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Abstract:  
We propose a set of three compatible photonic structures emulating quantum topologically insulating 

phases corresponding to Hall, spin-Hall, and valley-Hall effects. It is shown that an interface between any two of 
these photonic topological insulators supports scattering-free edge states. Spin and valley degrees of freedom 
characterizing such topologically protected edge waves determine their unique pathways through complex photonic 
circuits comprised of multiple heterogeneous interfaces. 
 
1. Introduction and Motivation 

Light propagation through photonic crystals, metamaterials, and other guiding structures can 
often be reduced to a simple scalar wave equation that imposes fundamental limitations on how 
electromagnetic energy can be transported through space. For example, reflectionless guiding of 
light along sharply bent trajectories without reflections is generally believed to be impossible. 
This conventional wisdom has been recently been overturned with the realization of a new class 
of photonic structures: photonic topological insulators (PTIs) [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13]. Just as their condensed matter counterparts, topological insulators [ 14, 15, 16, 17] (TIs) 
from which they have been derived by analogy, PTIs enable reflections-free propagation of 
topologically protected edge waves (TPEWs) [ 8, 11, 18, 19] along almost arbitrarily shaped 
domain walls separating the PTIs with different topological indices. The three basic condensed 
matter systems supporting topological insulating phases  -- quantum Hall (QH) [ 20, 21], 
quantum spin-Hall (QSH) [ 14, 15, 16] , and quantum valley-Hall (QVH) [ 22, 23, 24, 25, 26, 27] 
TIs -- have all been emulated in photonics. 

However, the challenges in integrating heterogeneous materials prevented experimentalists 
from realizing the domain walls separating different TI classes (e.g., QSH and QH) despite 
recent theoretical [ 28] proposals. In this paper, we construct an electromagnetic equivalent of 
such interfaces supporting TPEWs. It is shown that the conservation of two discrete photonic 
degrees of freedom (DOF), the spin [ 7, 8, 11] and the valley [ 29], enables TPEWs despite the 
absence of globally defined topological indices [ 30, 31, 32].  Moreover, because the three 
photonic structures introduced below share the same platform (see Figs.1 and 2), they can be 
easily embedded inside each other. We utilize such integration to propose several exotic physical 
phenomena that occur when an island comprised of one PTI type is embedded inside another one 
containing a TPEW-supporting domain wall [ 31, 26, 32].  

The specific new effects are: (a) nonreciprocal, and (b) valley-dependent scattering of spin-
polarized chiral edge states taking place when the island is comprised, respectively, of a quantum 
Hall or valley-Hall insulating phase. The effect (a), which lends itself to the development of 
broadband nonreciprocal devices [ 33, 34], relies on the existence of one-way TPEWs between 
two PTIs, only one of which has a globally defined topological index. The effect (b), which 
amounts to valley-filtering of spin-polarized edge states, relies on the simultaneous preservation 
of the spin and valley DOFs that enables TPEWs at the domain wall between PTIs with valley-
and spin-dependent topological indices. Note that edge states between PTIs and topologically 
trivial media are outside of the scope of this paper because they do not offer the same 
functionalities as the TPEWs between different PTIs. 



The rest of the paper is organized as follows. The connection between electronic and photonic 
topological phases is briefly reviewed in Section 2. The three photonic topological insulating 
phases corresponding to quantum Hall, spin-Hall, and valley-Hall effects are introduced in 
Section 3 using a common photonic platform. We refer to the photonic structures that support 
such topologically insulating phases as QH-PTIs, QSH-PTIs, and QVH-PTIs. Examples of all 
three types of PTIs obtained using first-principles electromagnetics simulation are presented, 
with special emphasis on symmetry breaking perturbations that enable the three phases. The 
effective Hamiltonians describing wave propagation in such structures are derived, and the 
corresponding topological indices such as the global Chern, valley-Chern, and spin-Chern 
numbers, are obtained. These topological indices are then used in Section 4 to derive the 
properties of the TPEWs that emerge at the interface between heterogeneous PTIs, e.g. between 
a QH-PTI and a QSH-PTI, or between a QVH-PTI and a QSH-PTI. An example of robust 
propagation of such TPEWs through a disordered region is presented in Section 5. An example 
of valley-sorting of TPEWs that can be achieved by embedding a QVH-PTI island inside a sea of 
QSH-PTIs containing a domain wall is presented in Section 6. An example of a four-port 
broadband circulator based on non-reciprocal TPEWs between QSH-PTIs and a QVH-PTI is 
analyzed in Section 7. Conclusions and outlook are presented in Section 8. 

 
2. Relation to electronic topological phases 

Before analyzing the electromagnetic properties of the PTIs, we briefly introduce the main 
ingredients and physical principles that enable accurate mapping between electronic and 
photonic topological phases. Conceptually, the three types of graphene-like two-dimensional 
(2D) electronic TIs can be constructed by perturbing the electronic states of graphene near the 
high-symmetry points of the Brillouin zone (BZ) where the valence and conduction bands 
coalesce to form Dirac cones. For example, QH-TIs are produced by a magnetic field that breaks 
the time-reversal (𝑇) symmetry. The resulting interaction with the orbital degree of freedom is 
spin-independent. On the other hand, the perturbation responsible for the emergence of a QSH-
TI takes the form of the Kane-Mele [ 14] spin-orbit coupling (SOC) that directly involves the 
spin degree of freedom.  

Finally, a QVH-TI emerges from the spin-independent perturbations that break the in-plane 
parity (𝑃) symmetry, e.g., in AB-BA stacked electrically biased bilayer graphene [ 35, 32, 26], in 
graphene placed on top of hexagonal boron nitride [ 27], or in other two-dimensional materials 
with broken inversion symmetry such as, for example, MoS2 and other group-VI dichalcogenides 
[ 36, 37]. Just as the magnetic field lifts the degeneracy between the orbital states in QSH 
systems, so does the above 𝑃-symmetry breaking perturbation, albeit without breaking the 𝑇-
symmetry.  Such spin-independent perturbation produces a bandgap by lifting the degeneracy 
between the orbital states in the 𝐾and 𝐾! valleys of the BZ. While physical magnetic fields and 
their associated real-space vector potentials are required for the QH phase, their momentum-
space analogs known as the Berry curvature and Berry connection are responsible for the QSH 
and QVH phases [ 20, 38, 39].  

Each of these perturbations opens a bandgap in the 𝐾and 𝐾! valleys of the BZ and endows 
their respective topological phases with non-trivial topological Chern numbers: global for QH-
TIs [ 20, 21], spin-connected for QSH-TIs [ 14], and valley-connected [ 40] for QVH-TIs. The 
emergence of the bandgap-crossing conducting edge states at the domain walls between TIs with 
different Chern numbers according to the bulk-boundary correspondence [ 41, 42, 28] is a 
fundamental property of electronic topological phases which is highly desirable to emulate in 



photonics. Of course, the physical meaning of the edge states in photonics is very different than 
in condensed matter physics. The edge states (which we will be referring to as edge waves from 
this point on) represent electromagnetic oscillations that are evanescent on both sides of the 
domain wall. They can be launched, for example, using single [ 18] or multiple [ 43] dipole 
antennas.   

