
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum critical local spin dynamics near the Mott metal-
insulator transition in infinite dimensions

Nagamalleswararao Dasari, N. S. Vidhyadhiraja, Mark Jarrell, and Ross H. McKenzie
Phys. Rev. B 95, 165105 — Published  5 April 2017

DOI: 10.1103/PhysRevB.95.165105

http://dx.doi.org/10.1103/PhysRevB.95.165105


Quantum critical local spin dynamics near the
Mott metal-insulator transition in infinite dimensions

Nagamalleswararao Dasari1,∗ N. S. Vidhyadhiraja1, Mark Jarrell2,3, and Ross H. McKenzie4†
1Theoretical Sciences Unit, Jawaharlal Nehru Centre For Advanced Scientific Research, Jakkur, Bangalore 560064, India.

2Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA.
3Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA and

4School of Mathematics and Physics, University of Queensland, Brisbane 4072, Australia.

Finding microscopic models for metallic states that exhibit quantum critical properties is a major theoretical
challenge. We calculate the dynamical local spin susceptibility χ(T, ω) for a Hubbard model at half filling using
Dynamical Mean-Field Theory, which is exact in infinite dimensions. Qualitatively distinct behavior is found
in the different regions of the phase diagram: Mott insulator, Fermi liquid metal, bad metal, and a quantum
critical region above the finite temperature critical point. The signature of the latter is ω/T scaling where ω is
the frequency and T is the temperature. Our results are consistent with previous results showing scaling of the
dc electrical conductivity and are relevant to experiments on organic charge transfer salts.

I. INTRODUCTION

A wide range of materials exhibit properties characteristic
of strongly correlated electrons. Materials include transition
metal oxides1, cuprates2, iron-based superconductors3, heavy
fermion compounds4, and organic charge transfer salts5. They
exhibit emergent quantum states of matter such as uncon-
ventional superconductors, spin liquids, and non-Fermi liq-
uid metals. A major challenge is to understand these metallic
states which have properties quite distinct from those of sim-
ple elemental metals that can be described by Landau Fermi
liquid theory. These unusual metallic states occur in close
proximity to a Mott insulating phase1 and/or to a quantum
critical point4. The concept of quantum criticality may be a
useful organizing principle6–8.

The Hubbard model is one of the mostly widely studied ef-
fective Hamiltonians for strongly correlated electron systems.
At the level of Dynamical Mean-Field Theory (DMFT)9–14,
at half filling and zero temperature there is a first-order phase
transition between metallic and Mott insulating phases as the
interaction strength U is increased. Near half filling, using the
non-crossing approximation and quantum Monte Carlo, Pr-
uschke et al. identified a region of anomalous transport13,15.
It is characterized by linear-in-temperature resistivity, which
corresponds to ω/T scaling, at high temperatures, crossing
over to a Fermi liquid at lower T . The crossover scale be-
tween these regimes vanishes as half filling is approached, and
the slope of the linear in T resistivity varies like 1/x, where x
is the doping. More recently, Dobrosavljevic et al. identified
a broad region of the T − U phase diagram displaying ω/T
scaling in the half filled model. They associated this behav-
ior with a quantum critical point16–18. Furthermore, similar
scaling was found in experimental data for three different or-
ganic charge transfer salts that exhibit a critical point for the
Mott transition in the temperature-pressure phase diagram19.
In this paper we show that the local spin dynamics of the Hub-
bard model calculated with DMFT exhibits ω/T scaling that
is characteristic of quantum criticality.

