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We have implemented recently developed multiple-projector pseudopotentials into the planewave
based auxiliary-field quantum Monte Carlo (pw-AFQMC) method. Multiple-projector pseudopo-
tentials can yield smaller planewave cut-offs while maintaining or improving transferability. This
reduces the computational cost of pw-AFQMC, increasing its reach to larger and more complicated
systems. We discuss the use of non-local pseudopotentials in the separable Kleinman-Bylander
form, and the implementation in pw-AFQMC of the multiple-projector optimized norm-conserving
pseudopotential ONCVPSP of Hamann. The accuracy of the method is first demonstrated by
equation-of-state calculations of the ionic insulator NaCl and more strongly correlated metal Cu.
The method is then applied to calibrate the accuracy of density functional theory (DFT) predictions
of the phase stability of recently discovered high temperature and pressure superconducting sulfur
hydride systems. We find that DFT results are in good agreement with pw-AFQMC, due to near
cancellation of electron-electron correlation effects between different structures.

PACS numbers: 71.15.-m, 02.70.Ss, 71.15.Dx, 61.50.-f

I. INTRODUCTION

The search for new materials and their development
has increasingly relied on theoretical modeling. Methods
based on density functional theory (DFT) are efficient
and powerful, but their predictions can break down in
a number of instances. Examples range from strongly
correlated materials, such as transition metal systems,
to bond stretching or bond breaking in otherwise moder-
ately correlated systems. Explicit many-body methods,
which avoid the mean-field-like approximations used in
standard DFT calculations, are needed in these cases.
Quantum Monte Carlo (QMC) calculations have become
increasingly important in this regard, because of their ac-
curacy and favorable scaling (as a low-order polynomial
of system size, similar to DFT, but with larger prefactor)
compared to traditional wave function based correlated
methods. Routine applications of QMC calculations in
extended systems still face major challenges, however.
In diffusion QMC (DMC)1 and pw-AFQMC,2–5 pseu-

dopotentials are usually used, except for some DMC
calculations with the lightest elements. Pseudopoten-
tials remove the chemically inactive core electrons, re-
ducing the number of electrons that must be explicitly
correlated and greatly reducing the computational cost.
Non-local norm-conserving pseudopotentials (NCPP) are
typically used in QMC. The NCPPs are usually con-
structed from mean-field DFT of Hartree-Fock (HF) cal-
culations. While computationally expedient, the trans-
ferability of NCPPs is a key issue, and the neglected
core-core and core-valence correlation effects may need
to be considered. Even setting these many-body effects
aside, transferability errors from NCPPs in QMC calcu-
lations can be significant. In DMC, moreover, the non-
locality of NCPPs is handled with an additional local-
ity approximation, whose accuracy depends on the qual-
ity of the trial wave function.6 The overall NCPP error
can be significant compared to errors from the fixed-node

approximation,7–9 which is used to control the Fermion
sign problem. In pw-AFQMC, non-local NCPPs can be
used without additional approximations,2,3 but transfer-
ability errors can still be a problem, unless the NCPPs
are made very hard,3–5,10 which requires large planewave
cutoffs and increases the computational cost.

Pseudopotentials are based on the frozen-core approx-
imation, but contain an additional layer of approxima-
tion. Frozen-core calculations are common in quantum
chemistry applications, where the core orbitals are frozen
at the mean-field level derived from the target system.
Pseudopotentials are usually constructed for a reference
atomic configuration and then used in many target sys-
tems. The accuracy (transferability) of the PP across
many target systems must then be determined a posteri-

ori. In addition to being norm-conserving, most NCPPs
used in QMC calculations are of single-projector type
(one per angular momentum channel), which can further
contribute to transferability errors.

Recently, Hamann proposed a multiple-projector
pseudopotential,11 based on Vanderbilt’s norm-
conserving construction12 and optimized with the Rappe-
Rabe-Kaxiras-Joannopoulos pseudization scheme.13 The
resulting pseudopotential, referred to as ONCVPSP
by Hamann, was shown to have accuracy comparable
to all-electron (AE) and ultrasoft pseudopotentials12

(USPP) in DFT calculations, with moderate planewave
energy cutoffs. Schlipf and Gygi14 recently presented a
set of automatically constructed Hamann ONCVPSPs
for most of the periodic table. These were shown to
be in good agreement with the all-electron results in
DFT, often with cutoffs of only about 40 Ry.14,15 The
ONCVPSP is of separable Kleinman-Bylander type,16

similar to NCPPs widely used in planewave DFT
calculations and also in pw-AFQMC calculations. Since
the treatment of one-particle Hamiltonian terms in
pw-AFQMC is closely related to that in planewave DFT,
the implementation of ONCVPSP into our pw-AFQMC
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code is straightforward.