 
3. Theoretical description of the three photonic topological phases 

The photonic analogues of the three topological phases are obtained by imposing three types 
of distinct symmetry-breaking perturbations on a simple symmetric “photonic graphene” (PhG) [ 
44] platform shown in Fig.1(a). The PhG is comprised of a hexagonal array of metal posts 
symmetrically placed between the two confining metal plates and separated from them by the 
gap 𝑔!. A similar photonic structure was considered earlier in the narrower context of QSH-type 
[ 11] PTIs. The PhG structure supports the transverse electric (TE) and magnetic (TM) modes 
shown in Fig.1(b) that are intentionally designed be degenerate (see the bands’ crossing at the 
Dirac frequency 𝜔! ≈ 0.75×2𝜋𝑐/𝑎! in Fig.1(c)) at the 𝐾(𝐾!) corners of the BZ. Such 
degeneracy is required for emulating the spin DOF associated with the phase difference [ 7, 11] 
between these key expansion modes. The Dirac point crossings in the band structure of the PhG 
are fragile, and are destroyed by a broad class of perturbations that create a bandgap where the 
Dirac crossing used to be. Electromagnetic waves propagating in the resulting gapped PhG can, 
in fact, have topological properties that are very similar to those of the electrons in gapped 
graphene. Such gapped topological structures (PTIs) emerge under a sub-class of perturbations 
that preserve various discrete degrees of freedom such as, for example, the synthetic spin DOF [ 
7, 8, 11, 13, 18, 19] and the valley DOF [ 29]. Such perturbations, analytically described below 
and sketched in Fig.2, enable topological phases of light that are mathematically equivalent to 
their quantum counterparts from condensed matter physics. 

3.1. Summary of the results 
Guided by the symmetries-based analogy between electronic and photonic TIs, we now 

present in Figs.2(a-c) the three perturbations of the PhG emulating the QSH/QH/QVH 
topological phases. Their equivalence with the corresponding 2D quantum electronic phases is 
mathematically established below by applying the Slater perturbation theory [ 45, 46] under the 
4-mode (twice-degenerate TE/TM) approximation. The calculations of the corresponding 
normalized band gaps Δ!"#/Δ!/Δ!, as well as of the Chern numbers of the propagating 
electromagnetic modes spectrally located below the band gap, are presented below. Note a key 
distinction between the physical spin-1/2 of an electron and the synthetic spin DOF of a photon: 
the former is strictly conserved under 𝑇-symmetric (non-magnetic) lattice defects while the latter 
is preserved under a restricted set of perturbations [ 11, 18, 19]. Further, spin conservation in a 
photonic structure depends on the accuracy of the 4-mode approximation that requires that no 
other electromagnetic modes contribute to the expansion of the perturbed electromagnetic fields. 

The bianisotropic symmetry breaking emulating the SOC [ 11] consists of filling one of the 
rod-to-plate gaps with metal as illustrated in Fig.2(a).  It results in the spectral gap opening near 
the Dirac points as shown in Fig.2(d), with the bandgap proportional to the overlap integral Δ!"# 
between the TE/TM modes inside the metal-to-plate gap. The electromagnetic modes 
propagating above and below the bandgap have a QSH-like topological nature, with the spin-
Chern number given by 2𝐶↑/↓,!

!"# = ±1×sgn Δ!"# , where 𝑠 =↑, ↓ is the spin state label, 
𝑣 = 𝐾,𝐾! is the valley label, and the valley-independent Δ!"# > 0 (Δ!"# < 0) if the top 



(bottom) gaps are filled with metal. For the frequencies inside the bandgap, this structure 
behaves as a QSH-PTI.  

Likewise, a deformation to tripod-like 𝐶!-symmetric metallic shapes shown in Fig.2(c) that 
breaks the mirror-reflection symmetry (𝑃-inversion) with respect to the principal translation axes 
of the lattice gives rise to the bandgap opening shown in Fig.2(f). The rotation symmetry of the 
tripod is essential for the decoupling and degeneracy of the two valleys. When the perturbations 
of the TE and TM modes are matched, the structure becomes a QVH-PTI inside the bandgap, 
with a spin-independent valley-Chern number 2𝐶!,!/!!

! = ±1×sgn Δ!  of the propagating 
electromagnetic waves [ 29] below the bandgap. The global Chern numbers of both structures 
shown in Fig.2(a,c) vanish due to the 𝑇-symmetry: 𝐶!,!!!,! = 𝐶!,!!"#!,! = 0. 
Finally, the spin- and valley-independent QH-PTI is emulated by inserting magnetized 
gyromagnetic material into the two gaps as shown in Fig.2(b). The magnetic permittivity tensor 
is assumed in the form of 𝜇!!/!!/!! = 1, 𝜇!" = −𝜇!" = −𝑖𝛿, and 𝜇!! = 0 otherwise. The 
propagating modes plotted in Fig.2(e) represent a photonic QH-like topological phase 
characterized by a global Chern number 2𝐶!,!! = sgn Δ! , where Δ! is linearly proportional to 𝛿, 
as well as to the field overlap integral (see SM) inside the gyromagnetic region. Unlike earlier 
zero-spin (single-mode) QH-PTI concepts [ 1, 2, 3], our approach encompasses the spin DOF 
while ensuring that the electromagnetic waves propagation is both spin- and valley-independent. 
This property enables non-reciprocal TPEWs at the interface between QH-PTIs and the QSH-
/QVH-PTIs, thus greatly expanding the library of photonic architectures. 

After stating the properties of the three photonic topological phases, we now sketch out the 
mathematical analogy between the three topological photonic phases in the perturbed PhG and 
their two-dimensional (2D) quantum electronic counterparts. This analogy enables us to 
formulate the “low energy” effective Hamiltonian for the electromagnetic waves that are 
propagating close to the Dirac degeneracy point corresponding to the 𝐾/𝐾! corners of the 
Brillouin zone (BZ). The effective Hamiltonian ℋ 𝒌! , which is function of the Bloch wave 
number 𝒌!, is derived in the limit of small 𝛿𝒌 ≡ 𝒌! −𝑲 (where 𝑲 = 𝒆!4𝜋/3𝑎!) or small 
𝛿𝒌! ≡ 𝒌! −𝑲! (where 𝑲! = −𝒆!4𝜋/3𝑎!). It acts on an eight-component state vector of a 
photon that encompasses two orbital degrees of freedom (right- and left-hand circular 
polarizations), two synthetic spin degree of freedom (spin-up and spin-down corresponding to in-
phase and out-of-phase linear combinations of the TE and TM modes), and two valley degree of 
freedom (corresponding to the Bloch wave number 𝒌! being close to either 𝑲 or 𝑲! non-
equivalent corners of the BZ).  

We then use the effective Hamiltonian for the following purposes: (a) to calculate the 
corresponding topological Chern numbers for each phase, (b) to apply the bulk-boundary 
correspondence principle and derive the properties of the edge states propagating at the interface 
between different topological phases. Thus, these heterogeneous photonic topological insulators 
(PTIs) form a set of topological claddings supporting the localized edge states. The edge states 
are spectrally located inside the bandgap separating topological phases with different Chern 
numbers in each of the topological claddings. They are topologically protected under a well-
defined set of lattice defects that preserve the spin and valley degrees of freedom. 

 
3.2. Dirac dispersion and the effective Hamiltonian of the unperturbed PhG 

The lowest-order mutually orthogonal eigenmodes of the PhG shown in Fig.1(a) are classified 
as TM- and TE-like based on their field profiles shown in Fig.1(b). Because only the lowest 



order TE and TM modes exist in the 𝐾 and 𝐾! valleys, any electromagnetic mode with the Bloch 
wavenumber 𝒌! can be expanded as 

𝑬 𝒓, 𝑡 = 𝑎!! 𝒌! 𝒆!
!,𝒌! 𝒓!, 𝑧 + 𝑎!! 𝒌! 𝒆!

!,𝒌! 𝒓!, 𝑧 𝑒!𝒌!∙𝒓!!!!! 𝒌! ! +𝑐. 𝑐.!,𝒌!  (1) 
𝑯 𝒓, 𝑡 = 𝑎!! 𝒌! 𝒉!