Quantum criticality and ω/T scaling. Varma et al.20,21

showed that many of the anomalous properties of the metal-
lic phase of cuprate superconductors at optimal doping can

be described as a marginal Fermi liquid with a spin fluctu-
ation spectrum that exhibits ω/T scaling. Finding concrete
realistic theoretical microscopic fermion models that exhibit
such scaling has proven challenging. Simulations of the two-
dimensional Hubbard model reveal a quantum critical point
at finite doping below a fan shaped region of marginal fermi
liquid character in the self energy22,23. There are several re-
views of quantum criticality6,8,24–29. Sachdev has reviewed
several spin and boson models6 that exhibit ω/T scaling in
the quantum critical region, associated with a quantum criti-
cal point. In such systems, the temperature itself is the rele-
vant low energy scale, rather than any scale in the model. For
example, for the transverse field Ising model in one dimen-
sion (page 73 of Ref. 6), the spin dephasing rate Γ = 0.4T .
For the two-dimensional O(N ≥ 3) rotor model in the large-
N limit, Γ = 0.94T/N (page 142 of Ref. 6). Parcollet and
Georges30 considered a particular limit of a random Heisen-
berg model which had a spin liquid ground state and the dy-
namical spin susceptibility χ′′(T, ω) exhibited a form consis-
tent with that conjectured in the marginal Fermi liquid sce-
nario. Neutron scattering measurements found that the dy-
namic spin susceptibility exhibits ω/T scaling for an insulat-
ing antiferromagnetic spin chain compound31 and a Kagome
lattice material32. Quantum criticality has been found for
a Kondo boson-fermion model33,34, motivated by ω/T scal-
ing seen in neutron scattering experiments on several heavy
fermion metals4,35. Specifically, inelastic neutron scattering
gives the following ω/T scaling, for the wave-vector depen-
dent susceptibility, χ′′(ω, ~q)−1 = T aF (ω/T ) + χ′(ω =
0, ~q)−1 where ~q is the wavevector and the exponent a = 0.75.

Our results are summarized in the phase diagram shown in
Figure 1. This diagram is deduced from the dynamical local
spin susceptibility and is similar to that previously found from
scaling of the dc electrical conductivity near the critical point
for the metal-insulator transition in the half-filled model16,17.
Specifically, there is a quantum critical regime above the criti-
cal point; the signature is that the dynamical local spin suscep-
tibility exhibits ω/T scaling. The local spin relaxation rate is
linear in temperature, with a value Γ ' 0.4T . The occurrence
of quantum critical properties in both the spin and charge sec-
tors is consistent with recent work showing they are strongly
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coupled near the Mott transition36.

Figure 1. Phase diagram determined from the dynamical spin sus-
ceptibility. In the quantum critical region χ′′(ω) exhibits ω/T scal-
ing with a spin relaxation rate that is proportional to the tempera-
ture. There is a finite-temperature critical point for the Mott metal-
insulator transition (Tc = 0.028t). In the Mott insulating phase
χ′′(T, ω)/ω tends to a delta function peak as the temperature tends to
zero. In the Fermi liquid phase the spin relaxation rate is independent
of temperature. The coherence temperature for the Fermi liquid was
defined in two independent ways. The first is where the static spin
susceptibility becomes temperature dependent, and the second where
the imaginary part of the one-electron self energy Σ′′(ω = 0, T ) de-
viates from a T 2 dependence (see Figure Fig. 9 in the Appendix).
The black lines define the co-existence region of the metal and Mott
insulator, and the critical point, as determined in Ref. 37. The black
circles are our results. The blue symbols are the boundary of the
quantum critical regime determined by the electron spin relaxation
rate plotted in Fig. 2.

II. MODEL HAMILTONIAN

We study the single band Hubbard model on the Bethe lat-
tice in infinite dimensions and at half filling.

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.) + U
∑
i

ni↑ni↓ (1)

It involves two parameters: t the nearest neighbor hopping in-
tegral and U the Coulomb repulsion energy for two electrons
on the same lattice site. The non-interacting (U = 0) den-
sity of states is semi-circular with a full bandwidth W = 2t.
DMFT is used to calculate the properties of the model14. In
the limit of infinite dimensions or of infinite lattice connec-
tivity DMFT is exact. We do not allow for symmetry break-

ing such as antiferromagnetism. Previously it has been shown
that the metallic and Mott insulating phases co-exist in the
range, Uc1 < U < Uc2, where Uc1 = 2.4t and Uc2 = 2.9t37.
There is a finite-temperature critical point at Uc = 2.4t and
Tc = 0.028t. Our results at β ≡ 1/T = 70/t are consistent
with this earlier work (compare Figure 1).