In this paper, we show that the use of multiple-
projector ONCVPSP can greatly reduce the planewave
basis size in pw-AFQMC many-body calculations, while
maintaining good accuracy. This results in significant
reductions of computational cost, both by reducing the
computing time for each step in the random walks and,
at the same time, by reducing QMC statistical variance,
due to the reduced number of AFQMC auxiliary fields.
To test the new capability with multiple-projector ON-
CVPSPs, we carry out pw-AFQMC calculations of the
equation-of-state in the insulator NaCl and the transi-
tion metal solid Cu. We then study the high-pressure
superconducting system H3S, to calibrate DFT predic-
tions of phase stabilities. Finally we discuss the perfor-
mance of the DFT- or HF-generated pseudopotentials in
many-body calculations and the difference from their use
in DFT calculations.

The reminder of the paper is organized as follows.
Section II reviews AFQMC with a planewave basis
and pseudopotentials, and discusses the implementation
of multiple-projector separable pseudopotentials in pw-
AFQMC. Section III presents applications of the method.
Additional transferability issues and other aspects of
ONCVPSP for many-body applications are discussed in
Section IV. We then conclude with some general remarks
in Section V.

II. PW-AFQMC METHODOLOGY

To set the context for the implementation of multiple-
projector NCPPs in pw-AFQMC, we briefly review per-
tinent aspects of the formalism in this section. For more
details about the pw-AFQMC method, see Refs. [2,3,10].

A. Hamiltonian

The electronic Hamiltonian within the Born-
Oppernheimer approximation is,

Ĥ = K̂ + V̂ee + V̂ei + VII , (1)

where K̂, V̂ee, V̂ei, and VII are, respectively, the kinetic
energy and electron-electron, electron-ion, and classical
Coulomb ion-ion17 interactions. The pseudopotential
contributions appear in the electron-ion interaction V̂ei.
With periodic boundary conditions and a planewave ba-
sis,

〈r|G〉 ≡ 〈r| c†G|0〉 = 1√
Ω

exp(iG · r) , (2)

the terms in Eq. (1) can be expressed in second quantized
form as

K̂ =
1

2

∑

G,s

G2 c†G,scG,s , (3a)

V̂ee =
1

2
Nξ +

1

2Ω

∑

Q6=0

4π

Q2
ρ̂†(Q)ρ̂(Q)

− 1

2Ω

∑

s

∑

G,G′

4π

|G−G′|2
c†G,scG,s , (3b)

V̂ei =
1

2

∑

Q6=0

VL(Q)
[

ρ̂(Q) + ρ̂†(Q)
]

+
∑

G,G′

VNL(G,G′)c†GcG′ +NVL(0) . (3c)

Here, c†G (cG) is a creation (destruction) operator, Ω is
the volume of the simulation cell, and G is a reciprocal
lattice vector, Q = G′ −G, s is the electron spin, and N
is the number of electrons in the simulation cell. Both
G and G′ belong to the planewave basis set {G} whose
size is controlled by the planewave kinetic energy cut-off
Ecut ≥ |G|2 /2. (When twist-averaged boundary condi-
tions are used, G is replaced by k+G, where k is within
the first Brillouin zone.) The constant ξ gives the self-
interaction of an electron with its periodic images.18 The
one-body density operator ρ̂(Q) is given by

ρ̂(Q) ≡
∑

G,s

c†G+Q,scG,s θ
(

Ecut − |G+Q|2 /2
)

, (4)

where the step function θ ensures that (G+Q), like G,
falls within the planewave basis set.
The local and non-local parts of the pseudopotential

are defined by the planewave matrix elements VL(Q) and
VNL(G,G′), respectively, which are discussed in more de-
tail in Section II C.

B. Ground state projection

AFQMC uses iterative imaginary-time projection to
obtain the ground state |Ψ0〉 from a trial wave function
|ΨT 〉 (often just a single Slater determinant):

e−βĤ |ΨT 〉 → |Ψ0〉 (β → ∞) , (5)

where 〈ΨT |Ψ0〉 6= 0 is assumed. The projection is imple-
mented as random walks in the space of Slater determi-
nants. A key point in implementing this is the observa-
tion that a one-body propagator acting on a Slater de-
terminant simply yields another Slater determinant. The
AFQMC procedure is therefore to separate the propaga-
tor in Eq. (5) into one- and two-body propagators. This
motivates the introduction of a small imaginary-time step
∆τ :

e−∆τĤe−∆τĤ · · · e−∆τĤ |ΨT 〉 → |Ψ0〉 . (6)
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A Trotter-Suzuki decomposition19,20 then achieves the
desired separation,

e−∆τĤ = e−
1
2∆τĤ(1)

e−∆τĤ(2)

e−
1
2∆τĤ(1)

+ O(∆τ3) ,

(7)

where Ĥ(1) and Ĥ(2) are the one- and two-body
parts of the Hamiltonian in Eq. (1), with Ĥ(2) =

1/(2Ω)
∑

Q6=0
4π
Q2 ρ̂

†(Q)ρ̂(Q) and Ĥ(1) denoting the re-

maining terms in Eq. (3b) and the collection from
Eqs. (3a) and (3c).
A Hubbard-Stratonovich transformation21,22 allows

one to express two-body propagators as a high-
dimensional integral over auxiliary fields {σi} of one-
body propagators:

exp

(

−1

2
∆τ
∑

i

λib̂
2
i

)

