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We formulate a microscopic linear response theory of magnon pumping applicable to multiple-
magnonic-band uniform ferromagnets with Dzyaloshinskii–Moriya interactions. From the linear re-
sponse theory, we identify the extrinsic and intrinsic contributions where the latter is expressed via
the Berry curvature of magnonic bands. We observe that in the presence of a time-dependent mag-
netization Dzyaloshinskii–Moriya interactions can act as fictitious electric fields acting on magnons.
We study various current responses to this fictitious field and analyze the role of Berry curvature.
In particular, we obtain an analog of the Hall-like response in systems with non-trivial Berry cur-
vature of magnon bands. After identifying the magnon-mediated contribution to the equilibrium
Dzyaloshinskii–Moriya interaction, we also establish the Onsager reciprocity between the magnon-
mediated torques and heat pumping. We apply our theory to the magnonic heat pumping and
torque responses in honeycomb and kagome lattice ferromagnets.

PACS numbers: 85.75.-d, 72.20.Pa, 75.30.Ds, 72.20.My

I. INTRODUCTION

It is well known that an electric field can drive a charge
current, whereas in order to understand how to drive a
spin current one needs to resort to the field of spintronics
[1]. Magnetization dynamics generates spin currents in
adjacent normal metal by a phenomenon known as spin
pumping [2–4]. The discovery of spin pumping had a
great deal of influence on the development of the field
of spintronics as it led to new insights into the spin Hall
[5], spin torque [6; 7], and spin Seebeck effects [8]. The
phenomena related to the spin Seebeck effect are studied
within the field of spincaloritronics [9] in which the focus
is on interplay between the spin degrees of freedom and
heat currents.

As heat and spin currents are also carried by magnons,
one naturally arrives at a concept of magnon-mediated
spin torques which can lead to thermally induced mo-
tion of magnetic domain walls [10–12]. Such torques ex-
ist only in noncollinear magnetic structures or when the
Dzyaloshinskii-Moriya interactions (DMI) are present.
In the latter case, such spin torques have been termed
as DMI torques [13]. Recently, both field-like and
antidamping-like contributions to DMI torques have been
studied theoretically [14–18]. It has been noted [13] that
DMI torques can be seen as magnon analogs of spin-orbit
torques [19–24]. This suggests that the phenomenology
developed for spin-orbit torques can be readily applied
to DMI torques [25; 26]. In particular, the intrinsic con-
tribution to DMI torques has been identified [16]. Con-
tinuing this analogy, one can identify fictitious electric
fields acting on magnons due to time-dependent magne-
tization dynamics [11; 27; 28]. One can also identify the
magnon-mediated equilibrium contribution to DMI. Due
to such contribution the electron-mediated energy cur-
rent calculated in response to magnetization dynamics
from the Kubo formalism contains an unphysical ground-
state contribution [26] which needs to be subtracted.

Similar unphysical contributions have been identified for
anomalous responses induced by statistical forces [29–31].

There is a considerable interest in magnets on lat-
tices with non-trivial geometry as they allow observation
of Berry phase related phenomena such as the thermal
Hall effect of magnons [32–41]. Theoretically, the in-
creased magnon damping [42], Dirac magnons [43], and
the magnon-mediated spin Hall effect [16; 44; 45] have
been predicted for kagome and honeycomb lattice ferro-
magnets. In addition, other manifestations of the Berry
phase physics can arise in layered kagome [40] and hon-
eycomb [46] ferromagnets as examined in this work.

In this work, we analyze magnon currents arising in
response to magnetization dynamics (see Fig. 1). In the
presence of a time-dependent magnetization, DMI can
act as fictitious electric fields acting on magnons. As has
been noted earlier in the introduction, the energy cur-
rent carried by such magnons contains the ground state
contribution associated with magnon-mediated equilib-
rium DMI. Note that such corrections are important only
in systems with non-trivial Berry curvature of magnon
bands. Here, we concentrate on systems with non-trivial
Berry curvature by considering various current responses
in honeycomb and kagome lattice ferromagnets. Our
linear response calculation of heat currents agrees with
the calculation of magnon-mediated thermal torques [16],
thus confirming the Onsager reciprocity principle (see
Fig. 1). We also study the feasibility of experimental
observation of such current responses.

The paper is organized as follows. In section II, we in-
troduce the Hamiltonian describing magnons with mul-
tiple bands and calculate the equilibrium DMI. Next,
within the same section, we describe pumping of magnons
in response to magnetization dynamics and thermal
torques within the linear response theory. In the final
part of section II, we formulate the Onsager relations.
In section III, we apply our theory to honeycomb and
kagome lattice ferromagnets. We conclude our paper in
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Figure 1. (Color online) Two effects related by the Onsager
reciprocity principle. Left: Magnetization dynamics pumps
magnon current Jp and spin current Js = −~Jp. This pro-
cess also involves heat current Jq carried by magnons. Right:
A temperature gradient leads to a thermal torque with two
components Tx and Ty acting on the uniform magnetization.

section IV. The Appendices A, B, C, and D contain very
detailed derivations of our results.

II. THEORY OF MAGNON PUMPING AND
DMI TORQUES

In this section, we develop a microscopic linear re-
sponse theory of magnon pumping and nonequilibrium
magnonic torques applicable to multiple-magnonic-band
uniform ferromagnets with Dzyaloshinskii–Moriya inter-
actions. We note that in our theory magnons are treated
as conserved particles. Gilbert damping α could broaden
magnonic bands and introduce magnon non-conserving
processes. In realistic situations α is typically small and
such broadening effects can be disregarded. In what fol-
lows, to simplify formulas, we take the system volume
V = 1 and recover it in the final expressions (19), (20),
and (28).

A. Preliminaries

We consider a noninteracting boson Hamiltonian de-
scribing the magnon fields, which could be, e.g., a result
of the Holstein-Primakoff transformation:

H =

ˆ
drΨ†(r)HΨ(r), (1)

where H is a Hermitian matrix of the size N × N and
Ψ†(r) = [a†1(r), . . . , a†N (r)] describes N bosonic fields cor-
responding to the number of modes within a unit cell
(or the number of spin-wave bands). The Fourier trans-
formed Hamiltonian reads

H =
∑
k

a†kH(k)ak, (2)

where a†k is the Fourier transformed vector of creation
operators. Hamiltonian in Eq. (2) can be diagonalized
by a unitary matrix Tk, i.e. Ek = T †kH(k)Tk and T †kTk =
1N×N where Ek is the diagonal matrix of band energies,
and 1N×N is the N ×N unit matrix.

B. Magnon-mediated Dzyaloshinskii-Moriya
interaction

As magnons can exert a torque on magnetization even
in equilibrium, we begin by considering an equilibrium
state of the system. Such equilibrium DMI torques can be
captured by calculating the DMI tensor in the presence
of magnons in equilibrium state. The torque operator is
introduced as

T = ∂mH×m, (3)

where m is a unit vector in the direction of the spin
density. We then interpret DMI in terms of the moments
of the torque:

Dαβ =
1

2

〈ˆ
drΨ†(r) (Tαxβ + xβTα) Ψ(r)

〉
eq

, (4)

where we assume a finite system. In order to represent an
infinite system, we will eliminate the position operator
from the final result. The average in Eq. (4) has been
calculated in Ref. [16] in a form of a tensor Mβ defined
as

Mβ =
1

2
Tr [(xβ∂mH + ∂mHxβ) g(E)] , (5)

where g(E) is the Bose distribution function g(E) =
1/[exp(βE)− 1]. In particular, it has been found that

Mβ =
∑
kn

{
1

β
ln(1− e−βεnk)B

(n)
mβ(k)− g(Ekn)A

(n)
mβ(k)

}
,

(6)
where (for details of this calculation see Appendix A 1)

A
(n)
mβ(k) =

∑
m 6=n

Im
[
[η̃k]nm

1

εnk − εmk
[ṽkβ ]mn

]
, (7)

and

B
(n)
mβ(k) =

∑
m6=n

Im
[
[η̃k]nm

2

(εnk − εmk)2
[ṽkβ ]mn

]
, (8)

with the velocity vk = ∂kHk, the effective field ηk =
−∂mHk, and their eigen basis representations, ṽk =

T †kvkTk and η̃k = T †kηkTk. Finally, the expression for
the DMI tensor is given by

Dαβ = [Mβ ×m]α. (9)

It is easy to notice that B(n)
mβ(k) = −Ω

(n)
mβ(k) where now

Ω
(n)
mβ(k) ≡ i

[(
∂mT

†
k

)
(∂βTk)

]
nn
− (m↔ β) is the mixed

space Berry curvature of the nth band. The second term
in Eq. (6) has a clear analogy to the orbital moment [47]
which can be seen after a substitution ηk → vk [25].
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C. Heat and spin pumping by magnetization
dynamics

In this subsection, we derive the magnon-mediated
current response to slow magnetization dynamics in a
system with broken inversion symmetry and spin-orbit
interactions. The Kubo linear response energy current
contains the ground state energy contribution related to
the magnon-mediated DMI which have been calculated
in the previous subsection. Thus, we will use the results
calculated earlier in order to identify various transport
contributions.