!,𝒌! 𝒓!, 𝑧 + 𝑎!! 𝒌! 𝒉!
!,𝒌! 𝒓!, 𝑧 𝑒!𝒌!∙𝒓!!!!!(𝒌!)! +𝑐. 𝑐.!,𝒌! ,  (2) 

where the 𝑛 = 1,2 index refers to lower (upper) propagation bands,  and 𝒆!
!,𝒌!, 𝒉!

!,𝒌!, 𝒆!
!,𝒌! and 

𝒉!
!,𝒌! are the normalized field profiles chosen to be periodic in the 𝒓! = (𝑥,𝑦) plane. The 

TE/TM-like modes, labelled as 𝑒/𝑚, are defined by the parity of 𝒛 ⋅ 𝒉!/! with respect 𝑧 as 
illustrated in Fig.1(b). The eigenfrequencies 𝜔!(𝒌!) of the two modes were calculated as 
functions of the Bloch wavenumber 𝒌! = 𝑘! , 𝑘!  inside the Brilloine zone (BZ) using 
COMSOL Multiphysics code for a specific PhG with a lattice constant 𝑎!, inter-plate distance 
ℎ!, cylinders’ diameter 𝑑!, and the gap size 𝑔! (see caption for their values). 

The resulting dispersion curves are plotted in Fig.1(c) as dashed (TM) and dotted (TE) lines 
along with the higher-order (solid lines) modes neglected in this study. The 𝐶!! wave vector 
symmetry group [ 47] results in doubly degenerate modes at the 𝐾/𝐾! edges of the BZ shown in 
Fig.1(c). Each mode forms its own Dirac cone in the non-equivalent “valleys” [ 22, 23, 25] of 𝐾 
and 𝐾! centered at the respective Dirac frequency 𝜔!

!,!. This degeneracy enables the choice of 
eigenmodes that have the right- or left-hand circular polarizations (RCP and LCP) in the mid-
plane (𝑧 = ℎ!/2), thereby imparting both TE and TM waves with an orbital degree of freedom. 
Therefore, at the 𝐾/𝐾! edges we choose 𝑛 = 1,2 in Eqs.(1,2) to represent the LCP and RCP 
orbital states, respectively. Moreover, by a judicious choice of ℎ!, 𝑑!, and 𝑔!, it is possible to 
achieve the inter-mode degeneracy [ 7, 11],  i.e. 𝜔!! = 𝜔!! ≡ 𝜔! and 𝜕𝜔!! /𝜕𝑘 = 𝜕𝜔!!/𝜕𝑘 ≡ 𝑣! 
as shown in Fig.1(c). For simplicity, we first concentrate on the 𝐾-valley of the BZ, where a 
finite  𝛿𝒌 ≡ 𝒌! −𝑲 (where 𝑲 = 𝒆𝒙4𝜋/3𝑎!) lifts the Dirac degeneracy. The effective 𝐾-valley 
Hamiltonian [ 29] expressed in the RCP/LCP (orbital) basis is ℋ!!

!,!(𝛿𝒌) = 𝑣! 𝛿𝑘!𝜎! +
𝛿𝑘!𝜎! , where 𝜎!,!,! are the Pauli matrices acting on the orbital state vector 𝐔!

!,! = [𝑎!,!! ;𝑎!,!! ]. 
The degenerate expansion basis 𝐔! = [1; 0] and 𝐔! = [0; 1] is defined according to its 
transformation with respect to the 2𝜋/3 rotation ℛ!, according to ℛ!𝐔!,! = exp(∓2𝜋𝑖/3)𝐔!,!.  

Taking advantage of the assumed degeneracy of the TE and TM modes (which is achieved by 
design in close spectral proximity of 𝜔 = 𝜔! as explained above), we can expand the basis states 
from separate two-component vectors 𝐔!

!,! = [𝑎!,!! ;𝑎!,!! ] to a four-component vector 𝑽! =
𝐌[𝐔!! ;𝐔!!], where 𝐌 is an arbitrary unitary 4×4 polarization-coupling matrix that does not mix 
the orbital states while coupling the TE/TM states.  We will use 𝐌 = !

!
1 1
1 −1 ⨂ 1 0

0 1  that 
transforms from the TE/TM basis to the spin-up/spin-down (↑/↓) basis. The significance of the 
spin basis [ 7, 8, 11] is that it diagonalizes the bi-anisotropic perturbation shown in Fig.2(a), 
which, unlike the perturbations shown in Figs.2(b,c), directly couples the TE and TM states. 
Because of the degeneracy of the spin states, the separate unperturbed Hamiltonians  ℋ!!

! and 
 ℋ!!

!  can be combined in a block-diagonal fashion to write down the unperturbed Hamiltonian 
acting on the expanded four-component vector 𝑽!. The formal expression for the Hamiltonian is 
ℋ!! 𝛿𝒌 = 𝑣!𝑠! 𝛿𝑘!𝜎! + 𝛿𝑘!𝜎! , where the Kronecker product (e.g., 𝑠!𝜎! ≡ 𝑠!⨂𝜎!) of 2×2 



matrices is used, 𝑠! and 𝑠!,!,! are the unity and Pauli matrices operating on the space of the spin 
states. 

The final basis expansion is achieved by including both the 𝐾 and 𝐾! valleys of the BZ by 
introducing an 8-component spinor, 𝚿 = 𝑽!;𝐓𝑽!! , where the transformation matrix 𝐓 swaps 
the RCP and LCP orbital states. By introducing the Pauli matrices 𝜏!,!,! and  𝜏! operating on the 
valley subspace and using symmetry considerations, the effective 8×8 unperturbed Hamiltonian 
spanning the orbit, valley, and spin subspaces can be generalized to ℋ!(𝛿𝒌) = 𝑣! 𝛿𝑘!𝜏!𝑠!𝜎! +
𝛿𝑘!𝜏!𝑠!𝜎! . Here the Kronecker product (e.g., 𝜏!𝑠!𝜎! ≡ 𝜏!⨂𝑠!⨂𝜎!) of 2×2 matrices is used, 
and 𝜏! and 𝜏!,!,! are the unity and Pauli matrices operating on the valley space. Note that both 
𝛿𝑘! and the expected value of 𝜏! flip sign when operating in the 𝐾! valley. 

The above obtained unperturbed Hamiltonian ℋ!(𝛿𝒌) is precisely the low-energy 
Hamiltonian of 2D electron gas in graphene. As the next step, we find the perturbed Hamiltonian 
ℋ 𝛿𝒌 =ℋ! +ℋ!"#/!/! that emerges in response to the perturbations of the PhG photonic 
lattice shown in Figs.2(a-c). The lowest order perturbation theory neglects the 𝛿𝒌 dependence of 
ℋ!"#/!/! and calculate those at 𝛿𝒌 = 0 by using the unperturbed fields of the PhG at the edges 
of the Brillouin zone as the expansion basis. 

3.3. Effective Hamiltonians for the three bulk photonic topological phases 

Specifically, using the Slater’s theory [ 45] for calculating the eigen-frequencies of a 
perturbed cavity, as well as the generalization of the Slater’s theory [ 46] that allows for 
degenerate unperturbed modes, we derive below the expressions for the magnitudes and signs of 
the bandgap produced by the perturbations of the PhG. Two types of perturbations are 
considered: (a) those that deform the metallic boundaries of the unit cell, such as the 
perturbations shown in Figs.2(a,c), and (b) those that perturb the material properties of the non-
metallic portions of the unit cell, such as the perturbation shown in Fig.2(b).  