=

∫

(

∏

i

dσi√
2π

)

exp

[

∑

i

(

−1

2
σ2
i + σi

√

−∆τλi b̂i

)

]

,

(8)

where the b̂i are any one-body operators. Applying this

to e−∆τĤ(2)

we have

e−∆τĤ(2)

=

(

1√
2π

)Dσ
∫

dσ e−(1/2)σ·σe
√
∆τ σ·v̂ , (9)

where we have introduced the vector of auxiliary fields
σ ≡ {σi}, whose dimension, Dσ, is given by the number

of possible Q-vectors. The operators v̂ ≡ {
√
−λi b̂i} are

given by linear combinations of ρ̂†(Q) and ρ̂(Q).2,3

Our focus in this paper is on the choice of pseudopo-
tentials, which appear only in the one-body propagator

e−
1
2∆τĤ(1)

. The handling of the two-body propagator
and the implementation of the AFQMC phaseless ap-
proximation are unchanged from previous applications
and can be found in Refs. [2,3,10].
The overall computing cost in QMC depends not only

on the computer time to execute a single time step for
each random walker, but also on the statistical variance,
which controls the size of the Monte Carlo sampling re-
quired to achieve a targeted statistical uncertainty (the
QMC efficiency).5 The computing cost to execute a sin-
gle imaginary-time step [Eq. (6)] in pw-AFQMC is pro-

portional to M ln(M), where M ∝ E
3/2
cut is the number of

planewaves. [The overall scaling is N2M ln(M), where N
is the number of electrons in the simulation cell.] The sta-
tistical variance depends on the number of auxiliary fields

Dσ ∝ 8E
3/2
cut . Reducing Ecut can therefore both reduce

the computing time for each step in the random walk and
increase the QMC efficiency. Convergence with respect to
Ecut is controlled by the pseudopotential hardness,2,3 so
that soft accurate pseudopotentials can potentially lead
to major improvements in pw-AFQMC.

C. Pseudopotential

The pseudopotential appears in the electron-ion inter-
action, V̂ei = V̂L + V̂NL in Eq. (3c). In second-quantized
form, the pseudopotential’s action is safely isolated in the
planewave matrix elements of its local [VL(Q)] and non-
local [VNL(G,G′)] parts, exactly as in DFT planewave
methods.17 Non-local potentials thus present no diffi-
culties in AFQMC (unlike in the real-space-based DMC
method6). The planewave matrix elements of the local
part of the pseudopotential are given by

VL(Q) =
1

Ω

∑

α

e−iQ·dαVα,L(Q) , (10)

where dα is the position of atom α in the simula-
tion cell, and Vα,L(Q) is the Fourier transform of the
(spherical) local part of the atomic pseudopotential. For
single-projector NCPPs, the non-local part of the atomic
pseudopotential is expressed by the separable Kleinman-
Bylander16 form,

V̂αl,NL =

l
∑

m=−l

|V ps
α,lϕα,lYlm〉〈Ylmϕα,lV

ps
α,l|

〈Ylmϕα,l|V ps
α,l|ϕα,lYlm〉 , (11)

where, for each partial wave (e.g., l = 0, 1, 2 for 3d tran-
sition elements), there is only one projector. (The pseu-
dopotential V ps

α,l and pseudo-orbital ϕα,l are both func-
tions of radial distance r only, and Ylm is the usual spheri-
cal harmonic function.) The matrix elements VNL(G,G′)
of the non-local part of the pseudopotential can then be
expressed in a separable form as,

VNL(G,G′) =
∑

j∈{α,l,m}

1

ηj
F ∗
j (G)Fj(G

′) , (12)

where ηj = 〈Ylmϕα,l|V ps
α,l|ϕα,lYlm〉, and

Fj(G) =
4π√
Ω
eiG·dαfα,l(G)Y ∗

lm(Ĝ) , (13)

where fα,l(G) is obtained from the Bessel transform
of the projector |V ps

α,lϕα,lYlm〉. The separable form of

VNL(G,G′) greatly simplifies and speeds up the use of
the NCPPs, just as in DFT methods.

Equation (11) can be abbreviated as V̂αl,NL ≡ |χ1〉〈χ1|
b1

,
in which b1 is the overlap between pseudo-wavefunction
φps
α,l with constructed projector |χ〉 = V ps

α,l|φ
ps
α,l〉. Having

only one projector for each partial wave l limits the en-
ergy range over which an NCPP can reproduce the scat-
tering properties of the all-electron potential, which re-
duces its transferability. Hamann generalized Eq. (11) for
optimized multiple projectors (in practice, implemented
for two projectors per partial wave).11 Written in a diag-
onal representation, the multiple-projector pseudopoten-
tial can be compactly expressed for atom α and partial
wave l as11

V̂αl,NL =

2
∑

i=1

|χi〉〈χi|
bi

. (14)
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Implementing the ONCVPSP in this form requires
only minor modifications in pw-AFQMC, compared
to Eq. (11). The extended energy range over which
the scattering properties are reproduced often allows
smaller planewave Ecut with excellent transferability
properties.11

III. APPLICATIONS

We describe applications of pw-AFQMC with
ONCVPSP in three systems, the ionic insulator NaCl,
the strongly correlated metal Cu, and the recently
discovered sulfur hydride high-Tc and high-pressure
superconductors.