We are interested in the heat, particle, and spin current
density responses described by a tensor taα:

Jaα = −taα · ∂tm, (10)

where a is q for the heat current, p for the particle cur-
rent, and s for the spin current. Here the spin current
is related to the magnon particle current density Jp by a
relation Js = −~Jp.

In the presence of magnetization dynamics, Hamilto-
nian H acquires a perturbation of the form

H
′

=

ˆ
drΨ†(r)H

′
Ψ(r), (11)

where H
′

= ∂mH · δm(t) and we assume that δm(t) is
small. We are interested in a linear response to the time
derivative of m(t), thus we write δm(t) = (1/iω)∂tm.
Note that this calculation is similar to the calculation of
dc current response to electric field with the correspon-
dence A(t)→ δm(t) where the perturbation in Eq. (11)
leads to an analog of equilibrium diamagnetic current cor-
rection. Using the linear response Kubo theory we obtain
for the heat and particle current density response:

JKaα =
〈
J [0]
aα

〉
ne

+
〈
J [1]
aα

〉
eq
, (12)

or

JKaα = lim
ω→0

{
−ΠR

α (ω)/iω
}
∂tm +

〈
J [1]
aα

〉
eq
, (13)

where ΠR
α (ω) = Πα(ω + i0) is the retarded corre-

lation function related to the following correlator in
Matsubara formalism, Πα(iω) = −

´ β
0
dτeiωτ

〈
TτJ

[0]
aαh

〉
with h = −

´
drΨ†(r)∂mHΨ(r) being the nonequilib-

rium field, and j
[0]
q (r) = (1/2)Ψ†(r)(vH + Hv)Ψ(r) and

J
[0]
q =

´
drj

[0]
q (r) being the heat current density and the

macroscopic heat current, respectively. For the particle
current we have similar expressions j

[0]
p (r) = Ψ†(r)vΨ(r)

and J
[0]
p =

´
drj

[0]
p (r). Here the velocity operator is

given by v = (1/i~)[r, H]. We also introduce a gra-
dient correction to the heat and particle currents due
to perturbation, i.e., J

[1]
a =

´
drj

[1]
a (r) where j

[1]
q (r) =

(1/2)Ψ†(r)[(δm(t) · ∂m)(vH + Hv)]Ψ(r) and j
[1]
s (r) =

Ψ†(r)[δm(t) ·∂mv]Ψ(r). This analog of diamagnetic cur-
rent cancels with the term ΠR

α (0) resulting in the Kubo
contribution of the form

JKaα = lim
ω→0

{
[ΠR

α (0)−ΠR
α (ω)]/iω

}
∂tm. (14)

The correlation function in Eq. (14) is calculated by con-
sidering the simplest bubble diagram for Πα and per-
forming the analytic continuation, see e.g. Ref. [16]. We
express the result through a response tensor tKaα contain-
ing two contributions tKaα = tIaα + tIIaα, which are given
by

tIaα =
1

~

ˆ
dω

2π
g(ω)

d

dω
ReTr

〈
JaαGRηGA − JaαGRηGR

〉
,

tIIaα =
1

~

ˆ
dω

2π
g(ω)ReTr

〈
JaαGRη

dGR

dω
− Jaα

dGR

dω
ηGR

〉
,

(15)
where g(ω) is the Bose distribution function g(ω) =
1/[exp(~ω/kBT ) − 1], GR = ~(~ω − H + iΓ)−1, GA =
~(~ω − H − iΓ)−1, η = −∂mH , J q = (vH + Hv)/2,
and J p = v. In our calculations, we adopt a phenomeno-
logical treatment and relate the quasiparticle broadening
to the Gilbert damping, i.e. Γ = α~ω.

Note that the Kubo response for the energy current
density in Eq. (14) contains the bound energy current
associated with DMI:

JDq = D̂ · (m× ∂tm), (16)

where tensor D̂ is given in Eq. (9). This current needs
to be subtracted from the Kubo current in Eq. (14) in
order to obtain a transport heat current:

Jqα = JKqα − JDq . (17)

To express the response tensor tKaα, we use the Fourier
transformed operators and the eigen basis representation
for the velocity, ~ṽk = ∂kEk − iAkEk + iEkAk, and the
effective field, −η̃k = ∂mEk − iAmEk + iEkAm, where
Ak = iT †k∂kTk and Am = iT †k∂mTk. For the details of
derivation of intrinsic contribution to the heat current
see Appendix A 2. We obtain

tKqα =
∑
kn

{
g(εnk)[−εnkB(n)

mα(k) +A
(n)
mα(k)]

−εnkg
′(εnk)

2Γ
(n)
k

(∂mεnk)(∂kαεnk)
}
,

(18)

which after combining with DMI energy current JDq leads
to the response tensor describing the heat current (see
Appendix A 3):

texqα = − 1

V

∑
k

N∑
n=1

1

2Γ
(n)
k

(∂mεnk)(∂kαεnk)εnkg
′(εnk),

tinqα =
1

V

∑
k

N∑
n=1

c1(εnk)Ω
(n)
mkα

(k),

(19)
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where εnk = [Ek]nn, Γ
(n)
k = αεnk, g′(εnk) =

(2kBT )−1{1− cosh(εnk/kBT )}−1, c1[εnk] = g(εnk)εnk −
(1/β) ln(1− e−βεnk), V is volume, and we separated the
total tensor tqα into the intrinsic and extrinsic contri-
butions, i.e., tqα = texqα + tinqα. For the particle current
response only tKpα tensor needs to be considered, thus
we obtain the following expression for the total tensor,
tpα = texpα + tinpα, divided into the intrinsic and extrin-
sic contributions (for details of calculations of intrinsic
contribution see Appendix B):

texpα = − 1

V

∑
k

N∑
n=1

1

2Γ
(n)
k

(∂mεnk)(∂kαεnk)g′(εnk),

tinpα =
1

V

∑
k

N∑
n=1

g(εnk)Ω
(n)
mkα

(k).

(20)

The last tensor also describes the spin current response,
i.e., tsα = −~tpα.