III. METHOD

The hybridization expansion version of the continuous time
quantum Monte-Carlo (CTQMC) algorithm38 is used as a
DMFT impurity solver to calculate the spin dynamics at fi-
nite temperature. The main advantages of this method are
that it is numerically exact and the fermionic sign problem
does not occur until very low temperatures in the Fermi liq-
uid regime. The vertex corrected local spin susceptibility
χ(τ) ≡ 〈Sz(τ)Sz(0)〉 is computed at imaginary times and
then Fourier transformed to Matsubara frequencies.

In CTQMC simulations, we accumulate adjacent imaginary
time one-and two-particle Green’s function data into equal
bins39. This may be done efficiently, but the data obtained is
correlated in both Monte Carlo and imaginary time and hence
may be problematic for analytic continuation via the maxi-
mum entropy method40,41. By increasing the bin size, we re-
duce correlations between adjacent bin averages, ensuring that
the binned data has a Gaussian distribution. We can quantify
this by fitting the histogram of the binned data to a Gaussian
form and by calculating the third and fourth moments of the
histogram to ensure that they are very small (∼ 10−1 to 10−2).
However, correlations between errors of the Greens function
at adjacent time slices remain, and are characterized by the
off-diagonal elements of the covariance matrix (C). To re-
move these correlations, we diagonalize the covariance matrix
with a unitary transformation U(

U−1CU
)
ij

= σ
′

i

2
δij . (2)

We then rotate the data (G) and kernel (K) into this diagonal
representation K

′
= U−1K, G

′
= U−1G, where we may

carry out the maximum entropy calculations on independent
samples.

Empirically, Jarell et al.40 find that accurate calculations
of the covariance requires that the number of bins must be
chosen such that Nbins ≥ 2L, where L is the number of re-
quired independent eigenvectors. In our calculations, we use
Nbins = 300 and L = 15. We also perform calculations in the
critical region by increasing the number of bins from 300 to
1000 to ensure robustness and observe that the relative change
in spin-relaxation rate Γ is very marginal (∼ 10−3). Hence, in
this paper, we show data obtained for 300 bins.

As the default model for the analytic continuation we use
the closed analytical form results of Salomaa42 for the reso-
nant level model (Anderson single impurity model with U =
0). Given the data, in the Salomaa model the parameter for
the width of the spectral density is chosen such that it maxi-
mizes the posterior probability of the model41. We also cal-
culate χ′′(T, ω) by using another default model provided by
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Bouadim et al.43. We find that our results are independent
of the choice of default model, suggesting that the analytical
continuation procedure is quite robust.

IV. SPIN RELAXATION RATE

From the dynamical local spin susceptibility, χ(T, ω) ≡
χ′(T, ω)+ iχ′′(T, ω), a spin relaxation rate can be defined by,

Γ(U, T ) ≡ lim
ω→0

ωχ′(T, ω = 0)

χ′′(T, ω)
. (3)

This is similar to the (dephasing) relaxation rate defined by
Sachdev for a spin model at the ordering wavevector (Ref. 6,
page 73). If χ(T, ω) has a simple Lorentzian or Drude form
then Γ corresponds to the width of the peak at zero frequency
in the spectral density, χ′′(T, ω)/ω. Our results for the tem-
perature dependence of Γ are shown in Figure 2.

Figure 2. Electron spin relaxation rate Γ(U, T ) as a function of tem-
perature for different U values. In the Fermi liquid regime of the
metallic phase (T < Tcoh) the relaxation rate is non-zero and inde-
pendent of temperature. This rate decreases by more than an order
of magnitude as the Mott insulator is approached. Above the coher-
ence temperature Γ decreases with increasing temperature, reflecting
the decreasing interaction between the spins of the electrons which
become more localized as the temperature increases. In the Mott in-
sulator (U > 2.4t) the rate tends to zero as the temperature tends to
zero reflecting the decoupled local moments. In the quantum criti-
cal regime the rate is a power law as a function of temperature. For
U = 2.2t the rate is approximately linear in temperature, Γ ' 0.4T .
The green lines define the boundary of the quantum critical region in
Figure 1.