Formally, the electric and magnetic fields 𝑬!,𝑯!  of the perturbed modes at 𝛿𝒌 = 0 are 
expanded as 

𝑬! = 𝑎!𝑬!!  and 𝑯! = 𝑎!𝑯!! ,    (3) 

where 𝑬!,𝑯!  are the 𝛿𝒌 = 0 eigenfields of the PhG forming an orthonormal basis, and 𝑎!’s 
represent the degree of hybridization between the unperturbed modes. The generalized Slater 
matrix is then given by [ 11, 29, 48]: 

𝜔!! + 𝜅!! 𝜅!" ⋯
𝜅!" 𝜔!! + 𝜅!! ⋯
⋮ ⋮ ⋱

𝑎!
𝑎!
⋮

= 𝜔!
𝑎!
𝑎!
⋮

   (4) 

where 𝜔!", with 𝑚,𝑛 = 1,2,3⋯, is the eigenfrequency of the corresponding unperturbed 
modes; the frequency of the perturbed modes, 𝜔!’s, are obtained by solving the eigenvalue 
problem of Eq.(4).  



The numerical values of the coupling coefficient,𝜅!", depends on the type of a perturbation. 
For example, for those perturbations that involve inserting metal, the coupling coefficient is 
given by the following overlap integral: 

 𝜅!" = − 𝜔!𝑬!∗ ∙ 𝑬! − 𝜔!𝑯!
∗ ∙𝑯!!! 𝑑𝑉   (5) 

where Δ𝑉 is the perturbed volume where an extra piece of metal is inserted, and the eigenfields 
are normalized as 𝑬! ! + 𝑯!

!
! 𝑑𝑉 = 1 with 𝑉 being the volume of a unitcell. When four 

dipolar modes degenerate at the Dirac frequency 𝜔! are hybridized, the following dimensionless 
coupling strength is defined: 

Δ!" ≡ 𝜅!"/𝜔! = − 𝑬!∗ ∙ 𝑬! −𝑯!
∗ ∙𝑯!!! 𝑑𝑉   (6) 

In the case when the PhG is perturbed by changing its material properties, the basic 
formulation remains unchanged, except that Eq.(6) is modified according to the standard cavity 
perturbation theory [ 49]: 

Δ!" = − 𝑬!∗ ⋅ Δ𝜖 ∙ 𝑬! +𝑯!
∗ ⋅ Δ𝜇 ∙𝑯!  𝑑𝑉∆!    (7) 

where Δ𝜖 and Δ𝜇 is the changing permittivity and permeability and ∆𝑉 is the region where the 
material properties are changed. In the next section, we apply the perturbation theory and 
calculate the coupling strengths in the case of the three PTIs shown in Fig.2. While some of these 
perturbative frequency shift calculations can be found in the literature [ 11, 29, 33], here we 
present those derivation for the sake of completeness. We then use the results to formulate the 
low-energy Hamiltonian of the electromagnetic waves in gapped PhG structures (which now 
represent PTIs) in the spectral proximity of the Dirac points.  
Effective Hamiltonian for the QH-PTI and QVH-PTI. We start with the two perturbations that do 
not produce TE/TM mode coupling due to the mirror symmetry with respect to the x-y plane. 
The PhG perturbation shown in Fig.2(b) results in the QH-PTI. The tripod-like perturbation of 
the rod’s shape shown in Fig.2(c) results in a QVH-PTI. Note that the rod’s shape is chosen to 
obey the 𝐶! point group symmetry, which is crucial for preventing inter-valley scattering. 
Because these perturbations do not couple TE and TM modes, the calculation is greatly 
simplified. Further simplification comes from noting that the perturbed Hamiltonians are 
diagonalized in the circular polarization (CP) basis. This is well known for the gyromagnetic 
perturbation [ 33], and we rigorously prove it in the Supplemental Materials section. For now, we 
will work under this diagonalization assumption. Therefore, the perturbation Hamiltonians in the 
𝐾-valley can be written as ℋ!,!

!,! = 𝜔!Δ!,!
!,!𝜎! and ℋ!,!

!,! = 𝜔!Δ!,!
!,!𝜎! for the QH-PTI and QVH-

PTI, respectively. By definition, the perturbed electromagnetic solutions and their 
eigenfrequencies Ω!,!

!,!(𝛿𝒌) and Ω!,!
!,!(𝛿𝒌) for the two types of perturbations are obtained by 

solving the following equations: (ℋ!!
!,!(𝛿𝒌)+ℋ!,!

!,!)𝐔 = Ω!,!
!,!𝐔 for the QH-PTI and 

(ℋ!!
!,!(𝛿𝒌)+ℋ!,!

!,!)𝐔 = Ω!,!
!,!𝐔 for the QVH-PTI, respectively. The half-bandgap sizes for 

these two PTIs are defined as follows: 2Δ!,!
! ! = Δ!!

!,!(!) − Δ!!
!,!(!) and 2Δ!,!

! ! = Δ!!
!,!(!) −

Δ!!
!,!(!), where 

 



Δ!!(!!)
!,! ! = −

1
2 𝒉! ! ,!

!(!)∗ ⋅ Δ𝜇! ⋅ 𝒉! ! ,!
!(!)  𝑑𝑉 =

δ
2  𝒢!(!)

! ! 𝒓;𝐾  𝑑𝑉,
!!!"#

 
!!!"#

 

 Δ!!(!!)
!,! ! = −

1
2 𝒆! !

! ! ∗ ⋅ 𝒆! !
! ! − 𝒉! !

! ! ∗ ⋅ 𝒉! !
! !  𝑑𝑉 =

!!!"#
−
1
2 ℒ! !

! ! 𝒓;𝐾  𝑑𝑉.    (8)
!!!"#

 

 
The integrands in the expressions for Δ!!

!,!(!)and Δ!!
!,!(!) (both defined for the electromagnetic 

fields at the 𝐾 edge of the BZ) are the Lagrangian densities defined as ℒ!
! ! (𝒓;𝐾) = 𝒆!(!)! ! −

𝒉!(!)! !
 for the RCP orbital state and ℒ!

! ! (𝒓;𝐾) = 𝒆!(!)! ! − 𝒉!(!)! !
 for the LCP orbital 

state. Likewise, the integrands in the expressions for Δ!!
!,!(!)and Δ!!

!,!(!) are the helicity densities 
defined as 𝒢!

! ! 𝒓;𝐾 = 𝑖𝑧 ⋅ 𝒉! !
!∗ ×𝒉! !

! + 𝑐. 𝑐. for the RCP, and 𝒢!
! ! 𝒓;𝐾 = 𝑖𝑧 ⋅

𝒉! !
!∗ ×𝒉! !

! + 𝑐. 𝑐. for the LCP states. The integration volumes Δ𝑉!"# stands for the volume 
filled with the gyromagnetic material (marked in Fig.2 (b) as red), and the integration volumes 
Δ𝑉!"# stands for the metal-filled extruded volume of the tripods shown in Fig.2(c) whose 
orientation determines the sign (see SM) and the magnitude of Δ!,!

! !  (for the QVH-PTI). The 
gap-filling gyromagnetic material is assumed to have the following constitutive parameters: 
𝜖 = 1, 𝜇!!/!!/!! = 1, 𝜇!" = −𝜇!" = −𝑖𝛿, and 𝜇!" = 0.  

Note that the overall frequency shifts experienced by both RCP and LCP states, 2Γ!,!
!(!) =

Δ!!
!,!(!) + Δ!!

!,!(!) for the QH-PTI and 2Γ!,!
!(!) = Δ!!

!,!(!) + Δ!!
!,!(!) for the QVH-PTI, are not 

essential to the topological properties of the PTIs. Therefore, we do not include them in the 
effective Hamiltonian ℋ!

