, can be interpreted as the square-root of four uncoupled
square lattices. The square-root operation leaves freedom to choose between several dimerization patterns, whose interplay has
been studied in the past to define topological defects with fractionalized charge [59]. Our construction reveals the additional
freedom to choose an onsite corrugation pattern, which maybe exploited to define additional defects. While the unit cell retains
four sites, we deem this square root non-trivial as the resulting system has a reduced rotation symmetry (this already applies
without the onsite corrugation). The parameters of both models are related by 87 = % + 29 + 2k?, v/ = yx. (b) Starting
from a square lattice system with w-fluxes in alternating cells, and additional next-nearest neighbour couplings (unit cell size
4), the square-root operation allows to obtain a system with 8 sites per unit cell. Again, there is freedom to choose between
various dimerization and onsite corrugation patterns, providing scope to form topological defects in the system. This system
constitutes the most natural extension of the bow-tie chain into two dimensions. The couplings are defined in the same way as
above, with in addition " = 28k.

rations. When generated by a magnetic field, these con-
figurations result in finite fluxes through plaquettes that
cannot be gauged away. Starting from four uncoupled
copies of square lattices without such fluxes (on-site ener-
gies 8" = 32 +272+2k? and couplings v = vk), a 7-flux
lattice can be generated via the square-root operation.
Such lattices are characterized by one negative coupling
around each plaquette, and have been studied extensively
due to their rich topological and statistical features (see,
e.g., [68]). As we see in the figure, the square-root op-
eration introduces the freedom to choose a dimerization
pattern, as well as an on-site corrugation pattern. These
features do not require to extend the unit cell (there are
still four sites per unit cell), but break the rotational
symmetry of the system; they therefore reduce the crys-
tal symmetry. U(1) and Z, defects in the dimerization
pattern have been introduced in [59] to study charge frac-
tionalization; working backwards as in Egs. (6) and (7)),
such defects can now be seen to introduce localized po-

tential variations and couplings between the four parent
lattices. Further defects can be introduced through the
onsite corrugation pattern, a feature which remains to be
explored.

For the second example we generalize this system so
that the square-root operation induces extra components.
As shown in Fig. b), the parent system possesses four
sites per unit cell and includes next-nearest-neighbour
couplings, in analogy to the two-legged ladder. Choosing
a suitable flux configuration and exploiting the freedom
of dimerization and corrugation patterns, the non-trivial
square root features a unit cell with 8 sites. This system
appears to be the most natural extension of the bow-tie
chain to two dimensions.

As a third example, we consider honeycomb systems
such as graphene [60]. Anisotropic versions of these sys-
tems appear in the single-particle sector of the Kitaev
honeycomb [61], where m-fluxes are generated by cou-
plings with an inverted sign (inverted bonds). As shown
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FIG. 9.

Anisotropic honeycomb lattice with 7= fluxes.

The Kitaev honeycomb can be solved by a mapping to

graphene-like single-particle sectors with anisotropic couplings and inverted bonds, where the latter generate an arrangement
of 7 fluxes [61]. Each of these sectors can be viewed as a square root of two triangular lattices with a corresponding flux
arrangement, as shown here for a pair of m fluxes generated by a single inverted bond. The parameters in the parent system
are B = B2 + 42 +~2 +~% and ] = v27y7:/7: with i € {z,y, 2}, where we also include a staggered on-site potential 3 not

present in the Kitaev honeycomb.

in Fig. 0] the parent system is the sum of two triangular
lattices, each with inverted bonds that generate a cor-
responding arrangement of m-fluxes. Symmetry break-
ing again occurs as a consequence of a spectral shift in
the parent system, which under the square-root opera-
tion generates a sublattice-staggered potential £5. In
absence of the fluxes, the resulting honeycomb system
only displays a three-fold rotation symmetry about each
plaquette centre, while the parent system displays a six-
fold rotation symmetry.