D. Thermal torques

In this subsection, we derive the magnon-mediated
magnetization torque response to a temperature gradi-
ent in a system with broken inversion symmetry and
spin-orbit interactions. For details of derivations see Ap-
pendix C. The thermal torque is defined according to
equation

T = −βα∂αT, (21)

where βα is the thermal torkance tensor and T describes
torque acting on magnetization and leading to mod-
ification of the Landau-Lifshitz-Gilbert equation, i.e.,
s(1 + αm×)ṁ = m × Heff + T where Heff is the ef-
fective magnetic field and s is the spin density. We use
the Luttinger linear response method [48] in which the
temperature gradient is replicated by a perturbation to
Hamiltonian H of the form

H
′

=
1

2

ˆ
drΨ†(r) (Hχ+ χH) Ψ(r), (22)

where we introduce the temperature gradient as ∂iχ =
−∂iT/T . The torque response can be found by calculat-
ing the effective magnon-mediated field:

h = h[0] + h[1] = −
〈
∂mH

〉
ne
−
〈
∂mH

′〉
eq
, (23)

where for the second term the averaging is done over the
equilibrium state and for the first term over nonequilib-
rium state induced by the temperature gradient. The
magnon-mediated torque acting on the magnetization is
given by

T = m× h. (24)

Within the linear response theory, the response h[0] to a
temperature gradient can be calculated from expression

h[0] = lim
Ω→0

{
[ΠR

α (Ω)−ΠR
α (0)]/iΩ

}
∂αχ, (25)

where ΠR
α (Ω) = Πα(Ω + i0) is the retarded correlation

function related to the following correlator in Matsubara
formalism, Πα(iΩ) = −

´ β
0
dτeiΩτ

〈
TτhJ

[0]
qα

〉
. Note that

this correlator differs from the one arising in Eq. (13) in
the order of operators. In the correlator, we reduce the
perturbation H′

to the energy current by employing the
equality Ḣ′

= (i/~)[H,H′
] = J

[0]
q ∂χ and integration by

parts. Following the notations in Ref. [16], we introduce
the linear response tensors Sα and Mα for the fields h[0]

and h[1] and the total response tensor Lα = Sα + Mα

according to equation

h[0] + h[1] = −Lα∂αχ, (26)

where Mα is given by Eq. (5) as it follows from Eq. (23).
For the tensors Sα we obtain

Sα =
∑
kn

{
g(εnk)[−εnkB(n)

mβ(k) +A
(n)
mβ(k)]

+
εnkg

′(εnk)

2Γ
(n)
k

(∂mεnk)(∂kβεnk)
}
.

(27)

We can also separate the total response tensor into the
intrinsic and extrinsic contributions:

Lexα =
1

V

∑
k

N∑
n=1

1

2Γ
(n)
k

(∂mεnk)(∂kαεnk)εnkg
′(εnk),

Linα =
1

V

∑
k

N∑
n=1

c1(εnk)Ω
(n)
mkα

(k).

(28)
For the thermal torkance tensor, we obtain

βα = Lα ×m/T. (29)

E. Onsager reciprocity relation

We are now in the position to combine the results from
previous subsections into one expression that emphasized
the Onsager reciprocity relation. In principle, the result
of calculation of thermal torques in the last section can be
extracted from the Onsager relations without performing
the calculation. Writing the response tensors in terms of
the torkance tensors, we obtain Jpα

Jqα
T

 =

 σ̂(m) Π̂T (−m) αα(−m)

Π̂(m) T λ̂(m) Tβα(−m)

αα(m) Tβα(m) −Λ̂(m)

 −∂αϕ
∂αχ

m× ∂tm

 ,

(30)
where summation over repeated indices is implied,
and we introduced the conductivity tensor σ̂(m), the
magnonic heat conductivity tensor λ̂(m), the tensor
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Π̂(m) describing the magnon Seebeck and Peltier ef-
fects, and the tensor Λ̂(m) corresponding to LLG equa-
tion. The tensor αα(m) was introduced by analogy
with the tensor βα(m) and it is given in Eq. (20), i.e.,
αα(−m) = tpα × m. For completeness we also added
a response to an analog of electric field for magnons,
−∂αϕ [49]. Equation (30) immediately follows from Eqs.
(19), (20), and (28) given that intrinsic contributions are
odd and extrinsic contributions are even under magne-
tization reversal. The Onsager reciprocity relation in
Eq. (30) is similar to expressions obtained for similar
electron-mediated effects in Ref. [25]. Equation (30) can
be modified to account for the possibility of magnon ac-
cumulation resulting from the magnon motive force [28]
or temperature gradient [49].

III. RESULTS FOR HONEYCOMB AND
KAGOME FERROMAGNETS

In this section, we apply our theory to single layer hon-
eycomb and kagome ferromagnets with DMI. In our mod-
els, we introduce two types of DMI. The Rashba DMI cor-
respond to mirror asymmetry in the system (see Figs. 2
and 4). The remaining DMI make the second quantized
Hamiltonian of magnons to be asymmetric under time
reversal. Such asymmetries make our systems to exhibit
behavior analogous to electronic systems lacking the cen-
ter of inversion and time reversal symmetry [26]. To
demonstrate explicitly how fictitious electric fields result
in magnon currents, we describe the honeycomb system
analytically. Our results could also be relevant to three-
dimensional layered structures with weakly coupled lay-
ers. Note that the magnon pumping could in principle
be modified by DMI induced anharmonic interactions of
magnons [42]. We do not expect this effect to be large
when magnetization substantially deviates from the di-
rection orthogonal to DMI vector.

A. Application to honeycomb ferromagnet

In this subsection, we study a model of an insulating
ferromagnet on a honeycomb lattice. This model con-
tains physics discussed above in a transparent and an-
alytical way. For the details of further derivations see
Appendix D. We assume a Heisenberg exchange of ferro-
magnetic sign, in-plane DMI of Rashba type, and second-
nearest neighbor DMI. The Hamiltonian is

H = −J
∑
<ij>

SiSj +
∑
<ij>

D[R] [Si × Sj ] (31)

+D[z]
∑

<<ij>>

νij [Si × Sj ]z . (32)

The vectors of the Rashba type DMI are shown in Fig. 2,
where d1 = 1

2 (
√

3,−1), d2 = 1
2 (−
√

3,−1), and d3 =

(0, 1), such as D[R] = D[R]d. Note that all vectors, such

τ1

τ2

τ3

a1

a2

+

-

d1

d2

d3

x

y

Figure 2. Schematics of the graphene layer parameters for the
tight-binding model. Vectors connecting nearest neighbors
are τ 1 = 1

2
( 1√

3
, 1), τ 2 = 1

2
( 1√

3
,−1), and τ 3 = 1√

3
(−1, 0)

are used in deriving the Hamiltonian for magnons. Vectors
a1 = 1

2
(
√

3, 1), and a2 = 1
2
(
√

3,−1) are used in deriving the
second-nearest neighbor DMI.

as τ i and ai, are measured in units of lattice spacing
a0 which is recovered in the final result. The vector of
the second-nearest neighbor DMI is in the z− direction,
and the signs of νij are depicted in green in Fig. 2 for
the directions shown by dashed green arrows. For an-
alytical results, we assume that all DMI are small, i.e.
J � D[R] and J � D[z]. In our model, initially, we
assume that the order is in general (mx,my,mz) direc-
tion, which can be realized by application of the mag-
netic field. Our strategy would be to first understand
the role of the DMI in the behavior of magnons for
a general direction of the ferromagnetic order. After
that we will assume that the main order is in the z−
direction, while the perturbations that deviate the or-
der are in the x − y plane (see Fig. 1). To study the
magnons, we perform the Holstein-Primakoff transfor-
mation. The unit cell of the honeycomb ferromagnet
has two spins SA and SB, hence the two sets of boson
operators, a†(r), a(r) and b†(r), b(r) corresponding to
the A and B sublattices are introduced. The Holstein-
Primakoff transformation reads as usual, SzA = S − a†a,
and S+

A =
√

2S(SxA + iSyA) =
√

2S − a†aa (S is the total
spin), and the same for B spins. The Fourier image of the
Hamiltonian describing non-interacting magnons written
in terms of the Ψ = (ak, bk)T spinor is

H = JS

[
3 + ∆k −γ̃k

−γ̃∗k 3−∆k

]
, (33)

where ∆k = 2∆
[
sin(ky)− 2 sin

(
ky
2

)
cos
(√

3kx
2

)]
, with

∆ = mzD
[z]/J . This type of DMI is a k− dependent

mass of magnons. Deriving γ̃k we considered Rashba
DMI in the lowest order in D[R]/J � 1 parameter. With
this assumption

γ̃k = 2e
i k̃x
2
√

3 cos

(
k̃y
2

)
+ e
−i k̃x√

3 , (34)
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where k̃x = kx −
√

3D
[R]

J my, and k̃y = ky +
√

3D
[R]

J mx.
We observe that Rashba DMI plays an effective role of
magnon charge, while order direction (mx,my, 0) is an
effective vector potential felt by magnons.