!,! 𝛿𝒌 =ℋ!!
!,! 𝛿𝒌 +ℋ!/!,!

!,! . On the other hand, the absolute 

magnitudes of the bandgap coefficients 2Δ!,!
! !  and 2Δ!,!

! !   determine the size of the 
bandgap, while their signs determine which mode (RCP or LCP) at 𝛿𝒌 = 0 lies above (or below) 
the bandgap. We thus conclude that the bandgap coefficients determine the topological bands’ 
order and separation. To estimate the bandgap coefficients Δ!/!,!

!(!)  of Eq.(8), and to illustrate how 
their magnitudes/signs are affected by the perturbations of the shape and material composition, 
we plot the relevant unperturbed fields of the PhG [the unit cell is shown in Fig.3(a)] in Figs.3(b-
i). 

Specifically, the Lagrangian densities ℒ!
! ! (𝒓!, 𝑧 = ℎ!/2;𝐾) and ℒ!

! ! (𝒓!, 𝑧 = ℎ!/2;𝐾) 
determining  Δ!,!

! !  are separately plotted at the mid-plane in Figs.3(b-e). One can see that 
because strong fields occupy different corners of the hexagonal unit cell, when a tripod-like 
perturbation, e.g. Fig.4(b), is applied, 2Δ!,!

! ! = Δ!!
!,!(!) − Δ!!

!,!(!) ≠ 0. It is also clearly to see 
that if the opposite perturbation is applied, i.e. Fig.4(c), the roles of the RCP and LCP states are 
switched because ℒ!

! ! (𝒓!) and ℒ!
! ! 𝒓!  are the mirror images of each other with respect to 

the mirror reflection with respect to the x-axis (𝑦 → −𝑦). Therefore, Δ!,!
! !  flips its sign under the 

following spatial transformations: (i) tripod rotation by 180∘ (𝑥 → −𝑥,𝑦 → −𝑦), and (ii) 𝑃-
inversion, that is the tripod’s reflection with respect to the x-axis (𝑥 → 𝑥,𝑦 → −𝑦). Therefore, 
the bandgap opening requires that the tripods are not invariant under the 𝑃-inversion. For 
example, for an inversion-symmetric tripod shown in Fig.4(a), Δ!!

!,!(!) = Δ!!
!,!(!), and Δ!,!

! !  
vanishes. That means that the RCP and LCP orbital states are degenerate, and the bandgap 



vanishes. On the other hand, the specific orientations of the tripod in Figs.4(b,c) are chosen to 
maximize the effect of perturbation, i.e. the magnitude of the bandgap which is proportional to 
Δ!,!
! ! . 

The helicity densities 𝒢!
! ! 𝒓!, 𝑧 = 𝑔!/2;𝐾  and 𝒢!

! ! 𝒓!𝑧 = 𝑔!/2;𝐾  determining  Δ!,!
! !  

are plotted in Figs.3(f-i) in the gap between the bottom plate and the circular rod at 𝑧 = 𝑔!/2. 
From the plots in Figs.3(f-i) we observe that Δ!!

!,! ! = −Δ!!
!,! !  for both TE and TM 

polarizations. Also, we observe that by reversing the applied magnetic field along z-axis, we 
reverse the signs of Δ!!

!,! !  and Δ!!
!,! !  because the off-diagonal part of the magnetic 

permeability tensor 𝛿 ∝ 𝐵!. 

While the above overlap integrals are, in general, different for the TE and TM coefficients, it 
is possible to design a photonic structure that satisfies Δ!,!! = Δ!,!! ≡ Δ!,! and Δ!,!! = Δ!,!! ≡
Δ!,!, as we have done for the specific structures shown in Fig.2. This is a crucial design feature 
because it enables the integration of QH-PTIs and QVH-PTIs with the QSH-PTI without losing 
spin-degeneracy. Spin degeneracy in itself is essential for preserving the spin degree of freedom. 
Spin conservation is particularly important for topological protection of the edge states. For 
example, interfaces between a QSH-PTI and a QVH-PTI (such as shown in Fig.5) carry edge 
states that have the following three quantities “locked” together: the propagation direction, the 
spin DOF, and the valley DOF. Spin conservation prevents such TPEWs from backscattering by 
those perturbations that do not violate spin degeneracy.  Those would include the perturbation of 
the tripods’ orientation that result in spatially non-uniform values of Δ!,!, as long as Δ!,!! =
Δ!,!! ≡ Δ!,! is satisfied.  

Spin degeneracy paves the way to making novel photonic structures containing “islands” of 
QVH-PTIs or QH-PTIs embedded in a QSH-PTI matrix. Examples of such devices are shown in 
Figs.7 and 8. Spin degeneracy ensures that there are no reflections at the junction points between 
different photonic phases. Therefore, whenever the spin degeneracy is preserved by design, the 
effective perturbed Hamiltonians in the 𝐾 valley assume the following form in the spin states’ 
basis: ℋ!,! = 𝜔!Δ!,!𝑠!𝜎! for the gyromagnetic perturbation, and ℋ!,! = 𝜔!Δ!,!𝑠!𝜎! for the 
tripod perturbation. These valley-local Hamiltonians are acting on the 4-component states 𝑽! 
defined earlier. At this point, the effective Hamiltonians ℋ!,! and ℋ!,! are formally identical. It 
is only after the valley subspace is included that their properties deviate. 

To include both the 𝐾 and 𝐾! valleys of the BZ, we need to use symmetry considerations in 
order to write down the appropriate Hamiltonian that acts upon the earlier introduced 8-
component spinor 𝚿 = 𝑽!;𝐓𝑽!! , where the transformation matrix 𝐓 swaps the RCP and LCP 
orbital states. The mathematical reason (see the Supplemental Material for the derivation details) 
for the orbital states’ swap is that the Lagrangian densities for the RCP (LCP) states at the 𝐾-
point are the same as those for the LCP (RCP) states at the 𝐾!point: ℒ!(!)

! ! 𝒓;𝐾! = ℒ!(!)
! ! 𝒓;𝐾 . 

On the other hand, helicity densities for the RCP (LCP) states at the 𝐾-point are the opposite of 
those for the LCP (RCP) states at the 𝐾! point: 𝒢!(!)

! ! 𝒓!;𝐾! = −𝒢!(!)
! ! 𝒓;𝐾 . The resulting 

perturbed Hamiltonians spanning the orbit, spin and valley subspaces are now given by  ℋ! =



𝜔!𝛥!𝜏!𝑠!𝜎! and ℋ! = 𝜔!Δ!𝜏!𝑠!𝜎!, where 𝜏! and 𝜏!,!,! are the unity and Pauli matrices 
operating on the valley space. 
Effective Hamiltonian for the QSH-PTI. Finally, we recall from the earlier work [ 11] that the 
perturbed Hamiltonian for the QSH-PTIs formed by the perturbation shown in Fig.2(a) is given 
by ℋ!"# = 𝜔!𝛥!"#𝜏!𝑠!𝜎!, where the value of the bandgap (which can be either positive or 
negative) is given by the following overlap integral: 𝛥!"# = −1/2 𝒆!!∗ ⋅ 𝒆!! − 𝒉!!∗ ⋅ 𝒉!! −!"
𝒆!!∗ ⋅ 𝒆!! + 𝒉!!∗ ⋅ 𝒉!!  𝑑𝑉. Here 𝛥𝑉 is the volume of metal inserted into the gaps between the rods 
and the plates. Note that 𝛥!"# = 0 if both gaps are filled. However, when only one of the gaps is 
filled as shown in Fig.2(a), then 𝛥!"# ≠ 0, and the sign of 𝛥!"#  is determined by which of the 
two rod-to-plate gaps is filled with metal.  