On the metallic side of the Mott transition the signature of
the crossover from a Fermi liquid to a bad metal (with in-

creasing temperature above Tcoh) is that Γ(T,U) decreases
smoothly from a small T independent value below Tcoh to a
temperature dependent value. Above this temperature the spin
dynamics is weakly damped, similar to the localized weakly
interacting magnetic moments present in the Mott insulating
phase. The latter was conjectured to be the character of the
bad metallic state, based on the large entropy and static spin
susceptibility found from finite temperature Lanczos calcula-
tions for the Hubbard model on the triangular lattice at half
filling44.

Recent DMFT calculations of charge transport properties
of a doped Hubbard model45 identified the existence of well-
defined quasiparticle-like excitations [ resilient quasi-particles
(RQPs)] well above the coherence temperature (Tcoh) and
their gradual extinction with the cross-over to the bad metallic
regime (TMIR) where the resistivity becomes comparable to
the Mott-Ioffe-Regel limit. Our results suggest that the spin
relaxation rate in the RQP regime behaves quite differently in
comparison with the low temperature Fermi liquid and high
temperature bad metallic regime. In fact, this might be rele-
vant to the recently observed slowdown of the relaxation dy-
namics near the Mott transition in the quench dynamics of the
Hubbard model46. Our results suggest the need to investigate
spin dynamics in the doped case.

V. QUANTUM CRITICAL SCALING

Figure 3 shows that above the critical point χ′′(T, ω) ex-
hibits ω/T scaling characteristic of quantum criticality, i.e.,
χ′′(T, ω) = χ′(T, ω = 0)F (ω/T ). For low frequencies the
scaling function is best fit to a power law, F (x) = 2.3x. For
T & 0.069t the scaling covers about three decades in the ra-
tio ω/T . For comparison, in the metallic (Figure 4) and Mott
insulating (Figure 5) regions such scaling clearly does not oc-
cur. In the Mott insulating phase χ′′(T, ω)/ω tends towards a
delta function peak, i.e., Γ(T ) → 0 as T → 0 (compare Fig-
ure 5). This reflects the decoupled local moments in the Mott
phase. In DMFT there is no Heisenberg antiferromagnetic
exchange interaction between localized spins on neighboring
lattice sites. At zero temperature, the delta function peak is
also clearly seen in dynamic DMRG calculations47.

In Figure 6 we show the one electron spectral density for
U/t = 2.10. It can be seen that for temperatures in the quan-
tum critical region there is an absence of the quasi-particle
peak at ω that is characteristic of a Fermi liquid.

A. Boundary conformal field theory (CFT) scaling

Scaling with ω/T is associated with the following scaling
of the imaginary-time susceptibility

χ(τ) ∼ (πT/ sin(πτT )2λ (4)

where τ is the imaginary time49. It has been found that such
scaling does hold for a Kondo boson-fermion model33,34,50, a
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Figure 3. Quantum critical scaling of the dynamical spin suscepti-
bility near the Mott transition. The upper panel shows the frequency
dependence of the imaginary part of the susceptibility for U = 2.2t
for a range of temperatures (T = 1/β). The lower panel shows the
same data with the frequency scaled by temperature. Scaling occurs
for all T & 0.069t, but fails for T = 0.04t (green curve) consis-
tent with the extent of the QC region in Figure 1. The dashed line
2.3ω/T is a best fit to the low frequency data.

fractionalised Fermi liquid in a holographic metal51, a pseu-
dogap Anderson model52, and the gapped single impurity An-
derson model53. We do not observe such scaling in χ(τ) but
do observe such scaling in the one electron local Green’s func-
tion G(τ) (compare Figure 7). Our results illustrate that ω/T
scaling does not necessarily imply the scaling characteristic of
boundary CFT.