These considerations suggest the following criterion to
signify whether a square root is non-trivial—a trivial
square root displays the same crystal symmetries as the
parent system, while in a non-trivial square root some
of these symmetries are broken down. Supported by
the examples studied here, and recalling also our gen-
eral considerations for one-dimensional systems in Sec-
tion [[TB] we then argue that the reduction in symmetry
gives scope for richer representations, which in the sim-
plest case amounts to a larger unit cell, effectively equip-
ping the system with more components. The lost crystal
symmetries may be replaced by new spectral constraints,
as exemplified by the chiral symmetry in the bow-tie
chain; additional features such as a chiral symmetry of
the parent system yield further nontrivial constraints, as

exemplified by Eq. .

VII. CONCLUDING REMARKS AND
OUTLOOK

In this work we set out to explore whether interest-
ing topological features can arise when one considers
the concept of a square root of a Hamiltonian, as uti-
lized by Dirac in the pursuit of relativistic quantum me-

chanics, and transfers it to the setting of periodic tight-
binding lattices. We identified the simplest non-trivial
one-dimensional example, the bow-tie chain, and found
that it possesses a rich topological band structure, pro-
viding means to generate a versatile combination of edge
and interface states. These features arise from spectral
symmetries and topological indices that emerge under the
square-root operation while some crystal symmetries are
broken. The model can be implemented in suitably engi-
neered photonic systems, not only in the integrated sili-
con photonic structures considered in Section [V] but also,
for example, in plasmonic devices and atom-optical set-
tings, which have been used to implement a wide range of
tight-binding systems. In the context of electronic trans-
port, the model may, e.g., be viewed as a topologically
nontrivial extension of the Rice-Mele model, correspond-
ing to a conjugated polymer with a larger unit cell.

While we mainly employed this concept to identify a
minimal model that can be easily implemented, it also
brings a new perspective to a broad range of systems
that are already under investigation. By working back-
wards as in Egs. @ and , it is indeed not difficult to
relate a variety of well-known systems to simple parent
configurations. Besides the 7w-flux square and honeycomb
lattices described in Section [V} this applies, e.g., to the
Lieb lattice [62] or the Haldane model [63]. We are cer-
tain that many rich examples of these correspondences
remain to be discovered.

In summary, the utility of the constructions presented
here is two-fold—by taking a non-trivial square root, it is
possible to construct simple but topologically rich mod-
els from well-understood parent systems; by reading the
relations backwards, they present a tool to gain addi-
tional insights into a range of interesting models. As an
application, we constructed the bow-tie chain, a simple



system with two topological invariants that can be im-
plemented on a variety of platforms. Our considerations
also open up a range of general questions — in particu-
lar, concerning the precise scope for the non-trivial effects
that can emerge, both from the point of view of repre-
sentation theory as well as regarding their place in the
well-established system of topological universality classes

[1THL3, [64].

Appendix A: Detailed consideration of the
topological features

In this Appendix we provide the technical details of the
topological characterization of the bow-tie chain, includ-
ing the specific construction of the transfer and reflection
matrices, the way these quantities enter the defect quan-
tization condition and how the solutions of these condi-
tions are linked to the topological indices. We also discuss
the general topological classification of the system.

1. Transfer matrix and scattering approach

As shown in more detail in Fig.|10[a), the bow-tie chain
in Fig. [I] can be unfolded into a linear chain with nearest-
neighbour couplings. As shown in Fig. b,c)7 this al-
lows us to formulate a convenient scattering picture for
the formation of defect states at boundaries and inter-
faces, which directly connects to the topological analysis
of the band structure.

We start with the definition of the transfer matrix. Ex-
ploring the fact that we only have nearest-neighbour cou-
plings, we can set M = 1 in the tight-binding equations
(1)). Denoting these amplitudes for clarity as ¥;, where
in our previous notation Vo, = 1,1 and Vo,11 = ¥y 2
[see Fig. [L0(a)], they take the form

EV, =ViU; +t 191 +044. (A1)
Here we assumed that the coefficients ¢; are real, which
can always be achieved by adopting a suitable gauge,
i.e., fixing the phase of the amplitudes ¥;. We still re-
tain the Z, gauge freedom of choosing the signs of ¥,
which allows us to switch the sign of any coupling. Given

Eq. (A1), we obtain

E—V, te
v, -y,
1 t

‘I’l+1 = (A2)

from which we read off the transfer matrix

~ 0 1
MiB) = ( —ti—1/t (E—=V)/t ) ' (43)

Given the amplitudes ¥y and ¥; on two neighbouring
sites, the amplitudes throughout the system can then be
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inferred from

<\Il\ilr1 > = M|(E) x M,_1(E) x ... x My(E) (itl) ) .