To summarize, the Hamiltonians for the three PTIs shown in Fig.2 are given by ℋ 𝛿𝒌 =
ℋ! +ℋ!"#/!/!, where ℋ! = 𝑣! 𝛿𝑘!𝜏!𝑠!𝜎! + 𝛿𝑘!𝜏!𝑠!𝜎!  describes the unperturbed PhG, and 

ℋ!"# = 𝜔!𝛥!"#𝜏!𝑠!𝜎! ,   ℋ! = 𝜔!𝛥!𝜏!𝑠!𝜎! ,   ℋ! = 𝜔!𝛥!𝜏!𝑠!𝜎!   (9) 

are the perturbed Hamiltonians of the photonic structures shown in Figs.2(a-c) respectively.   
 

Equation (9) reveals that these three PTIs are formal photonic counterparts to electronic QSH, 
QH, and QVH topological insulators, respectively. The topological nature of the propagating 
spinors 𝛹 𝛿𝒌  satisfying ℋ𝚿 = Ω𝚿 is captured by calculating the appropriate topological 
indices [ 50, 51, 40, 28] for each of the three photonic structures. 

Specifically, the nonzero spin-Chern and valley-Chern indices exist even in photonic 
structures with 𝑇-symmetry that are known to have vanishing total Chern number, and can be 
very useful provided that inter-valley and spin-flipping transitions are suppressed [ 28]. The 
significance of these additional topological indices for photonics is that they can provide 
topological protection to surface waves between PTIs with opposing topological indices without 
breaking the time-reversal symmetry.  Therefore, we calculate the local spin-valley indices [ 52] 
 𝐶!,! = 𝑑!𝛿𝒌!"(!)  𝛁!𝒌×𝑨 𝛿𝒌 !/2𝜋, where 𝑠 =↑, ↓ is the spin state label, 𝑣 = 𝐾,𝐾! is the 
valley label, and 𝐵𝑍 𝑣  is half of the BZ corresponding to 𝑘! > 0(< 0) for 𝑣 = 𝐾(𝐾!), 
respectively. Here the local Berry connection [ 53, 38, 39] is 𝑨 𝛿𝒌 = −𝑖𝝍!

!!(𝛿𝒌) ⋅ 𝛁𝒌𝝍!
!(𝛿𝒌), 

where 𝝍!
!(𝛿𝒌) is a projection onto the (𝑠, 𝑣) spin-valley subspace of the full spinor 𝚿(𝛿𝒌) 

propagating below the bandgap. The values of these indices for the Hamiltonians given by Eq.(9) 
are well known [ 50, 51, 40, 28, 52, 1]. Here we reiterate the values of the Chern 𝐶!,!! , spin-Chern 
𝐶↑/↓,!
!"# , and valley-Chern 𝐶!,!/!!

!  numbers in the context of the three photonic structures shown in 
Fig.2: 

2𝐶!,!! = sgn Δ! , 2𝐶↑/↓,!
!"# = ±1×sgn Δ!"# , 2𝐶!,!/!!

! = ±1×sgn Δ!      (10)   
As expected, only the 𝑇-symmetry breaking gyromagnetic structure possesses a non-

vanishing global Chern number obtained by summing over all spin and valley states. The other 
Chern numbers can be thought of as local, i.e. they are tied to either a specific valley (as it is the 
case for the valley-Chern index 𝐶!,!/!!

! ) or to a specific value of the spin DOF (as it is the case 
for the spin-Chern index 𝐶↑/↓,!

!"# ). These local indices impart topological protection to propagating 
waves for as long as these discrete degrees of freedom (valley and/or spin) are conserved due to 
the specific nature of lattice defects encountered by these waves [ 11, 29]. The numerically 
calculated propagation bands for the three types of PTIs are plotted in Figs.2(d-f) and marked by 



their corresponding local topological indices. The existence of the local topological indices is 
crucial because they enable topologically protected edge waves (TPEWs) between heterogeneous 
PTIs. TPEWs emerge because of the impossibility of a continuous interpolation between the 
band structures across the interface separating two topological phases characterized by different 
topological indices [ 17]. 
 
4. Topologically protected edge waves at the domain walls between heterogeneous 

topological phases 
With topological properties of the bulk photonic states of the three PTIs firmly established in 

Section 3, we now proceed with presenting the principal finding of this article: the emergence of 
TPEWs between heterogeneous PTIs shown in Fig.2. The heterogeneity of the bordering 
photonic topological phases sets this work apart from the previous works [ 7, 8, 11, 18, 19, 29] 
that dealt with robust photonic edge states between homogeneous insulating topological phases. 
For example, propagation properties of TPEWs at the interfaces between two QSH-PTIs with 
different topological spin-Chern indices 𝐶↑/↓,!

!"#  were theoretically [ 7, 11] and experimentally [ 8, 
18, 19] investigated, and their reflectionless nature verified. Likewise, interfaces between two 
QVH-PTIs with different topological valley-Chern indices 𝐶!,!/!!

! were recently theoretically 
studied [ 29], and the concept of topological cavities that support TPEWs flowing along such 
interfaces was introduced. Here we instead concentrate on the interfaces between PTIs of 
different types, e.g. between QSH-PTI and QVH-PTI.  

 First, we consider the QSH/QVH interfaces shown in the inset to Figs.5(a,b). In the absence 
of inter-spin and inter-valley scattering, the spin- and valley-locked TPEWs emerge at the 
interface separating two topological phases characterized by different local Chern indices. From 
the bulk-boundary correspondence principle [ 41, 42, 28], their number is found as the difference 
Δ𝐶 between topological indices of the top and bottom PTI claddings. Considering a QSH/QVH 
interface between Δ!"# > 0 and Δ! < 0 PTIs, we find that Δ𝐶 = 𝐶↑,!

!"# − 𝐶↑,!! = 1 and 
Δ𝐶 = 𝐶↓,!!

!"# − 𝐶↓,!!
! = −1 for 𝐾 and 𝐾! valley states, respectively.  Therefore, one spin-up 

(down) forward (backward)-moving TPEW corresponding to the 𝐾(𝐾!) valley is supported. This 
perfect “locking” between spin and valley DOFs arises because no topologically protected spin-
down state in the 𝐾 valley can exist owing to 𝐶↓,!

!!" − 𝐶↓,!! = 0.  This is in contrast with the 
earlier studied [ 11] TPEWs at the homogeneous interface between two QSH-like PTIs with 
opposite signs of the Δ!"# , where both spin-states exist in either valley.  

The COMSOL band structure calculation indeed reveals the spin-valley locking for the two 
counter-propagating negative index edge modes (blue dashed lines in Fig.5(a)) at the valley-
preserving [ 29] zigzag QSH/QVH interface. The simulation was done for a super-cell shown as 
an inset in Fig.5(a). The super-cell containing a zigzag interface is comprised of one cell in the 
propagation (𝑥-) direction, and 20 cells of QSH- and QVH-PTIs on either side of the interface.  
Note that, due to the band-folding effect, the vicinity of the 𝑘! = 2𝜋/3𝑎! point in the super-
cell’s band diagram corresponds to the states of the 𝐾!valleys of the bulk QSH- and QVH-PTIs. 
By reversing the orientation of the tripods (see the inset in Fig.5(b)) that reverses the sign of 
Δ!inside the QVH-PTI cladding, the negative index TPEWs are transformed into the positive 
index ones (blue solid lines in Fig.5(b)). The locking between the spin and the propagation 
direction is not altered by this change. Instead, the locking between the spin and valley DOFs is 
changed: for the interface shown in Fig.5(b) the spin-down state is locked to the 𝐾-valley, and 
vice versa. 