A. Ionic insulator: NaCl

NaCl is a typical ionic compound, which crystallizes
in the fcc structure. Due to the large overlap of Na va-
lence 3s electron and semicore 2s and 2p states, care must
be used in the choice of pseudopotentials. Relaxation of
the semicore states can significantly affect valence elec-
tron and hence material properties. Neglecting these ef-
fects, for example, by treating the 2s and 2p electrons as
core states will give ∼ 10% underestimation of the lat-
tice constant and 45% overestimation of the bulk mod-
ulus of Na in DFT calculations. Pseudizing instead the
2s and 2p states greatly reduces the discrepancy in lat-
tice constant, to ∼ 1.6% using the local density approx-
imation (LDA) exchange-correlation functional. Calcu-
lated equation of states (EOS) with LDA are shown in
Fig. 1. ONCVPSP results are compared to those from
the all-electron linearized augmented planewave (LAPW)
and the projector augmented wave (PAW) methods, us-
ing ELK

24 and ABINIT
25, respectively. ONCVPSPs were

generated with Hamann’s open source pseudopotential
code.26 Both ONCVPSP and PAW results are in excel-
lent agreement with LAPW. The agreement can be fur-
ther quantified, using the ∆ factor, which was recently
introduced by Lejaeghere et al.27 for comparing two EOS
curves, E1(V ) and E2(V ). Aligning the minimum ener-
gies, the definition of ∆ is:

∆ =

√

∫

[E2(V )− E1(V )]2dV

∆V
(15)

for a volume range ∆V . (A typical choice of ∆V is
±6% around the equilibrium volume.) The ∆ factors
are 0.89meV and 0.79meV for ONCVPSP and PAW
calculations, respectively. The Na and Cl multiple-
projector ONCVPSP pseudopotentials required kinetic
energy cut-offs of only Ecut = 40Ry, much softer than
for a single-projector norm-conserving pseudopotentials,
which would have required Ecut = 100Ry.
Figure 2 shows the calculated pw-AFQMC NaCl EOS.

A four-formula cubic simulation cell was used with twist

boundary condition corresponding to the L special k-
point (0.5, 0.5, 0.5); one- and two-body finite-size errors
were reduced, using a post-processing finite-size correc-
tion scheme.28,29 Here and throughout the rest of this
paper, Trotter errors from Eq. (7) are removed by either
extrapolation to the ∆τ = 0 limit or choosing sufficiently
small time-step values. Our pw-AFQMC calculations
used LDA-generated trial wave functions. The discrep-
ancy of DFT/LDA with experiment is essentially elimi-
nated by the many-body calculations. The equilibrium
lattice constant and bulk modulus calculated from pw-
AFQMC, a0 = 10.48(3)bohr and B0 = 26(2)GPa, are
in excellent agreement with the experimental values,
a0 = 10.52bohr and B0 = 26.6GPa.30

B. Transition metal: fcc Cu

Transition metal materials have played a central role
in the study of strongly correlated physics, and copper
based systems have especially attracted a great deal of
attention.31 Ab-initio many-body calculations for transi-
tion metal systems have been very limited,32 and most
previous calculations have relied on DFT or related ap-
proaches. In this subsection, we present many-body pw-
AFQMC results on fcc copper, a prototypical correlated
metal.
For good transferability, a frozen neon-core Cu pseu-

dopotential is required, retaining the 3s23p63d104s1

states. Single-projector NCPPs are challenged in this
regard, because the l = 0 and l = 1 scattering prop-
erties near the Fermi energy EF depend on projec-
tors constructed at much lower energies from the semi-
core 3s and 3p states. Even the l = 2 scattering
properties near EF are difficult, due to the resonant
nature of 3d scattering. To maximize the accuracy,
very hard single-projector NCPPs must be used, with
large planewave Ecut ∼ 200Ry. This is alleviated by
the multiple-projector ONCVPSP. Projectors for l = 0
and l = 1 can be constructed using both the semi-
core 3s and 3p and higher-lying valence or virtual 4s
and 4p states. Similarly, two reference energies can be
used to closely reproduce the all-electron l = 2 scat-
tering. We used Ecut = 64Ry and radial cutoffs11 of
rc = 1.60, 1.97, 1.97bohr for l = 0, 1, 2, respectively.
The projectors were constructed using the ONCVPSP
code,26 with the LDA exchange-correlation functional.
The multiple-projector pseudopotential yields very good
agreement with all-electron LAPW results at the DFT
level, giving ∆ factor ∼ 1.6meV, as shown in Fig. 3.
The non-parallellity error of ∼ 1mRy in the computed
EOS is smaller than the targeted statistical resolution of
the QMC calculations which we discuss next.
Figure 4 shows the calculated pw-AFQMC Cu EOS. A

four-atom cubic simulation cell was used. Because Cu
is metallic, twist-averaging with a 6× 6× 6 Monkhorst-
Pack (MP) k-point grid33 was applied. Small random
distortions were applied to each of the k-points to lift