VI. NMR PROPERTIES

The most direct experimental probe of the low frequency
behavior of the dynamical local spin susceptibility χ′′(ω) is
through Nuclear Magnetic Resonance (NMR). In contrast,
neutron scattering measures the dynamical susceptibility at fi-
nite wave vector.

Nuclear spin relaxation rate. This is given by

1

T1T
= A2 lim

ω→0

χ′′(T, ω)

ω
(5)

and in simple metals this quantity is independent of temper-
ature (Korringa). (Ref. 54, p. 156). Note that there is a
relationship to the electron spin relaxation rate Γ defined in
equation (3), T1 ∼ Γ/(Tχ′(T, ω = 0)). Hence, T1 being in-
dependent of T , which is sometimes associated with quantum

Figure 4. Frequency dependence of the dynamical spin susceptibil-
ity in the metallic phase. The upper panel shows the frequency de-
pendence of the imaginary part of the susceptibility for U/t = 1.25
for a range of temperatures and on a linear scale. The lower panel
shows the same data on a log-log plot with the frequency scaled by
temperature. Unlike in the quantum critical regime, ω/T scaling is
not observed.

criticality7,55, is not the same as Γ being linear in T , if the
temperature dependence of the dc susceptibility is significant
(as it is here). The top panel of figure 8 shows 1/(T1T ) as a
function of temperature for a range of U values. Below the
coherence temperature for the metallic phase it is independent
of temperature, as expected. Its magnitude is significantly en-
hanced as the Mott insulator is approached.

For comparison, we note that Zitko, Osolin, and Jeglic56

calculated χ′′(T, ω)/ω for a doped Hubbard model at fill-
ing n = 0.8 using the numerical normalization group as an
impurity solver in DMFT. They found that 1/T1 was a non-
monotonic function of temperature and increased by up to two
orders of magnitude as U/W increased from 0 to 4, and was
weakly temperature dependent in the bad metal regime.

NMR Knight shift. In a lattice system this is given by
K(T ) = Aχ′(~q = 0, ω = 0), where ~q is the wave vector
and A is the hyperfine coupling. Note that the right hand
side is not the same quantity as the local spin susceptibility,
χ′(ω = 0) ≡

∑
~q χ
′(~q, ω = 0), that is our focus here. Nev-

ertheless, for reasons of simplicity, here we do not consider
this difference. The middle panel of Figure 8 shows the static
local susceptibility as a function of temperature for a range of
U values. Here we work with units such that A = 1. Note
that in the metallic phase as the temperature increases there
is a crossover from a temperature-independent value at low
temperatures, characteristic of a Fermi liquid, to a Curie form
1/(4T ), characteristic of localized non-interacting spins.
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Figure 5. Frequency dependence of the dynamical spin suscepti-
bility in the Mott insulating phase. The upper panel shows the fre-
quency dependence of the imaginary part of the susceptibility for
U/t = 3.0 for a range of temperatures and on a linear scale. Note
how as the temperature tends to zero the peak width tends to zero and
that one sees features around ω = U , associated with the Hubbard
bands. The lower panel shows the same data on a log-log plot with
the frequency scaled by temperature. Unlike in the quantum critical
regime, ω/T scaling is not observed.

Korringa-Shiba relation. In a simple Fermi liquid the fol-
lowing dimensionless ratio is unity in the absence of vertex
corrections57,

κ(T ) ≡ lim
ω→0

χ′′(T, ω)

2πωχ′(T, ω)2
. (6)

Shiba58 showed that for the single Anderson impurity model
κ(T ) = 1 in the Kondo regime. Values of κ larger and less
than one are often associated respectively with antiferromag-
netic and ferromagnetic fluctuations.57 In Figure 8 we plot this
ratio as a function of temperature for a range of U , and find
that it can be much larger than unity and increases as the Mott
insulating phase is approached from the metallic side. How-
ever, in the Fermi liquid regime, κ is close to one.