Next, we consider two examples of QSH/QH interfaces shown in the insets to Figs.5(c,d). 
For a specific value of the magnetic field corresponding to Δ! < 0 (Fig.5(c)), this non-reciprocal 
zigzag interface supports only the forward-propagating TPEWs (solid line: positive, dashed line: 
negative refractive index) as shown in Fig.5(c). That is because for either one of the two valleys  
Δ𝐶 = 1 for the spin-up state, but Δ𝐶 = 0 for the spin-down state. The energy flow direction of 
the TPEW is reversed by either changing the sign of the off-diagonal component 𝛿 of the 
magnetic permeability tensor, as can be seen in Fig.5(d).  

Armed with this understanding of the edge states’ propagation, we demonstrate how valley-
filtering and electromagnetic isolation is accomplished by embedding one topological phase 
inside another. Below we demonstrate how, by combining these three types of the interfaces 
between photonic topological phases into an integrated heterogeneous PTI network, different 
valley and spin degrees of freedom can be spatially separated and filtered with nearly-perfect 
efficiency and without reflections. But first, we demonstrate that the conservation of the valley 
and spin degrees of freedom enable reflections-free propagation of TPEWs even when they 
encounter very large regions of disorder that would normally cause significant backscattering. 
5. Example 1: robust transport of the edge waves through disordered regions 

Topological protection against random disorder is one of the most fascinating properties of 
the edge states. We have simulated a large defect, which is enclosed by a red box in Fig.6(a), 
which is placed in the middle of a QSH-QVH interface. Just as in Fig.5(a), the QSH-PTI has 
Δ!"# > 0, the QVH-PTI has Δ! < 0, and therefore, forward-propagating spin-up 𝐾-valley 
TPEWs are supported by the domain wall between these two PTIs. The embedded defect has the 
size is 8𝑎!×8𝑎! that is much larger than the operational wavelength (𝜆 ≈ 1.34𝑎!), and can 
potentially cause significant reflections in the absence of topological protection. The defect 
consists of a wide variety of unit cells including (i) three different gap sizes of the rods of QSH-
PTI unit cells with different values of Δ!"# > 0, and (ii) three different orientations of the tripods 
of QVH-PTI unit cells with different values (positive and negative) of Δ!. These different types 
of unit cells are randomly distributed inside defect region as shown in Fig.6(a). A TPEW arriving 
at the defect can backscatter if and only if the spin and the valley degrees of freedom are flipped 
upon encountering the defect. 

A dipole source placed at the QSH/QVH-PTI interface as shown in Fig.6(a) launches a 𝐾-
valley edge mode passing through the defect region. The transmission spectrum is shown in 
Fig.6(b). One can see that inside the bandgap (unshaded region) the transmission is high 
(𝑇 > 0.9 for 87% of the entire bandgap), thereby implying that the TPEWs are not undergoing 
inter-spin and inter-valley scattering that would scatter them back. The left inset of Fig.6(b) 
shows the field distribution for the frequency well inside the bandgap indicated by the black 
arrow. The transmission is close to unity, and the mode is clearly propagating along the defect’s 
edge. 

However, the transmission is significantly decreased when outside the bandgap region 
because of the scattering of the propagating modes by the defect. The right inset shows the loss 
of topological protection when operated outside the bandgap at the frequency indicated by the 
blue arrow. Since this particular QSH-QVH interface [the one shown in Fig.5(a)] supports a 
forward-moving spin-up 𝐾-valley TPEW and a backward-moving spin-down 𝐾!-valley TPEW, 
the lack of reflection in the disorder test implies that both the valley and spin DOFs are 
conserved in the topological bandgap.  

The conservation of the spin degree of freedom under a limited set of perturbations has been 
noted earlier [ 11]. For example, the variation of the gap size 𝑔!"# (see Fig.2(a) for the 



definition) does not couple the spin-up and spin-down states [ 11]. Different orientations of the 
tripods also do not cause inter-spin scattering because of the spin-degeneracy of the QVH-PTI. 
Likewise, the choice of the tripod-shaped perturbations of the unit cell that satisfies the 𝐶! 
rotation symmetry, does not cause inter-valley scattering. Thus, the conservation of these degrees 
of freedom ensures that the TPEWs do not backscatter from the disordered defect. 

 
6. Example 2: valley-sorting of topologically protected edge waves 

One of the most intriguing topological effects in condensed matter physics is the possibility 
of “sorting” various degrees of freedom (valley, spin, helicity) by applying external fields. For 
example, valley DOFs can be spatially separated by taking advantage of different Berry 
curvatures Ω!(!!) = 𝛁!𝒌×𝑨 𝛿𝒌 ! experienced by the electrons in the two valleys [ 23].  It 
turns out that similar sorting is accomplished for TPEWs when heterogeneous PTIs are 
interfaced with each other. 

The first example shown in Fig.7(a) is that of a hexagon-shaped QVH-PTI island (comprised 
of tripod-shaped rods with Δ! < 0) inside a QSH-PTI sea that contains a zigzag interface 
between the Δ!"# > 0 (circular rods attached to the top plate) and the Δ!"# < 0 (circular rods 
attached to the bottom plate) subdomains. The propagation of TPEWs along such interfaces 
between two topologically distinct QSH-PTIs has been studied in the past [ 11, 18, 19]. For 
readers’ convenience, we present the relevant band diagrams and the field profiles of the positive 
and negative index TPEWs in the Supplemental Materials section. These TPEWs are impinging 
from the left onto a topologically-protected polarization-selecting Y-junction formed by the three 
interfaces at the left-most edge of the hexagon. Our simulations shown in Figs.7(b,c) clearly 
indicate that such a Y-junction can filter the incoming TPEWs according to their valley DOF. 
Specifically, the QVH-PTI island forms an upper interface shown in the inset of Fig.5(a), thus 
guiding the 𝐾 valley TPEW in the forward direction. On the other hand, the 𝐾! valley TPEW 
must travel along the bottom interface, where the QSH-PTI and QVH-PTI claddings are spatially 
exchanged, and the signs of the TPEW’s valley-Chern are reversed in both claddings. Valley-
filtering of a mixed TPEW can then be accomplished by placing an absorber into one of the two 
halves of the QVH-PTI island. 

The above valley-sorting effect is reminiscent of topological currents [ 24, 27, 37] that flow 
in graphene superlattices and inversion asymmetric two-dimensional materials perpendicularly to 
the applied electric field in the valley-dependent direction. Such separation of the bulk valley 
currents is due to the anomalous velocity 𝑣 𝑘 ∝ 𝑘×Ω 𝑘  is caused by the sign change of the 
Berry curvature Ω 𝑘  between the 𝐾and 𝐾!valleys. The key difference is that in our case it’s the 
edge state undergoing valley-dependent scattering.  Note that valley-selective topologically 
protected photon transport shown in Figs.7(b,c) is enabled by the conservation of the valley 
DOF. It can be rigorously demonstrated [ 29] that when the defect’s border follows the zigzag 
trajectory, the inter-valley scattering is identically zero, and full spatial separation of the 𝐾(𝐾!)-
valley TPEWs is enabled. Therefore, the convergence point between the three insulating 
topological phases (QVH-PTI with Δ! < 0, and QSH-PTIs with Δ!"# < 0 and Δ!"# > 0) forms 
an ultra-compact birefringent Y-junction that routes the photons according to their valley DOF. 
Such junctions may one day find applications in quantum communications networks and other 
photonic devices that rely on the entanglement between photons’ polarization states. 