5

band degeneracy in the trial wave function. Addition-
ally, post-processing one- and two-body finite-size error
corrections28,29 were applied. The residual finite-size er-
ror is not expected to affect the EOS around equilib-
rium significantly. This was verified with the following
approximate estimate which helps to avoid many com-
putationally costly QMC tests. Calculations with up to
4× 4× 4 of primitive unit cell were carried out using
the LDA+U method. The DFT+U method includes a
mean-field treatment of on-site 3d electron-electron inter-
actions on the Cu atoms. This effect is absent in standard
DFT local and semilocal exchange-correlation function-
als, which are based on electron gas calculations. Since
the choice of U is largely determined by experience and
by systematic benchmarking, multiple effective values of
U , from 0.001 to 5.0, are studied in the simulations. The
same twist-averaging and post-processing finite-size tech-
niques were applied to the LDA+U results. The equilib-
rium lattice constant and bulk modulus did not change
up to the largest test simulation cells. The final calcu-
lated pw-AFQMC EOS in Fig. 4 yields equilibrium lat-
tice constant and bulk modulus, a0 = 6.76(3) bohr and
B0 = 155(13)GPa, which are in excellent agreement with
experimental values a0 = 6.79 bohr and B0 = 145GPa
(zero-point effects removed)30. The accuracy of the ON-
CVPSP compared to all-electron LAPW results at the
DFT level, without partial core corrections (see Sec. IV),
is thus seen to be a good predictor of its transferability
at the pw-AFQMC many-body level.

C. Sulfur hydride high-Tc high-pressure

superconductor: H3S

In this section, we present benchmark pw-AFQMC
calculations on two candidate structures for high-
temperature, high-pressure superconductivity in the sul-
fur hydride system. Applying the multiple-projector
pseudopotentials, we test DFT/GGA predictions of the
structural energetics of H2S and H3S by comparison with
many-body AFQMC results.
Since Ashcroft proposed that metallic hydrogen should

exhibit superconductivity with Tc ∼ 270 K,34 there
have been many investigations of prospective high-Tc

materials incorporating hydrogen, with a recent focus
on hydrides, where reduced metallization pressures are
expected.35 Recent theoretical predictions36,37 of unusu-
ally high Tc in sulphur hydrides under high pressure were
subsequently supported by experiment.38–41 Measure-
ments of resistivity and magnetic susceptibility indicate
superconducting temperatures as high as Tc = 203K at
pressures ∼ 150GPa;39 this was attributed to the Im3̄m
H3S phase. A novel experiment reported Meissner effect
measurements that qualitatively confirmed the finding.40

Subsequent DFT-based calculations have led to similar
conclusions regarding the central role of electron-phonon
coupling in driving the superconducting transition.42–47

These calculations support the view that the sulfur hy-

drides are conventional superconductors, which are well
described by Bardeen-Cooper-Schrieffer (BCS) theory48

with strong electron-phonon coupling leading to high
Tc. This is unlike the previously known high-Tc cuprate
and iron-based superconductors, where strong electron-
electron interactions are believed to play a key role, al-
though the superconducting mechanism has not yet been
established. With a Tc ∼ 203K,39 hydrogen sulfide is one
of the highest temperature superconductors on record,
although extremely high pressures are required. Their
discovery has re-energized the search for new supercon-
ductors in hydrogen-based and related materials.

Little is known experimentally regarding the high-
pressure stability of hydrogen sulfide compounds. There
has therefore been a strong reliance on standard DFT cal-
culations, which have examined the high pressure phase
stabilities and structures of HnS.

42,43,46. The H3S Im3̄m
structure (space group No. 229) has been a leading can-
didate for the stoichiometry that leads to highest Tc.
Other stoichiometries like H2S are predicted to have com-
petitive but less favorable enthalpies. It is important,
therefore, to test these predictions with accurate many-
body calculations. Here, we focus on candidate struc-
tures for two compositions, H2S and H3S, and compare
pw-AFQMC results of their structural energetics with
DFT/GGA predictions.