(A4)
Reverting back to the original paired amplitudes within
each cell, we thus have

Y, = My, (E) X Mp,_1(F) x ... x Mi(E)Y,, (A5)

where Mn(E) = MQn(E)Mgn_l(E)

In the linear chain, the couplings follow the repeat-
ing pattern (to,t1,t2,t3) = (k,7,—K,—7), while the
onsite energies repeat according to (Vo,Vi,Va,V3) =

(8,8, -8, —3). Therefore,

M(E) = ( oty (B-)n ) | (A6
My(E) = (;;H —(Eiﬁ)/n)’ (A6b)
() = (—f?/w —(EJer)M) B
M = (;ﬂ (E 1ﬂ)/ﬁ> | 60
The transfer by a period of the system (two

cells) is then described by the product M(E) =
My(E)Ms(E)Ms(E) My (E).

As required by flux conservation, this matrix is sym-
plectic, MT(E)o,M(E) = o,. The eigenvalues can be
written as Ay (E) = exp(Lik(E)) (hence AL (E)A_(F) =
1), and determine the band structure of the system. For
energies in the bands, k(FE) is real, hence |AL(E)| =
|A_(E)| = 1, while in the gaps we choose the sign of
k(E) = ik(FE) according to Re k > 0, so that [AL(E)| < 1
describes an evanescent wave that decays to the right,
while |A_(E)| > 1 describes an evanescent wave that de-
cays to the left. The associated eigenvectors are denoted
by ¢ (E).

For the formation of an edge state in a semi-infinite
system as shown in Fig. [ we require the boundary con-
dition ¥ = 191 = 0 [see Fig. [L0(b)]. This has to be
compatible with an evanescent mode that decays to the
right, hence

¢+1(E) =0.

Analogously, a boundary cutting across a dimer element
enforces the boundary condition ¥; = 192 = 0, hence

b12(E) = 0. (A8)

For the interfaces shown in Figs. [I(a) and [5(a,b), we re-
quire that decaying modes in the left and right medium
match up as shown in Fig. ¢), which leads to the con-
dition

(A7)

" (E) = o (E). (A9)
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Transfer and scattering approach in the unfolded chain. (a) Detailed definition of the unfolded chain and

symmmetric dimers. The transfer matrices translate amplitudes between cells as defined in the top panel. These matrices can
be inferred from the corresponding linear chain defined in the middle panel. After the Z, transformation, the syste can be

represented by two types of oppositely orientated asymmetric dimers (bottom panel).
(b) Definition of the reflection coefficient for scattering from a semi-infinite system. The

span across two cells (solid boxes).

Note that the dimers (dashed boxes)

external medium is perfectly matched, and its characteristics drop out when the system is terminated. This leads to the simple

quantization condition for edge states r(E) = 1.

(¢) The scattering approach also allows to address interfaces between two

semi-infinite systems (denoted L and R), where the quantization condition takes the form rg(E)r.(E) = 1.

To set up the scattering formulation of these condi-
tions, we consider a semi-infinite chain attached to an
exterior medium [see again Figs. [10[b,c)]. The details
of this medium will drop out once we replace it by a
boundary or an interface to another system. We therefore
assume an ideally matched featureless medium, which
is obtained by continuing the system as a monoatomic
chain with onsite potential set to the energy of the
system. We denote the amplitudes in the medium as
U, with [ < 0, while for the system [ > 1. In the
medium, the solution is a Bloch wave of the form ¥; =
A(etko(=1/2) 4 pe=iko(I=1/2)) "wwhere ky =n/2 due to our
choice of the onsite potential, while the offset by 1/2
refers the reflected wave to the effective location of the
interface. This wave has to match with the decaying wave
in the system, which is achieved if

¢ 1(E) = A2 4 p(B)emho(71/2))

= Ae” /(1 +ir(E)), (A10a)
¢12(E) = A(e™/?) 4 p(B)e~ho(1/2))

= Ae”"1(i +r(E)). (A10b)

From this we obtain the reflection coefficient r(E) as
given in Eq. .