The eigenvalues of the Hamiltonian are calculated to
be,

εk,± = JS

(
3±

√
∆2

k + |γ̃k|2
)
, (35)

with corresponding eigenfunctions

vk,+ = [cos(ξ̃k/2)eiχ̃k , − sin(ξ̃k/2)]T , (36)

and

vk,− = [sin(ξ̃k/2), cos(ξ̃k/2)e−iχ̃k ]T , (37)

where sin(ξ̃k) = |γ̃k|/
√

∆2
k + |γ̃k|2, and γ̃k = |γ̃k|eiχ̃k ,

and the tilde symbol here means that corresponding k
momenta are shifted by the Rashba DMI. Unitary matrix
that diagonalizes the Hamiltonian is readily constructed
and it is given by

Tk =

 cos
(
ξ̃k
2

)
eiχ̃k sin

(
ξ̃k
2

)
− sin

(
ξ̃k
2

)
cos
(
ξ̃k
2

)
e−iχ̃k

 . (38)

We are now ready to derive spin and heat currents which
are driven by magnetization dynamics. We set the dom-
inant component of the ferromagnetic order in the z−
direction and assume that the magnetization dynamics
is in the x− y plane. We only focus on the intrinsic con-
tribution to the currents, i.e., due to non-trivial Berry
curvatures of the magnon band structure. An expression
defining the Berry curvature is

Ωα,mβ = 2Im
[(
∂αT

†
k

) (
∂mβTk

)]
=

1

2
sin
(
ξ̃k

)
(39)

×
[
(∂αχ̃k)

(
∂mβ ξ̃k

)
−
(
∂mβ χ̃k

) (
∂αξ̃k

)] [
1 0
0 −1

]
.

(40)

In the following, we focus on the α = x and β = x case,
and mention β = y case at the end. Recall that ∆k

does not depend on mβ for β = (x, y) components, hence
∂mβ∆k = 0. The derivative with respect to the direction
of the order mβ of the remaining functions that depend
on k̃ is

∂

∂mx
=
√

3
D[R]

J

∂

∂k̃y
≡
√

3
D[R]

J
∂y, (41)

∂

∂my
= −
√

3
D[R]

J

∂

∂k̃x
≡ −
√

3
D[R]

J
∂x. (42)

This straightforward transformation makes the mixed
Berry curvature a regular k− space one, except for the
∂mβ∆k = 0 condition. The Berry curvature has extrema

at the K′ =
(
0, 4π

3

)
and K =

(
0,− 4π

3

)
points, and can

be approximated as

Ωx,mx |K(K′) ≈ −
27

8

D[R]

J

∆(
27∆2 + 3

4k
2
)3/2 [ 1 0

0 −1

]
.

(43)

The curvature is the same for both K′ and K points. The
spectrum at these points is finite, εk,± ≈ JS(3±3

√
3|∆|),

but the Berry curvature is of the monopole type. Hence
at small temperatures, despite the exponential suppres-
sion of the magnon number at the K′ and K points, there
might be a contribution to the magnon currents due to
this Berry curvature. At the Γ = (0, 0) the spectrum of
the lowest band is εk,− ≈ 1

4SJk
2, and it will be popu-

lated by the magnons the most at low temperatures. The
Berry curvature is approximated close to this point as

Ωx,mx |Γ ≈ −
D[R]

J

∆

48
k2
yk

2
x

[
1 0
0 −1

]
. (44)

According to Eqs. (10) and (20), the particle current den-
sity due to the Berry curvature at small temperatures,
SJ � T , reads

Jpx =
D[R]

J

√
3

a0π

[
sinh

[
1

z

3
√

3D[z]

J

]
e−

3
z (45)

+
D[z]

J

√
3ζ(3)

36
z3

]
(∂tm)x ,

where we introduced z = T/SJ for brevity, and set mz =
1. Similarly, from Eq. (18), the heat current due to the
Berry curvature at small temperatures, SJ � T , reads

Jqx = JS
D[R]

J

3
√

3

a0π

[
sinh

(
1

z

3
√

3D[z]

J

)
e−

3
z (46)

+
D[z]

J

√
3I

216
z4

]
(∂tm)x .

In both cases a term ∝ e−
3SJ
T is due to K′ and

K points, while the remaining one is due to Γ
point. We introduced a numerical constant I =´∞

0
dxx2

[
x ex

ex−1 − ln(ex − 1)
]

= 4π4/45 ≈ 8.65, and
Riemann zeta-function ζ(3) ≈ 1.2.

It is straightforward to show that Berry curvature
parts of the Jpx and Jqx currents driven by (∂tm)y mag-
netization dynamics vanish. The Jsy and Jqy currents
driven by (∂tm)y magnetization dynamics will have the
same expressions as in Eqs. (45) and (46). Thus, we cal-
culated even under magnetization reversal components
αevenxy = −αevenyx and βevenxy = −βevenyx as it follows from
Eq. (30). As can be seen from Fig. 3, Eqs. (45) and
(46) only qualitatively agree with the numerical results
at higher temperatures as the Berry curvature from other
parts of the Brillouin zone starts to contribute to the re-
sult.
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num

anal

0.25 0.5
kBT/SJ

0.0003

0.0006

a0αxy
even/kB

num
anal

0.25 0.5
kBT/SJ

0.002

0.004

a0βxy
even/kB

Figure 3. (Color online) Left: The even component under
magnetization reversal of the tensor αij as a function of tem-
perature. Right: The even component under magnetization
reversal of the torkance tensor βij as a function of tempera-
ture. In both cases the magnetization is along the z− axis.
For the strength of DMI we use D[z] = D[R] = J/6. Red
curves correspond to numerical results and blue curves corre-
spond to analytical results in Eqs. (45) and (46).

B. Application to kagome ferromagnet

Here we apply our theory to the kagome lattice fer-
romagnet with the nearest neighbor DMI. The lattice of
the system and its magnon spectrum are shown in Fig. 4.
Note that all vectors, such a1 and a2, are measured in
units of lattice spacing a0 which is recovered in the final
result. We consider a model considered in Ref. [16] with
a Hamiltonian given by

H = −J
∑
<ij>

SiSj −B
∑
i

Szi +
∑
<ij>

νijDij [Si × Sj ] ,

(47)

where J > 0 corresponds to ferromagnetic nearest neigh-
bor exchange, B is the external magnetic field, and νij
describes a sign convention for the nearest neighbor DMI,
i.e., νij = 1 for the clockwise sense of direction and
νij = −1 otherwise (see Fig. 4). Note that vectors
Dij = D[z]ẑ+ D

[R]
ij have an in-plane Rashba-like compo-

nent D
[R]
ij directed orthogonally to bonds and outwards

with respect to bond triangles (see Fig. 4). The Rashba-
like DMI could result from mirror asymmetry with re-
spect to the kagome planes. At sufficiently low tempera-
tures the Hamiltonian in Eq. (47) can be analyzed by ap-
plying the Holstein-Primakoff transformation. The corre-
sponding magnon spectrum is shown in Fig. 4 where the
lower, middle, and upper bands have the Chern numbers
−1, 0, and 1, respectively.

We begin by analyzing an effect of magnon pumping
by magnetization dynamics. This effect is characterized
by tensor αα or equivalently by Eq. (10). It is also clear
from Eq. (30) that the same tensor also describes a mag-
netization torque induced by an analog of electric field for
magnons. We assume a small-angle precession of magne-
tization around the z− axis. By symmetry considera-
tion, it is sufficient to consider only αevenyx = −αevenxy and
αoddxx = αoddyy components of the tensor where we separate
tensor αα into the parts that are odd and even under
magnetization reversal, i.e., αα = αodd

α + αeven
α . The

a1

a2

xy

ν=1

D
R

-0.50

-0.25

0

0.25

0.50

Figure 4. (Color online) Left: A two-dimensional kagome lat-
tice with lattice vectors a1 = 1

2
(
√

3,−1) and a2 = 1
2
(
√

3, 1)
where atoms are placed in the corners of triangles. Rashba-
like DMI vectorsD[R]

ij are shown by blue vectors perpendicular
to the bonds. The clockwise ordering of bonds corresponding
to ν = 1 is shown by black arrows. Right: Magnon spectrum
of a kagome ferromagnet with DMI D[z] = 0.3J and magne-
tization pointing in the z− direction. The distribution of the
Berry curvature over the Brillouin zone is plotted by the color
coding on top of the spectrum for each subband.