The ONCVPSPs of H and S were generated with
Ecut = 50Ry. The l = 2 projectors for S used un-
bound scattering states.11,12 Figure 5 compares calcu-
lated ONCVPSP EOS with ultrasoft (USPP) and single-
projector NCPP pseudopotential calculations, using the
DFT GGA/PBE xc functional. The NCPPs were gen-
erated with the OPIUM49 package for several values of
Ecut, and USPP “Standard Solid State Pseudopoten-
tials” (USPP-SSSP) are adopted.15 ONCVPSP is in ex-
cellent agreement with USPP over a wide volume range
(∼ 75− 255 bohr3). The difference is less than 0.5mRy
per formula unit. Using USPP-SSSP as the reference, ∆
is 0.6meV for ONCVPSP over the typical choice of ∆V ,
±6% around the equilibrium volume of V0 ≃ 163 bohr3.
The volume range in Fig. 5, of 75 ∼ 255 bohr3, is much
wider, covering a ±50% span and including the super-
conducting volume near 90 bohr3 at transition pressure
200GPa. For this volume range, the ∆ is 3.0meV for
ONCVPSP. By comparison, the single-projector NCPPs
have ∆ values of 68.1, 34.6, 20.7, 10.6, and 3.4meV, for
Ecut values of 50, 60, 70, 80, and 100Ry, respectively.
To achieve comparable accuracy with the ONCVPSP,
the NCPP requires a Ecut = 100Ry, which gives a nearly
three times larger planewave basis.

Before discussing AFQMC results for these systems, we
present another benchmark of the ONCVPSP multiple-
projector pseudopotential we use. In Fig. 5 we show the
EOS from AFQMC in a small cell, using both the ON-
CVPSP and two single-projector pseudopotentials, one
with Ecut of 100Ry and the other 50Ry. No finite-size
corrections are applied. The calculated EOS’s are com-
pared directly after a constant overall shift in the energy
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is applied to align the curves. (The shift is obtained
by setting to zero the average of the energy difference
from the ONCVPSP reference.) It is seen that, similar to
the DFT calculations, a single-projector pseudopotential
of Ecut = 50Ry shows significant discrepancies with the
ONCVPSP. A harder pseudopotential of Ecut = 100Ry
is required to achieve good agreement.

For the pw-AFQMC benchmarks, we selected 200 GPa
structures for two compositions, guided by the
DFT/PBE results of Mazin et al.42 For H2S, the space
group structures Pmc21 (#26) and Cmca (# 64) were
selected, both with 12-atom primitive cells. For H3S, the
space group structures Cccm (#66) and Im3̄m (#229)
were selected, with 32- and 4-atom primitive cells, re-
spectively. We first calculated DFT-based energy differ-
ences E64 − E26 for H2S and E229 − E66 for H3S. Our
ONCVPSP DFT/PBE calculations are in very good
agreement with the results in Ref. 42. DFT-based re-
sults are shown in Table I for combinations of three pseu-
dopotentials (ONCVPSP, NCPP-100Ry, and USPP) and
four DFT exchange-correlation functionals: LDA, PBE,
PBEsol, and the hybrid PBE0 method. (Note that the
sign of the energy differences does not reflect the rela-
tive structural stabilities. For example, the calculated
H3S DFT/PBE enthalpy is actually lowest,42 making it
the most stable structure at P = 200GPa.) To facilitate
comparisons, the fully relaxed 200 GPa crystal structure
from ONCVPSP-PBE was used for the other function-
als and pseudopotentials and for the pw-AFQMC cal-
culations. For H2S, E64 − E26 is nearly independent of
the choice of DFT functional, while for H3S, E229 − E66

varies between 0.056 to 0.082 eV/atom.

For the pw-AFQMC calculations, 24-atom simulation
cells were used for H2S, doubling the size of the primi-
tive unit cell in each structure. For H3S, 32-atom sim-
ulation cells were used (2 × 2× 2 for Im3̄m). Twist-
averaged boundary conditions with a 4× 4 × 4 MP grid
were used. One- and two-body finite-size corrections28,29

were then applied to the many-body results. The pw-
AFQMC energy differences are also shown in Table I. The
pw-AFQMC H3S energy difference, 0.111(5) eV/atom, is
nearly twice that given by the LDA and PBEsol, and
about 50% larger than those from PBE and PBE0, while
in H2S the DFT-based calculations are identical with pw-
AFQMC to within its statistical uncertainty.

To understand how the better agreement in H2S arises
compared to H3S, we investigated the electron-density
distributions for each composition. The result is illus-
trated in Fig. 6, which plots the densities calculated
from ONCVPSP DFT/PBE for the four structures on
the real-space FFT grid. In both H3S and H2S, the
distribution is largely concentrated in the high-density
region rs = 1 to 2. The H3S composition structures,
however, show larger differences, especially in the range
rs = 1.6 to 2.0, than for the two H2S structures. This
provides a possible explanation of the better agreement
of the different DFT functionals for H2S than for H3S.
Similarly, it indicates that there will be better cancel-

lation of electron correlation effects in H2S, resulting in
better agreement between DFT and pw-AFQMC many-
body results.
The pw-AFQMC benchmarks in Table I show that

DFT-based predictions are semi-quantitatively correct.
The DFT predictions of H2S and H3S enthalpy differ-
ences could be off by the order of 30meV and 50meV
in PBE and PBEsol, respectively. However, the stabili-
ties are dominated by independent-electron contributions
to the enthalpy, which are significantly larger than these
differences. This suggests that the predictions on phase
stabilities and structures from recent DFT studies are
likely reasonable.