VII. RELEVANCE TO EXPERIMENTAL RESULTS FOR
ORGANIC CHARGE TRANSFER SALTS

The materials that are arguably closest to the model con-
sidered here are organic charge transfer salts, e.g. κ-(BEDT-
TTF)2X. They can be modeled in terms of an effective Hamil-
tonian that is a single band Hubbard model on an anisotropic
triangular lattice at half filling5. As the pressure increases

Figure 6. One electron spectral density for U/t = 2.10 for different
temperatures in the quantum critical region. Compare Fig. 7 in Ref.
17. Absence of a quasi-particle peak at ω = 0 is characteristic of a
bad metal48.

these materials undergo a first order phase transition from a
Mott insulator to a Fermi liquid metal. It has been found that
DMFT describes the crossover from a coherent Fermi liquid
to bad metallic state with increasing temperature48. Further-
more, DMFT gives a quantitative description of the resistiv-
ity59 and the frequency dependent optical conductivity60 for
these organics. Near the critical point, some signatures of
critical behavior have been reported in the conductivity19,61

and NMR62. For a diverse set of κ-(BEDT-TTF)2X above
some temperature of the order Tb ∼ 50 K, the NMR relaxation
rate becomes roughly independent of temperature63. Broadly,
this is consistent with the quantum criticality discussed here.
On the other hand, there are alternative explanations in terms
of short-range antiferromagnetic spin fluctuations63, and the
experiments cover a relatively narrow temperature range,
roughly 50-300 K, which is not even a single decade. Our re-
sults compare well qualitatively with experimental results for
κ-(BEDT-TTF)2Ag(CN)3 (see Figure 3(a) in Reference 64).
and κ-(BEDT-TTF)4Hg2.89Br8 (see Figure 3(c) in Reference
65). (Although, it should be noted that the latter material has
been suggested to be doped away from half filling.) As the
pressure increases 1/(T1T ) decreases by more than an order
of magnitude. It smoothly crosses over from a form that is
monotonically decreasing with temperature above about 10 K
at low pressures to weak temperature dependence (Korringa)
at higher pressures. In several organics the Korringa ratio is
observed to be temperature dependent with large values of or-
der ten66,67. We hope our results will stimulate new experi-
ments.
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Figure 7. The upper panel shows the failure of boundary conformal
field theory scaling of the imaginary time dependence the suscepti-
bility χ(τ). The lower panel shows the boundary conformal field
theory scaling of the imaginary time dependence of the one electron
Green’s function, G(τ). Curves are shown for U = 2.10t and for a
range of temperatures (β = 1/T ). We tried to find a temperature de-
pendent rescaling parameter for the vertical axis such that all curves
of this spin susceptibility collapse on top of each other. However, we
did not find any such rescaling parameter.

VIII. DISCUSSION AND CONCLUSIONS

The observed quantum critical scaling in the dynamical
spin susceptibility above Tc is what one expects to be associ-
ated with a zero temperature quantum critical point17,68. This
quantum critical region might be extended down to zero tem-
perature by varying some parameter such as doping. For ex-

Figure 8. Temperature dependence of NMR properties for a
range of U values. The top panel shows the nuclear spin relaxation
rate, 1/T1T . The middle panel shows the local static susceptibility
(Knight shift). Note that both quantities are significantly enhanced
as the Mott transition is approached on the metallic site. Below the
coherence temperature Tcoh, both are independent of temperature,
characteristic of a Fermi liquid. Well above Tcoh the static suscep-
tibility approaches the Curie form (χ = 1/(4T ), shown by the pur-
ple dashed line), suggesting unscreened local moments. The bottom
panel shows the Korringa-Shiba ratio, defined in Eqn. (6). Below
Tcoh it approaches one, and above Tcoh it is larger than one and in-
creases with U .