D=0.1J

D=0.2J

D=0.3J

0.5 1. 1.5
kBT/SJ

0.3

0.6

αa0αxx
odd

D=0.1J

D=0.2J

D=0.3J

0.5 1. 1.5
kBT/SJ

0.01

0.02

a0αyx
even

Figure 5. (Color online) Left: The odd component of the
tensor αij as a function of temperature. The plot is rescaled
by multiplying it with the Gilber damping α. Right: The even
component of the tensor αij as a function of temperature. In
both cases the magnetization is along the z− axis. For the
strength of the Rashba DMI we use D[R] = D[z] = D.

results of our calculations for the two components are
shown in Fig. 5. Note that we use a simple phenomeno-
logical treatment by relating the quasiparticle broadening
to the Gilbert damping as Γ = α~ω. Under a simple cir-
cular precession of the magnetization described by angle
θ we have ∂tm = θω[− sin(ωt), cos(ωt), 0]T and

Jpx = θω[αoddxx cos(ωt)− αevenyx sin(ωt)],
Jpy = θω[αoddxx sin(ωt) + αevenyx cos(ωt)].

(48)

We can now estimate the amplitude of ac spin current as
θ~ω

√
(αoddxx )2 + (αevenyx )2. For a three-dimensional sys-

tem containing weakly interacting kagome layers, we can
write α3Dij = αsij/c where c ∝ a0 is the interlayer dis-
tance which is comparable to the lattice constant a0.
For parameters D[z] = 0.1J , D[R] = 0.1J , θ = 0.1◦,
ω = 2π × 10GHz, kBT = 0.5SJ , and the Gilbert damp-
ing α = 0.1, we obtain the spin current of amplitude
Js ≈ 10−8J/m2. We suggest to detect such spin currents
by the ac inverse spin Hall effect [50].

We also consider an effect of heat pumping by magne-
tization dynamics. This effect is characterized by ten-
sor βα. Here we again assume a small-angle preces-
sion of magnetization around the z− axis. Similar sym-
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D=0.1J

D=0.2J

D=0.3J

0.5 1. 1.5
kBT/SJ

0.1

0.2
αa0βxx

odd/kB

D=0.1J

D=0.2J

D=0.3J

0.5 1. 1.5
kBT/SJ

0.02

0.04

a0βyx
even/kB

Figure 6. (Color online) Left: The odd component of the
torkance tensor βij as a function of temperature. The plot is
rescaled by multiplying it with the Gilber damping α. Right:
The even component of the torkance tensor βij as a function
of temperature. In both cases the magnetization is along the
z− axis. For the strength of the Rashba DMI we use D[R] =
D[z] = D.

metry considerations result in relations βevenyx = −βevenxy

and βoddxx = βoddyy between non-zero components of ten-
sor βα = βodd

α + βeven
α separated into the odd and

even under magnetization reversal parts. The results of
our calculations for the two components are shown in
Fig. 6. The amplitude of ac heat current is given by
θTω

√
(βoddxx )2 + (βevenyx )2 which for the above parameters

and T = 50K results in the heat current of amplitude
Jq ≈ 50kW/m2.

After invoking the Onsager relation (30) one can con-
firm that estimates obtained in this subsection are com-
parable to estimates for thermal torques obtained in
Ref. [16]. Note also that the phenomenology discussed

in this paper is similar to Ref. [26], however, the heat
current is carried by magnons in contrast to electronic
mechanisms considered before.

IV. CONCLUSIONS

In this work, we explored fictitious electric fields act-
ing on magnons in response to time-dependent magne-
tization dynamics in the presence of DMI. We find that
such fictitious electric fields can drive sizable spin and
energy currents. We suggest a detection scheme rely-
ing on the ac inverse spin Hall effect [50]. Additionally,
we obtain an analog of the Hall-like response in systems
with non-trivial Berry curvature of magnon bands. This
leads to even under magnetization reversal contributions
to the response tensors. By the Onsager reciprocity re-
lation, this Hall-like response can be related to the anti-
damping thermal torque [16]. Finally, we identify the
ground state energy current associated with the magnon-
mediated equilibrium contribution to DMI. This contri-
bution needs to be subtracted from the Kubo linear re-
sponse result according to our analysis.
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Appendix A: Heat current as a response to magnetization dynamics

Measurable heat current consists of three parts. Free energy contribution, and non-equilibrium heat current and
orbital magnetization heat current carried by magnons.

1. Free energy heat current

Magnon mediated Dzyaloshinskii-Moriya interaction contribution to the free energy of the system is

FDMI = D

[
m(r)× ∂m(r)

∂r

]
(A1)

where DDMI is the Dzyaloshinskii-Moriya tensor we will calculate below. For instance, functionality on x might be
due to the boundary or it might be due to spatially dependent magnetization profile. Assuming a time dependence
of the magnetization, via a r→ r + ωt shift, one can derive the current due to time dependence of DMI part of free
energy using continuity equation ∂FDMI

∂t + JDMI = 0, where

JDMI
α = − 1

V
Dαβ (∂tm)β , (A2)

where V is the volume of the system. The Dzyaloshinskii-Moriya interaction constant is

Dαβ =
1

2

〈ˆ
drΨ†(r) (rαTβ + Tβrα) Ψ(r)

〉
eq

, (A3)
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where Tβ = (∂mH ×m)β is the torque operator. To calculate the DMI, we introduce

Aαβ(η) = iTr

[
vαk

dG+

dη
v̄βkδ(η −Hk)− vαkδ(η −Hk)v̄βk

dG−

dη

]
, (A4)

Bαβ(η) = iTr
[
vαkG

+v̄βkδ(η −Hk)− vαkδ(η −Hk)v̄βkG
−] , (A5)

where v̄βk = ∂mβHk ≡ i[Hk, rmβ ] equivalent to the velocity operator definition, with rmβ ≡ i∂mβ equivalent to the
position operator. It was shown that

Aαβ −
1

2

dBαβ
dη

=
1

4π
Tr
[
rα(GA −GR)rmβ − rαrmβ (GA −GR)

]
− (α↔ β) (A6)

+
1

2
Tr

[
(rαv̄βk − vαkrmβ )

d

dη
δ(η −Hk)

]
. (A7)

Also, we derive the Berry curvature parts of Aαβ and Bαβ .

Aαβ(η) = −i
∑
n

(
∂αT

†
k∂mβTk

)
nn
δ [η − (εk)nn]− (α↔ β), (A8)

and a Berry curvature part of the Bαβ as

Bαβ(η) = i
∑
n

[
∂αT

†
k (η −Hk) ∂mβTk

]
nn
δ [η − (εk)nn]− (α↔ β) . (A9)

Therefore,

Dαβ =
∑
k

ˆ ∞
−∞

dη̃

[
Aαβ(η̃)− 1

2

dBαβ(η̃)

dη̃

]ˆ η̃

0

dηg(η), (A10)

and it can be shown that

Dαβ =
∑
n

ˆ +∞

−∞
dη̃

[
Aαβ(η̃)− 1

2

dBαβ(η̃)

dη̃

] ˆ η̃

0

dηg(η) (A11)

=
∑
n

ˆ +∞

−∞
dη̃

{
−i
(
∂αT

†
k∂mβTk

)
nn
δ [η̃ − (εk)nn]

ˆ η̃

0

dηg(η)

}
(A12)

+
i

2

∑
n

ˆ +∞

−∞
dη̃
{[
∂αT

†
k(η̃ −Hk)∂mβTk

]
nn
g(η̃)δ [η̃ − (εk)nn]

}
− (α↔ β). (A13)