2. Quantization conditions and topological
invariants

In terms of this reflection coefficient, the boundary con-
dition (A7) yields the quantlzatlon Condltlon r(E) =i
while the boundary condition (A8]) yields the quantiza-
tion condition r(E) = —i. To descrlbe an interface, we
analogously define

¢5+ 1(E) + @¢)+ 2(E)
,2(E) + isb 1 (E)
rp(E) = T (B) + 0L 5(B) (A11b)
The boundary condition (A9) then requires

rr(E)r(E) = 1, which can be interpreted as the
condition for constructive interference in a round trip
through the system.

Within the gaps, the reflection coefficient |r(E)| =
1 and the winding of its phase is constrained by the
symmetry-constrained values r» = =41 at the different



band edges. It follows that the winding is a topolog-
ical invariant and can only change when band gaps are
closed. The number of solutions for the various boundary
conditions can therefore be inferred from the topological
features of the bandstructure.

To characterize these features, we first consider the
Zak phase Z, defined in Eq. . As a first step, let us
parameterize

(k
(k)
)a(k)

with normalization constant N (k) and parameters a(k),
a(k), and A(k). The symmetries imply ¢(k)

Re*(k), from which we obtain the constraints &(k)
—A*(k)a(k)/A(k) as well as |a(k)|> = 1. Hence

~

(A12)
A

=0

1
) (k) 1
PR=NWL gy MY AT A
A (R)ak)
(A13)

To further exploit the symmetries , we split the
integral into the right-propagating branch ¢, (E) and the
left-propagating branch ¢ _ (E) = ¢ (E), parameterised
by energy. The Zak phase then takes the form

d d

Emaac

z:iIm/ dE [t (B)—p  (E) — o' (E)—p (E
- [P} (B) 5+ (B) — ¢ L(E) e (E)]

D —— ; d

= 2Im dE o\ (E)—  (E
/Em oL (B) 0, (B)
EnLaJ; d

= —Im dE o (E)—— oy (E), (A14)
B dE

where the band edges E,,;, and E,,.; are taken from
Eq. (15), while in the last step we made use of the
parametrization . It follows that the Zak phase
is determined by the winding of a (E).

The first two components of the Bloch wave ¢ (E) co-
incide with the eigenvector ¢ (E) of the transfer matrix.
Therefore, the reflection coefficient is

1 -+ Z.CY+ (E)

r(E)+1
r(E o (B)+i’ hence a4 (F) = T+ ir(B)’ (A15)
The constraint |y (E)[* = 1 implies that within a band
r(E) is real, while |r(E)| < 1 implies that Im ay (E) > 0.
It follows that multiple windings of this phase factor are
forbidden, allowing us to fix the branch 0 < arg ay (F) <
. With these constraints, it suffices to know ay (E) at
the band edges,

z=argay (Emin) — arg ay (Emaz)- (A16)

As at the edges the reflection coefficient can only take the
values 7(Epin maz) = £1, we have arg a4 (Emin,maz) =
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1 + 7(Emin,maz)]7/2, from which we recover Eq. (25).
More formally, this result can be substantiated by the
transformation

Enmaax d
z=—Im / dE o’ (E) E)
E

E
max 1 d
=-2 df ——— —
/Em 1+ 2(E)dE"

= 2arctan r(E ) — 2arctan r(Epnqz)-

(E)
(A17)

Given that arctan(£1) = £7/4 (with other branches not
accessible due to the constraint that r(F) is real and
obeys |r(E)| < 1), we again recover Eq. (2F).

The explicit value of the reflection coefficient at a
given band edge Ey = FEnin, Emaz, specified again by
Eqgs. , is most quickly obtained by testing whether
the transfer matrix M (FEy) has an eigenvector (1,1)7 or
(1,—1)T. This amounts to the conditions

(1, —1)M(Eo) G) —0 forr(By)=1, (AlSa)

1

(1,1)M(Eyp) ( ) =0 forr(Ey) =-1, (Al8b)

and leads to the Zak phases as summarized in Eq. (27).