IV. DISCUSSION

The applications above show that the use of multiple-
projector ONCVPSP can greatly reduce the planewave
basis size in pw-AFQMC many-body calculations, while
maintaining or improving accuracy compared to single-
projector NCPPs. ONCVPSP uses two projectors per
partial wave in our applications, which maintains fidelity
to scattering properties at reduced Ecut. As discussed
in Section II B, this results in significant reductions of
the computational cost, both by reducing the computing
time for each step in the random walk and, at the same
time, increasing the QMC efficiency because of a smaller
number of auxiliary fields in Eq. (8). For example, accu-
rate results were obtained in fcc Cu with Ecut = 64Ry,
in contrast to an estimated value of Ecut ∼ 200Ry with
NCPP.
It is important to note, however, that improvement

in performance in DFT calculations by the ONCVPSP
over single-projector NCPP does not always correlate
with improvement in QMC. There are fundamental dif-
ferences in the role of DFT-generated pseudopotentials
when applied in a many-body context, versus in DFT.
Clearly, when core-valence (or core-core) correlation ef-
fects are non-negligible, the use of pseudopotentials gen-
erated from an independent-electron approach can incur
errors in many-body calculations. This is not the case
for the systems treated in this paper. For example, in
NaCl, small-core pseudopotentials are taken to pseudize
the 2s, 2p states in both DFT and AFQMC. In DFT,
partial-core effects were negligible as shown by the good
agreement with LAPW in Fig. 1. Similarly in AFQMC,
excellent agreement is found with experiment in Fig. 2.
A good indicator of the accuracy of ONCVPSPs in

many-body calculations is good core-valence separation
and good DFT performance of ONCVPSP (without
partial-core corrections) compared to all-electron calcu-
lations. The improved ONCVPSP scattering properties
and transferability then allow smaller values of Ecut,
which can significantly reduce the many-body comput-
ing cost while retaining high accuracy. In intermediate
cases, such as in Si, when partial-core corrections are nec-
essary in DFT calculations, more care is required. (See



7

appendix for an example in Si which illustrates the dif-
ference in pseudopotential accuracy between DFT and
many-body situations.)

V. SUMMARY

We have successfully implemented the multiple-
projector ONCVPSP into the many-body pw-AFQMC
method. The accuracy is demonstrated by calculations
of bulk properties of NaCl and the more strongly corre-
lated fcc Cu. With this technique, we also benchmarked
the structure transition energy barriers in the recently
discovered high-temperature superconductor sulfur hy-
dride systems. In these systems, modest electron-electron
correlation and large cancellation effects are seen in the
energies between different structures, and we find that
the estimations from DFT are in reasonable agreement
with the many-body AFQMC results. The implemen-
tation of multiple-projectors pseudopotential allows pw-
AFQMC to treat systems with smaller pseudopotential
errors and at significantly lower planewave energy cut-
offs, and hence to reach larger and more complicated
systems.
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APPENDIX

A case that illustrates the difference in pseudopotential
accuracy between DFT and many-body situations is bulk
Si, where the Ne-core NCPP causes a pseudopotential er-
ror both in DFT and AFQMC. In DFT, this can be reme-
died using a partial-core correction, which is not avail-
able in AFQMC. One way to remove the Ne-core error in

AFQMC is with the frozen-core (FC) approximation.4,5

A He-core pseudopotential is used to generate DFT 2s
and 2p orbitals in the crystalline solid environment. Af-
ter a unitary rotation to the Kohn-Sham basis, the 2s and
2p orbitals are frozen.5 The corresponding FC Hamilto-
nian, which incorporates an effective Ne-core pseudopo-
tential, was shown to yield excellent results5 (to generate
the FC 2s and 2p orbitals and Kohn-Sham basis, the
DFT calculation used an extremely high Ecut ≃ 600 Ry
He-core NCPP). To further study the implicit treatment
of core-valence interactions in the FC approximation, we
repeated this procedure with a much softer He-core ON-
CVPSP (∼ 64Ry). At the DFT level, this ONCVPSP
works as well as the 600Ry NCPP. They both capture
(treating 12 electrons/Si) the core-valence corrections
and yield excellent agreement with all-electron LAPW
and with partial-core-corrected Ne-core pseudopotential
calculations. However, the corresponding FC AFQMC
calculation is not improved, and a pseudopotential error
is seen as in the Ne-core calculation.

These results are illustrated in detail in Fig. 7. The
multiple-projectors ONCVPSP with Ecut = 64Ry, an-
other ONCVPSP with Ecut = 200Ry, and the single-
projector NCPP with Ecut = 600Ry all yield excellent
agreement with all-electron LAPW in DFT calculations.
However, the corresponding FC AFQMC calculations
show a different behavior. The Ecut = 64Ry ONCVPSP
shows substantial errors in the FC QMC calculation. The
Ecut = 200Ry ONCVPSP is required to achieve the cor-
rect result in QMC.