2. Heat current due to magnons

We assume that the magnetizaion is varying in time. Next, we assume that due to that there is a time-dependent
term in the Hamiltonian. For example, since the DMI depends on the direction of the order, this DMI will be time
dependent. The Hamiltonian of the spin waves is then

HT =
1

2

ˆ
drΨ†(r)

[
Ĥ + Ĥ ′(t)

]
Ψ(r). (A14)

We define ĤT = Ĥ+Ĥ ′(t). Microscopic expression for the heat current current is derived via commutation relationship

jQ(r) =
1

2
Ψ†(r)

(
ĤTV + VĤT

)
Ψ(r), (A15)

here V = i[ĤT, r] is the full velocity. Velocity has two parts, V = v + v′, where v = i[Ĥ, r] and v′ = i[Ĥ ′, r].
Assuming that the magnetic order is m(t) = m+δm(t), we write the perturbation as Ĥ ′(t) =

(
∂mĤ

)
δm(t). We will

use analogy between magnetization dynamics and the electromagnetic waves. The direction of the local magnetization
can be seen as a vector potential for effective electromagnetic field electric and magnetic fields. Then, ∂m

∂t is analogous
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to the electric field, while ∇×m is analogous to the magnetic field. We will then write δm(t) = 1
ω
∂m(t)
∂t ≡ 1

ω∂tm (in
Matsubara frequency).

The heat current is separated in to two parts

j
[0]
Q (r) =

1

2
Ψ†(r)

(
Ĥv + vĤ

)
Ψ(r) (A16)

j
[1]
Q (r) =

1

2
Ψ†(r)

(
Ĥ ′v + vĤ ′

)
Ψ(r) +

1

2
Ψ†(r)

(
Ĥv′ + v′Ĥ

)
Ψ(r) (A17)

=
1

2
Ψ†(r)

[
(δm(t) · ∂m)

(
Ĥv + vĤ

)]
Ψ(r) (A18)

The H ′(t) will be treated as a perturbation. We will be working with global currents JQ ≡ 1
V

´
drjQ(r). The heat

current is conveniently written as

〈JQ〉 =
〈
J

[0]
Q

〉
ne

+
〈
J

[1]
Q

〉
eq
, (A19)

Where the former one is estimated over non-equilibrium states and is given by Kubo formula, while the later one is
due to orbital magnetization of the magnons and is estimated over equilibrium states.

a. Non-equilibrium heat current, Kubo formula

Kubo formula for an arbitrary operator A(ω), where ω is Matsubara frequency, is

〈A(ω)〉ne =

ˆ β

0

dτeiωτ 〈TτA(0)H ′(−τ)〉eq , (A20)

where H ′(τ) =
´
drΨ†(τ, r)Ĥ ′Ψ(τ, r) is the perturbing Hamiltonian.〈

J
[0]
Qα

〉
ne

=

ˆ 1/T

0

dτeiωτ
〈
TτJ

[0]
Qα(0)H ′(−τ)

〉
eq
≡ 1

V
Sαβ(ω)

1

ω
(∂tm)β (A21)

After all of the transforms, we get

Sαβ =
1

2

∑
k

(εkṽαk + ṽαkεk)nm

[
T †k (∂βHk)Tk

]
mn

g [(εk)nn]− g [(εk)mm]

iω + (εk)nn − (σ3εk)mm
, (A22)

where

ṽαk = T †kvαkTk = ∂αεk +Aαkεk − εkAαk, (A23)

˜̄vβk = T †k v̄βkTk = ∂mβ εk + Āβkεk − εkĀβk, (A24)

where Aαk = T †k∂αTk, and Āβk = T †k∂mβTk ≡ T †k∂βTk, and where a bar over Āβk symbolizes information that the
derivative is over β component of the magnetization direction, mβ . After the transformations we get,

Sαβ(ω) =
1

2

∑
kn

g [(εk)nn]− g [(εk)mm]

iω + (εk)nn − (εk)mm
(ṽαk)nm [(εk)nn + (εk)mm]

(
∂mβ εk + Āβkεk + εkĀβk

)
mn

(A25)

Expand Sαβ(ω) in ω, and get

Sαβ(ω) = S
[1]
αβ(0) + S

[2]
αβ(0) +

∂

∂ω
S

[2]
αβ(ω)|ω=0ω, (A26)

where n = m parts of Sαβ are

S
[1]
αβ(0) =

∑
kn

∂g(ε)

∂ε
|ε=(εk)nn(εk)nn(∂αεk)nn(∂mβ εk)nn = −1

2

∑
kn

g [(εk)nn] (∂α∂mβ ε
2
k)nn, (A27)
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where we integrated by parts over k. Term with n 6= m elements reads

S
[2]
αβ(ω) =− 1

2

∑
kn

g [(εk)nn]− g [(εk)mm]

iω + (εk)nn − (εk)mm
[(εk)nn + (εk)mm] [(εk)nn − (εk)mm]

2
(Aαk)nm

(
Āβk

)
mn

, (A28)

which we expand in ω, and get

S
[2]
αβ(0) = −1

2

∑
kn

{g [(εk)nn]− g [(εk)mm]}
[
(εk)2

nn − (εk)2
mm

]
(Aαk)nm

(
Āβk

)
mn

, (A29)

and

∂

∂ω
S

[2]
αβ(ω)|ω=0 = i

1

2

∑
kn

{g [(εk)nn]− g [(εk)mm]} [(εk)nn + (εk)mm] (Aαk)nm
(
Āβk

)
mn

. (A30)

Overall the Kubo part of the current is presented as

lim
ω→0

Sαβ(ω)
1

ω
= S

[1]
αβ(0)

1

ω
+ S

[2]
αβ(0)

1

ω
+

∂

∂ω
S

[2]
αβ(ω)|ω=0. (A31)

b. Magnon orbital magnetization heat current

In this section we calculate an expectation value of the perturbed current over the equilibrium ground state,〈
J

[1]
Qα

〉
=

1

V

1

2
Tr
∑
k

g [(εk)]T †k [(δm(t) · ∂m) (Hkvαk + vαkHk)]Tk ≡
1

V
Mαβ

1

ω
(∂tm)β (A32)

Quantity of interest is

T †k [∂β (Hkvαk + vαkHk)]Tk (A33)
= ∂mβ (εkṽαk + ṽαkεk) + Āβkεkṽαk − ṽαkεkĀβk + Āβkṽαkεk − εkṽαkĀβk. (A34)

We then get

Mαβ
1

ω
=

1

2ω

∑
kn

(Aαk)nm
(
Āβk

)
mn

[
(εk)2

nn − (εk)2
mm

]
{g [(εk)nn]− g [(εk)mm]} (A35)

+
1

2ω

∑
kn

∂mβ∂α
(
ε2k
)
nn
g [(εk)nn] (A36)

c. Overall

Overall response is

J
[0]
Qα + J

[1]
Qα =

1

V

[
Sαβ

1

ω
+Mαβ

1

ω

]
(∂tm)β =

∂

∂ω
S

[2]
αβ(ω)|ω=0(∂tm)β (A37)

=
1

V

{
i

2

∑
kn

{g [(εk)nn]− g [(εk)mm]} [(εk)nn + (εk)mm] (Aαk)nm
(
Āβk

)
mn

}
(∂tm)β (A38)

=
1

V

{
i

2

∑
kn

g [(εk)nn] [(εk)nn + (εk)mm] (Aαk)nm
(
Āβk

)
mn
− (α↔ β)

}
(∂tm)β (A39)
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3. Overall heat current

Summing up the Dzyaloshinskii-Moriya current and current carried by magnons, we get

JΣ
Qα = J

[0]
Qα + J

[1]
Qα + JDMI

α =
1

V

(
Sαβ

1

ω
+Mαβ

1

ω
+Dαβ

)
(∂tm)β (A40)

= i
1

V

{∑
kn

(
AαkĀβk

)
nn
c1[(εk)nn]− (α↔ β)

}
(∂tm)β (A41)

≡ 1

V

∑
kn

[Ωαβ ]nn c1[(εk)nn](∂tm)β , (A42)

where c1(x) =
´ x

0
dη η dgdη , where Ωαβ = 2Im

(
∂αT

†
k

) (
∂mβTk

)
is the mixed Berry curvature.