These considerations also allow us to establish the
winding of the reflection coefficient in the gaps. For each
gap, we find from the conditions that the reflection
coeflicients at the upper and lower band edge are always
opposite. We also find that r(E) = £1 only occurs at
these edges, and at no other energies in the system. From
the conditions

(1,0)M(E") ( 2 ) —0 for r(E) =i, (A19a)

(0, 1) M(E") ( (1) ) —0 forr(E') = —i, (A19b)

we analogously always find exactly one value r(E’) = +i
of the reflection coefficient within each of the gaps. These
values fix the winding of 7(F) in the gap, according to the
Witten index as summarized in Eq. . In combination
with the values at the edges, we further verify that in each
gap, the winding of the reflection coefficient is always by
7 and occurs in the clockwise sense. This agrees with the
scenarios illustrated in Fig. [3]

3. Universality class

As mentioned in the main text, given the symmetries of
the bow-tie chain it is reasonable to place this system into
the BDI symmetry class of chiral systems with a conven-
tional time reversal symmetry. For the finite energy gaps,
the analogous conclusion follows from the consideration
of the parent systems, implying also that the topological



features in the two finite-energy gaps are related. As we
have shown in detail in the previous section of this Ap-
pendix, the fact that we can still generate different states
in these finite-energy gaps can be understood from the
specific quantization conditions at interfaces and bound-
aries. In practice, we find at most one defect state in
each gap, but this can be attributed to the restriction
to couplings between neighbouring unit cells, in analogy
to the situation in the SSH model (the general consid-
erations in Sec. [[TB] do not rely on these assumption;
for a starting point for richer one-dimensional models see
Eq. ) What requires a more careful consideration,
however, is the fact that the chiral symmetry in the bow-
tie chain constitutes a fractional lattice translation, and
therefore is nonsymmorphic. In principle, this can mod-
ify the topological nature of the central gap. We therefore
supplement the topological classification from the per-
spective of systems with an additional order-two lattice
symmetry S, characterised by the feature [S?, H(k)] = 0,
for which a complete classification has been developed in
Ref. [25]. We make direct use of the results in the cited
work, in the hope that they are of interest for the special-
ist reader (equation and table numbers in the following
refer to the cited work).

Ref. [25] distinguishes between order-two lattice sym-
metries that are unitary or antiunitary and commute or
anticommute with the Bloch Hamiltonian or other sym-
metries, in particular time-reversal symmetry. We start
in symmetry class Al (s = 0) for systems with a con-
ventional time-reversal symmetry. Our chiral symmetry
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X fulfills the criteria for a unitary symmetry that an-
ticommutes with the Hamiltonian, squares to +1 and
commutes with the time-reversal symmetry; such op-
erations are denoted as Ui. According to Table 1V
we are therefore concerned with the case ¢ = 3. The
chiral symmetry X conserves the momentum, so that
dy =0,d. =d =1 [see Eq. (3.16) for the decom-
position of directions], and the defect dimensions are
D = Dy = 0. According to equations (3.27) and (3.31),
K{(s = 0,t =3,d = 1,d = 0,D = 0,D =0) =
KY(=1 mod 8,3,0,0,0,0) = m(Ro). Table I then con-
firms that the topological invariant takes values in 7Z,
which indeed coincides with class BDI in d = 1 dimen-
sions.

Finally, we remark that there is a striking duality be-
tween these considerations, which are intimately linked
to the commutation relation [X?2, H] = 0 (interpreting
X as a chiral symmetry linked to an order-two spatial
symmetry), and our considerations, which are intimately
linked to the relation [X, H?] = 0 (starting from a spa-
tial symmetry of a parent Hamiltonian H?2, which gen-
erates a chiral symmetry for the underlying child Hamil-
tonian H). Indeed, it is simple to show that, for general
systems, anti-commutative and commutative symmetries
represent commutative symmetries in even powers of ei-
ther the Hamiltonian or the symmetry operation itself.
The physical ramifications of this are left as an open ques-
tion.
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