The different behaviors in DFT and AFQMC/FC
reflect the fundamental difference in the role of
DFT-generated pseudopotentials when applied in a
many-body context, versus in DFT. The softer
Ecut = 64Ry ONCVPSP has a larger pseudizing radius,
rc. For r < rc the 2s and 2p pseudized orbitals are not
faithful to the true orbitals. In DFT, such errors can
be partially recovered, because the densities are properly
compensated for. In QMC, however, when the less accu-
rate 2s and 2p orbitals are frozen (treated at the mean-
field level, the errors propagate into the FC many-body
Hamiltonian that QMC treats, and these errors cannot
be corrected. For the harder Ecut = 200Ry ONCVPSP,
rc is reduced, so the small-r accuracy of the 2s and 2p
orbitals is improved, and agrees very well with the hard-
est OPIUM pseudopotential (Ecut = 600Ry)50. This ex-
ample illustrates the special attention that is required in
many-body FC calculations for atoms where core-valence
interactions are significant.
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Figures

FIG. 1: (Color online) NaCl DFT/LDA calculated EOS
curves (fits to Murnaghan’s equation23), comparing all-
electron LAPW (green dashed line), PAW (red dot-dashed
line) and ONCVPSP (blue solid line). Curves are shifted to
have the same minimum energy. The experimental lattice
constant is indicated by the black dotted vertical line.
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FIG. 2: (Color online) NaCl EOS calculated from pw-
AFQMC (filled red circles with statistical error bars) using
the same ONCVPSPs as in Fig. 1. For comparison, the DFT
EOS in Fig. 1 is reproduced (blue solid line, energy shifted
for convenient display). The vertical blue dashed and black
dotted lines indicate the DFT and experimental equilibrium
lattice constants a0, respectively. The pw-AFQMC calculated
a0 is indicated by the vertical red arrow with horizontal error
bar indicating the uncertainty from a fit of the statistical data
to Murnaghan’s equation.23

FIG. 3: (Color online) Cu DFT/LDA EOS comparison of
ONCVPSP and LAPW. The EOS are shifted to have the
same minimum energy. The inset shows the energy difference
versus lattice size.

FIG. 4: (Color online) Cu EOS calculated by pw-AFQMC
using the same ONCVPSP as in Fig. 3. AFQMC results are
shown by filled symbols, with statistical error bars indicated.
For comparison, the DFT EOS with ONCVPSP is reproduced
from Fig. 3 (blue solid line, energy shifted). The vertical blue
dashed and black dotted lines indicate the DFT and exper-
imental equilibrium lattice constants a0, respectively. The
pw-AFQMC calculated a0 is indicated by the vertical red ar-
row with horizontal error bar indicating the uncertainty from
a fit to Murnaghan’s equation.23

FIG. 5: (Color online) H3S (Im3̄m) EOS calculated with
ONCVPSP, single-projector NCPP, and USPP pseudopoten-
tials, plotted as ∆E(V ) = E(V )− EUSPP (minimum energies
aligned). OPIUM generated NCPP EOS are shown for a
range of Ecut. The upper-right inset shows the the actual
EOS. Raw AFQMC results with OPIUM 50Ry and 100Ry
pseudopotentials are plotted in the lower-left inset, using ON-
CVPSP results as reference.

FIG. 6: (Color online) Electron density distributions in H3S
(top panel) and H2S (bottom panel) as a function of rs, com-
puted from DFT/PBE with ONCVPSP. The main plots show
the difference between the two space group structures for each
composition, while the insets show the actual distributions of
the two structures, with one shown as negative. ∆rs=0.02 is
chosen as the size of histogram bin.

FIG. 7: (Color online) Comparison of pseudopotentials in
(a) DFT and (b) AFQMC FC calculations. Two multiple-
projectors ONCVPSPs with Ecut = 64Ry and 200Ry, and
one single-projector NCPP with Ecut = 600Ry are adopted.
Finite-size correction is not included in AFQMC results.

Tables

H2S H3S
E64 − E26 E229 − E66

(eV/atom) (eV/atom)
AFQMC -0.086(7) 0.111(5)

LDA
ONCVPSP -0.082 0.058
OPIUM(100Ry) -0.083 0.056
USPP -0.084 0.056

PBE
ONCVPSP -0.086 0.082
OPIUM(100Ry) -0.088 0.080
USPP -0.086 0.080

PBEsol
ONCVPSP -0.083 0.060
OPIUM(100Ry) -0.084 0.058
USPP -0.084 0.059

PBE0 ONCVPSP -0.082 0.077

TABLE I: Calculated pw-AFQMC structural energy differ-
ence for H2S and H3S, using ONCVPSP, compared to DFT-
based calculations for four functionals and three pseudopoten-
tials. For each of the four crystal structures, the fully relaxed
P = 200 GPa structure from ONCVPSP-PBE was used for
the pw-AFQMC calculations and for the other DFT func-
tionals and pseudopotentials.
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