Appendix B: Spin current as a response to magnetization dynamics

Again, we study a ferromagnetic system with time-dependent magnetization direction. Hamiltonian is

HT =
1

2

ˆ
drΨ†(r)

[
Ĥ + Ĥ ′(t)

]
Ψ(r). (B1)

We define ĤT = Ĥ + Ĥ ′(t). Microscopic expression for the spin density current current is derived via commutation
relationship

jS(r) = Ψ†(r)VΨ(r), (B2)

here V = i[ĤT, r] is the full velocity. Velocity has two parts, V = v + v′, where v = i[Ĥ, r] and v′ = i[Ĥ ′, r].
Assuming that the magnetic order is m(t) = m + δm(t), we write the perturbation as Ĥ ′(t) =

(
∂mĤ

)
δm(t). The

spin current splits in to two parts

jS(r) = j
[0]
S (r) + j

[1]
S (r). (B3)

We again consider macroscopic currents, JS = 1
V

´
drjS(r). We write

J
[0]
Sα =

1

V
Sαβ

1

ω
(∂tm)β , (B4)

J
[1]
Sα =

1

V
Mαβ

1

ω
(∂tm)β (B5)

The later term is due to orbital magnetization of magnons, while the former current is given by Kubo formula

Sαβ(ω) =
∑
kn

[ṽαk]nm [˜̄vβk]mn
g [(εk)nn]− g [(εk)mm]

iω + (εk)nn − (εk)mm
, (B6)

where again,

ṽαk = T †kvαkTk = ∂αεk +Aαkεk − εkAαk, (B7)

˜̄vβk = T †k v̄βkTk = ∂mβ εk + Āβkεk − εkĀβk. (B8)

After straightforward transformations, expanding the expression above in ω, and taking corresponding integral over
k by parts, we obtain an expression

Sαβ = −
∑
kn

g [(εk)nn] ∂α∂mβ (εk)nn −
∑
kn

(Aαk)nm
(
Āβk

)
mn

[(εk)nn − (εk)mm] {g [(εk)nn]− g [(εk)mm]} (B9)

+ iω
∑
kn

(Aαk)nm
(
Āβk

)
mn
{g [(εk)nn]− g [(εk)mm]} (B10)
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The orbital magnetization part of the current is given by

Mαβ =
∑
kn

[
T †k
(
∂α∂mβHk

)
Tk

]
nn
g [(εk)nn] (B11)

=
∑
kn

[
∂α∂mβ (εk)nn

]
g [(εk)nn] (B12)

+
∑
kn

(Aαk)nm
(
Āβk

)
mn

[(εk)nn − (εk)mm] {g [(εk)nn]− g [(εk)mm]} . (B13)

Hence, we observe

Sαβ +Mαβ = iω
∑
kn

(Aαk)nm
(
Āβk

)
mn
{g [(εk)nn]− g [(εk)mm]} (B14)

The overall spin current is readily obtained

JSα =
1

V
(Sαβ +Mαβ)

1

ω
(∂tm)β = i

1

V

∑
kn

(Aαk)nm
(
Āβk

)
mn
{g [(εk)nn]− g [(εk)mm]} (∂tm)β (B15)

≡ 1

V

∑
kn

[Ωαβ ]nn g [(εk)nn] (∂tm)β , (B16)

where Ωαβ = 2Im
(
∂αT

†
k

) (
∂mβTk

)
is the mixed Berry curvature.

Appendix C: Torque as a response to temperature gradient

We adopt Luttinger formalism to study the response of the system to the temperature gradient. In this formalism
the Hamiltonian acquires extra terms, written compactly as

H =

ˆ
drΨ̃†(r)Ĥ(r)Ψ̃(r), (C1)

where Ψ̃(r) =
(

1 + r∇χ
2

)
Ψ(r) ≡ ξ(r)Ψ(r) with ∇χ being the temperature gradient. We define the torque as T =

〈∂mH〉. For the response of the torque on the temperature gradient, we again define two terms

〈∂mH〉 ≡ 〈∂mH〉ne +
1

2
〈∂m [rβH +Hrβ ]〉eq∇βχ (C2)

The first term is again described by a Kubo formula, 〈∂mH〉ne = 1
V Smβ∇βχ, the second term we again define as

Mmβ = 1
2 〈∂m [rβH +Hrβ ]〉eq, we then formally rewrite the expression for torque

〈∂mH〉 =
1

V
(Smβ +Mmβ)∇βχ =

1

V
Lmβ∇βχ. (C3)

Calculations for the torque are similar to the ones presented for the particle current in Appendix B with a definition
of rm operator as in Appendix A1. As a result, we get

〈∂mH〉 =
1

V

{∑
kn

Ω
(n)
mβ(k)c1 [(εk)nn] +

∑
kn

(∂mεnk)(∂βεnk)εnk
1

2Γnk
g′ [(εk)nn]

}
∇βχ, (C4)

where now Ω
(n)
mβ(k) ≡ i

[(
∂mT

†
k

)
(∂βTk)

]
nn
− (m↔ β) is the mixed space Berry curvature of the nth band.

Appendix D: A model of honeycomb ferromagnet with Dzyaloshinskii-Moriya interaction

1. Hamiltonian

We study a model of a ferromagnet on a honeycomb lattice. We assume a Heisenberg exchange, in-plane
Dzyaloshinskii-Moriya interaction (DMI) of Rashba type, and second-nearest neighbor DMI. In our model, we as-
sume that the order is in general (mx,my,mz) direction, which can be realized by application of the magnetic field.
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The Hamiltonian is

H = J
∑
<ij>

SiSj +
∑
<ij>

D[R] [Si × Sj ] +D[z]
∑

<<ij>>

[Si × Sj ]z . (D1)

Dzyaloshinskii-Moriya interaction originating from the Rashba type spin-orbit coupling for 1, 2, 3 links (see figure 7)
is

H
[R]
1 = D[R]

(
−1

2
[SA × SB]y +

√
3

2
[SA × SB]x

)
, (D2)

H
[R]
2 = D[R]

(
−1

2
[SA × SB]y −

√
3

2
[SA × SB]x

)
, (D3)

H
[R]
3 = D[R] [SA × SB]y . (D4)

In Holstein-Primakoff bosons, Rashba DMI reads

[SA × SB]x = SyAS
z
B − SzAS

y
B = −iSmx

(
b†a− a†b

)
, (D5)

[SA × SB]y = −SxASzB + SzAS
x
B = −iSmy

(
b†a− a†b

)
. (D6)

Together with Heisenberg exchange and second-nearest neighbor DMI written in Holstein-Primakoff bosons, we get

H = JS

[
3 + ∆k −γ̃k

−γ̃∗k 3−∆k

]
, (D7)

where ∆k = 2∆
[
sin(ky)− 2 sin

(
ky
2

)
cos
(√

3kx
2

)]
, where ∆ = mzD

[z]/J . Deriving γ̃k we considered Rashba DMI in

the lowest order in D[R]/J � 1 parameter. With this assumption

γ̃k = 2e
i k̃x
2
√

3 cos

(
k̃y
2

)
+ e
−i k̃x√

3 , (D8)

where k̃x = kx−
√

3D
[R]

J my, and k̃y = ky+
√

3D
[R]

J mx. We observe that Rashba DMI plays an effective role of magnon
charge, while order direction is an effective vector potential felt by magnons.