ample, the crossover scale between the region of linear resis-
tivity and the low temperature Fermi liquid regime was found
to vanish as half filling is approached13,15 (compare Figure
9 in Ref. 17). Recent exact results on doped Mott insula-
tors within DMFT68 identified a continuous quantum phase
transition from the metal to Mott insulator phase through the
absence of a co-existence region in the limit of particle-hole
asymmetry parameter 1− 2µ

U → 1. This implies that the bot-
tom of the quantum critical fan associated with Mott quan-
tum criticality can be pushed down to zero temperature in
this limit. CTQMC results by Vucicevic et al.18 on the doped
Mott insulator, indeed, support such an implication, since they
show that the quantum critical scaling of the DC conductivity
extends to much lower temperatures than what was found in
the symmetric case.

Quantum criticality means that other dynamical response
functions such as the frequency-dependent conductivity
should also exhibit ω/T scaling. We observed that in the
quantum critical region the one-particle Green’s function ex-
hibits ω/T scaling and hence one could expect the same scal-
ing for the optical conductivity in the critical region since only
the zeroth order bubble survives in the infinite dimensional
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limit.
The nature of the quantum critical point is also of interest.

In strongly correlated electronic systems two types of quan-
tum criticality are most often discussed28,29: a local quan-
tum critical point associated with the destruction of Kondo
screening28, and a Moriya-Hertz-Millis (see, e.g., Reference
27) critical point associated with the destruction of a spin
density wave or some other ordered phase. These two sce-
narios for electron models may be distinguished by the fact
that the point where the Kondo screening vanishes at zero
temperature coincides with the QCP in the local model, but
not in the Moriya-Hertz-Millis scenario. In addition, the
former displays ω/T scaling in the quantum critical region,
whereas the latter displays (ω/T )

1−θ scaling with θ > 028.
As noted previously13,15, the crossover scale between the re-
gion of anomalous transport, linear resistivity, and the Fermi
liquid vanishes as the doping x → 0, and the slope of the
linear in temperature resistivity varies like 1/x, both strongly
suggesting that the QCP is at half filling (but not necessar-
ily at zero chemical potential, since it varies discontinuously
with the opening of the Mott gap). These phenomena coin-
cide with a vanishing Kondo peak in the density of states, with
width given by the crossover scale, as x → 0. Our findings,
together with these previous results, indicate that the QCP in
this model is a local quantum critical point.

It is interesting to speculate if the quantum criticality found
here could be related to the Quantum Critical Point (QCP)
found at finite doping in the 2D Hubbard model using Dynam-
ical Cluster QMC simulations22,23. There the QCP separates
the pseudogap and Fermi liquid regions, with a large region of
ω/T marginal Fermi liquid20 scaling above the QCP. Calcula-
tions are now underway to explore this possibility.

In summary, the main significance of this work is that it
gives a concrete example of a fermion model which has a
metallic state in proximity to a Mott insulating state and has
dynamical local spin fluctuations that exhibit the ω/T scaling
that is characteristic of local quantum criticality.
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Appendix: Determination of the coherence temperature

Figure 9 shows the Fermi liquid coherence temperature de-
termined by two distinct methods. This is not necessarily the
same for different properties. Sometimes, it is smaller for two-
particle properties than for single-particle ones72. For exam-
ple, in the Kondo problem the Kondo resonance exists up to
temperatures of 2TK , while the spin susceptibility saturates to
a Pauli form only below T = 0.2TK . For example, in Ref. 73
compare Figures 2, 7, and 16, which show the specific heat,
spectral density, and thermopower, respectively.
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Figure 9. Determination of the Fermi liquid coherence tempera-
ture. Upper panel: from the static local spin susceptibility, Tcoh is
defined as the temperature at which χ(T ) deviates from the temper-
ature independence characteristic of a Fermi liquid. Lower panel:
from the self energy for the one-electron Green’s, Tcoh is defined as
the temperature at which Σ′′(ω = 0, T ) deviates from the quadratic
temperature dependence characteristic of a Fermi liquid.
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