The eigenvalues of the Hamiltonian are calculated as

εk,± = JS

(
3±

√
∆2

k + |γ̃k|2
)
, (D9)

with corresponding eigenfunctions

Ψk,+ =

 cos
(
ξ̃k
2

)
eiχ̃k

− sin
(
ξ̃k
2

)  , Ψk,− =

 sin
(
ξ̃k
2

)
cos
(
ξ̃k
2

)
e−iχ̃k

 , (D10)

where sin
(
ξ̃k

)
= |γ̃k|√

∆2
k+|γ̃k|2

, and γ̃k = |γ̃k|eiχ̃k , where the tilde symbol means that corresponding k momenta are

shifted by the Rashba DMI. Unitary matrix that diagonalizes the Hamiltonian is readily constructed

Tk =

 cos
(
ξ̃k
2

)
eiχ̃k sin

(
ξ̃k
2

)
− sin

(
ξ̃k
2

)
cos
(
ξ̃k
2

)
e−iχ̃k

 . (D11)

An expression defining the Berry curvature is

Ωαβ(k) = 2Im
[(
∂αT

†
k

)
(∂βTk)

]
=

1

2
sin
(
ξ̃k

) [
(∂αχ̃k)

(
∂β ξ̃k

)
− (∂βχ̃k)

(
∂αξ̃k

)] [
1 0
0 −1

]
≡

[
Ω

(+)
αβ (k) 0

0 Ω
(−)
αβ (k)

]
,

(D12)
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τ1

τ2

τ3

a1

a2

+

-

d1

d2

d3

x

y

Figure 7. Schematics of the graphene layer parametres for the tight-binding model. Vectors connecting nearest neighbors are
τ1 = 1

2
( 1√

3
, 1), τ2 = 1

2
( 1√

3
,−1), and τ3 = 1√

3
(−1, 0) are used in deriving the Hamiltonian for magnons. Vectors a1 = 1

2
(
√

3, 1),
and a2 = 1

2
(
√

3,−1) are used in deriving the second-nearest neighbor DMI.

where Ω
(+)
xmx(k) = −Ω

(−)
xmx(k), and

(∂αχ̃k)
(
∂β ξ̃k

)
− (∂βχ̃k)

(
∂αξ̃k

)
=

(∂αImγ̃k)

|γ̃k|2(∆2
k + |γ̃k|2)

[(∂β |γ̃k|) (Reγ̃k) ∆k − (∂β∆k) (Reγ̃k) |γ̃k|] (D13)

− (∂αReγ̃k)

|γ̃k|2(∆2
k + |γ̃k|2)

[(∂β |γ̃k|) (Imγ̃k) ∆k − (∂β∆k) (Imγ̃k) |γ̃k|]− (α↔ β) (D14)

=
∆k

|γ̃k|(∆2
k + |γ̃k|2)

[(∂αImγ̃k) (∂βReγ̃k)− (∂βImγ̃k) (∂αReγ̃k)] (D15)

+
∂α∆k

|γ̃k|(∆2
k + |γ̃k|2)

[Reγ̃k (∂βImγ̃k)− Imγ̃k (∂βReγ̃k)] . (D16)

Recall that β here stands for the component of the ferromagnetic order, i.e. mβ . Recall that ∆k does not depend on
mβ , hence ∂β∆k = 0. The derivitave with respect to the direction of the order mβ of the remaining functions that
depend on k̃ is

∂

∂mx
=
√

3
D[R]

J

∂

∂k̃y
≡
√

3
D[R]

J
∂y, (D17)

∂

∂my
= −
√

3
D[R]

J

∂

∂k̃x
≡ −
√

3
D[R]

J
∂x, (D18)

this straightforward transformation makes the mixed Berry curvature a regular k− space one.

2. Berry curvature at the K′ and K points

We first show that the Berry curvature has peaks at the K′ and K points. Let us study the spectrum close to
K′ =

(
0, 4π

3

)
,

(∆k)K′ ≈ −3
√

3∆, (D19)

(γ̃k)K′ ≈ −
√

3

2
(k̃y + ik̃x), (D20)
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At K =
(
0,− 4π

3

)
point we expand as

(∆k)K ≈ 3
√

3∆, (D21)

(γ̃k)K ≈
√

3

2
(k̃y − ik̃x). (D22)

Hence, under the mentioned above approximations the mixed Berry curvature becomes a regular, k− space, one. To
the lowest order in Rashba DMI, we can disregard all tildes in k̃. Using these approximations, we get for the Berry
curvature which close to the K′ point

Ω(+)
xmx(k) =

1

2
sin (ξk) [(∂xχk) (∂mxξk)− (∂yχk) (∂mxξk)] (D23)

≈ −
√

3D[R]

J

3
√

3∆

2
(
27∆2 + 3

4k
2
)3/2 [(∂xReγk) (∂yImγk)− (∂yReγk) (∂xImγk)] (D24)

≈ −27

8

D[R]

J

∆(
27∆2 + 3

4k
2
)3/2 (D25)

Note that the Berry curvature is of the same sign for both K and K′ points (∆k and Reγk change sign under the
point interchange).

3. Berry curvature at the Γ point

We note that since the Γ = (0, 0) point is not gapped, it might contribute to currents at low temperatures. In the
following we estimate the Berry curvature at the point. For that we expand all functions entering the current close
to Γ point in small k as

∆k ≈
1

4
∆ky

(
3k2
x − k2

y

)
(D26)

Reγ̃k ≈ 3− 1

4
k̃2, (D27)

Imγ̃k ≈
1

24
√

3
k̃x

(
k̃2
x − 3k̃2

y

)
, (D28)

We recall that ∂β∆k = 0 for β = x, y.

a. α = x and β = mx

Ω(+)
xmx(k) ≈ 1

2
sin (χ̃k)

[
(∂xχ̃k)

(
∂mx ξ̃k

)
− (∂mx χ̃k)

(
∂xξ̃k

)]
≈ −D

[R]

J

∆

48
k2
yk

2
x (D29)

b. α = x and β = my

Ω(+)
xmy (k) ≈ 1

2
sin (χ̃k)

[
(∂xχ̃k)

(
∂my ξ̃k

)
−
(
∂my χ̃k

) (
∂xξ̃k

)]
≈ −D

[R]

J

∆

192
kykx

(
k2
x − k2

y

)
, (D30)

which will vanish upon angle integration. Same for α = y and β = nx combination.
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4. Spin current

The spin current is defined as

J [S]
x =

1

V

∑
n=±

ˆ
k

Ω(n)
xmx(k)g(εk,n)(∂tm)x. (D31)

We approximate the integrals at small temperatures SJ � T . At K′ and K points, we use the following approxima-
tions,

g(εk,+)− g(εk,−) ≈ −2 sinh

[
SJ

T

3
√

3D[z]

J

]
e−

3SJ
T , (D32)

in which εk± ≈ SJ
(
3± 3

√
3|∆|

)
was used.

ˆ ∞
0

kdk
3
√

3∆(
27∆2 + 3

4k
2
)3/2 =

4

3
(D33)

At Γ point only the εk− ≈ 1
4SJk

2 contributes to the current. We use the following integrations
ˆ ∞

0

k5dk
1

e−
1
4JSβk

2 − 1
=

1

2

(
1

4
JS

)−3 ˆ ∞
0

z2dz

e−z − 1
=

(
1

4
JS

)−3

ζ(3), (D34)

where ζ(3) is the Riemann zeta function. Summing all the contributions, we get

J [S]
x =

1

V

D[R]

J

√
3

π

[
sinh

[
1

z

3
√

3D[z]

J

]
e−

3
z +

D[z]

J

√
3ζ(3)

36
z3

]
(∂tm)x , (D35)

where z = T
SJ was introduced for brevity.

5. Heat current

J [Q]
x =

1

V

∑
n=±

ˆ
k

Ω(n)
xmx(k)c1(εk,n)(∂tm)x. (D36)

At K′ and K we approximate

c1(εk,+)− c1(εk,−) ≈ −2(3SJ) sinh

(
3
√

3

z

Dz

J

)
e−

3
z (D37)

At Γ point it is important to keep in mind the Berry curvature sum rule, we then get an integral
ˆ ∞

0

dxx2

ˆ x

0

dyy
dg(y)

dy
→
ˆ ∞

0

dxx2

[
x

ex

ex − 1
− ln (ex − 1)

]
≈ 8.65, (D38)

where after the right arrow all the divergent terms are disregarded due to Berry curvature sum rule.

J [Q]
x ≈ JSD

[R]

J

3
√

3

V π

[
sinh

(
1

z

3
√

3D[z]

J

)
e−

3
z +

D[z]

J

√
3I

216
z4

]
(∂tm)x . (D39)
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