 
7. Example 3: a non-reciprocal four-port circulator  



The second example uses QSH- and QH-PTIs to construct a broadband compact four-port 
circulator [ 33, 34]: a photonic device that nonreciprocally transmits electromagnetic waves from 
port 1 to port 2. As shown in Fig.8(a), we construct it by embedding a QH-PTI island inside an 
interface-containing sea of QSH-PTIs. The interfaces separating the topological phases with 
different spin-Chern indices support TPEWs with propagation-locked spins labeled by ↑ (red 
arrows) and ↓ (green arrows). The spin-up TPEWs launched from Port 1 first propagates along 
the Δ!"# > 0/Δ!"# < 0  interface between two QSH-PTI domain (input bus waveguide), then 
merges into the top interface between the QH and QSH PTIs identical to the one in Fig.5(b), and 
then passes on to Port 2 without reflections along the output bus waveguide as shown in Fig.8(a). 
On the other hand, the spin-down TPEW launched from Port 2 cannot enter the same top 
interface because the latter does not support any spin-down edge states according to Fig.5(b). 
Instead of propagating into Port 1, the spin-down state detours into Port 3 as shown in Fig.8(b). 
The broadband performance of the device is manifested by large isolation ratios 𝑇!"/𝑇!" (blue 
solid line) and 𝑇!"/𝑇!"(red solid line) across the entire bandgap plotted in Fig.8(b). 

The above circulator employing only TPEWs has unique advantages over its more 
conventional photonic counterparts employing at least some guided modes that are not 
topologically protected. In general, those devices face considerable challenges in providing 
broadband performance while retaining small (wavelength-scale) size. For example, using 
resonant coupling between the topologically trivial bus waveguides and nonreciprocal photonic 
defect cavity [ 33, 54] results in a narrowband performance for the cavities that are weakly 
coupled to the input/output waveguides. Increasing the cavity-bus coupling is challenging 
because of the resulting reciprocal coupling between the waveguides due to their physical 
proximity [ 34]. While such coupling can be avoided by using lumped elements, those cannot be 
used at high frequencies. An alternative approach of using directional coupling between the bus 
waveguides and one-way (nonreciprocal) waveguides requires elaborate designs to match their 
propagation constants and coupling strengths over a broad spectral range, as well as a large 
overall device size (tens of wavelengths) [ 34]. A comparison with a similarly sized 
topologically-trivial device is presented in the Supplemental Materials section. 

On the contrary, the utilization of TPEWs propagating along the domain walls between 
multiple PTIs (reciprocal and nonreciprocal) circumvents these problems because the photon 
routing along the paths shown in Figs.8(a,b) is expected to be “perfect” due to the conservation 
of the spin. In addition, the non-resonant nature of topologically-protected devices offers 
significant advantages for high-power operation. The only process setting a lower on the device 
size is the tunneling of the TPEWs between its opposite corners, thus bypassing their prescribed 
route. The tunneling length 𝑙 ∝ Δ!! is inversely proportional to the bandgap width Δ. Therefore, 
this issue become less important for even moderately broadband devices. For example,  𝑙 ≈ 𝑎! 
for the Δ/𝜔! ≈ 0.07 design used in the simulations shown in Fig.8. Note that similar 
performance could also be achieved by replacing QSH-PTIs with QVH-PTIs. 

 
8. Conclusions  
 In conclusion, we have identified and designed three types of photonic topological 
insulators that support quantum spin-Hall, Hall, and valley-Hall topological phases. Such 
heterogeneous PTIs can be combined into integrated PTI networks that carry topologically 
protected electromagnetic edge waves, and can be used in a variety of photonic applications that 
rely on scattering-free wave propagation: circulators, delay lines, polarization splitters. 
Fundamentally, heterogeneous PTIs will enable the emulation of exotic interfaces between 



electronic topological phases that have been so far challenging to experimentally realize in 
naturally occurring materials. The three PTIs introduced in this paper provide unique 
experimental platforms for emulating such heterogeneous interfaces using photons. By 
introducing nonlinear elements into these photonic platforms, fundamental questions such as the 
robustness of topological protection to many-body interactions will be experimentally addressed.  
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Army Research Office (ARO) grant number W911NF-16-1-0319.  
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Figure 1: The unperturbed “photonic graphene” (PhG) structure used for emulating photon 
equivalents of the spin and valley degrees of freedom. (a) The unit cell of the PhG: metal rods arranged 
as a hexagonal array lattice with the lattice constant 𝑎!. (b) Magnetic field profiles of the TE and TM 
modes at the 𝐾 point. (c) The PBS with TE and TM modes forming doubly-degenerate Dirac cones at 
𝐾(𝐾!) points. Design parameters: ℎ! = 𝑎!, 𝑑! = 0.345𝑎!, and 𝑔! = 0.05𝑎!. 
 



 
Figure 2: A library of topological phases of light. (a,b,c) The unit cells of the three PTIs emulating 
QSH, QH, and QVH effects, respectively. In (b), the gyromagnetic material (red disks) has the following 
constitutive parameters: 𝜖 = 1, 𝜇!!/!!/!! = 1, 𝜇!" = −𝜇!" = −𝑖𝛿 with 𝛿 = 0.8, and 𝜇!" = 0 otherwise.  
(d,e,f) Photonic band structures corresponding to the PTIs in (a,b,c), respectively. The bandgap widths Δ 
are proportional to the respective overlap integrals Δ!"# ∝ 𝑔!"#,  Δ! ∝ 𝛿×𝑔!, and Δ! defined in SM. The 
local spin-valley Chern indices of the lower bands are listed. Geometric parameters are chosen to ensure 
spin-degeneracy and approximately equal band gaps: ℎ! = 𝑎!, 𝑑! = 0.345𝑎!, 𝑔!"# = 0.15𝑎!, 
𝑔! = 0.1𝑎!, 𝑔! = 0.03𝑎!, 𝑑! = 0.2𝑎!, 𝑙! = 0.116𝑎!, and 𝑤! = 0.06𝑎!. The symmetric rod-to-plate 
gaps in (c) can be filled with low-index spacer for structural stability. 
 
  



 

 
Figure 3: Overlap fields of the unperturbed PhG (a) Schematic of the unit cell of the PhG with 
symmetric gaps. (b,c): the color-coded TM overlap fields (Lagrangian density) ℒ!!(𝒓!, 𝑧 = ℎ!/2;𝐾) =
𝒆!! ! − 𝒉!! ! for the LCP, and ℒ!!(𝒓!, 𝑧 = ℎ!/2;𝐾) = 𝒆!! ! − 𝒉!! ! for the RCP basis states, 

respectively. (d,e): same as (b,c), but for the TE polarization: plots of ℒ!!(𝒓!, 𝑧 = ℎ!/2;𝐾) = 𝒆!! ! −
𝒉!! ! for the LCP, and ℒ!!(𝒓!, 𝑧 = ℎ!/2;𝐾) = 𝒆!! ! − 𝒉!! ! for the RCP basis states, respectively.  

Arrows: in-plane power flux illustrating the orbital state of the modes. (f-i): same as (b-e), but the plotted 
color-coded quantities are the helicity densities 𝒢!(!)

! ! 𝒓!, 𝑧 = 𝑔!/2;𝐾 = 𝑖𝑧 ⋅ 𝒉! !
!(!)∗×𝒉! !

!(!) + 𝑐. 𝑐. for 
all possible orbital and polarization states:  𝒢!! 𝒓!, 𝑧 = 𝑔!/2;𝐾  for the TM-polarized LCP modes in (f), 
𝒢!! 𝒓!, 𝑧 = 𝑔!/2;𝐾  for the TM-polarized RCP states in (g), 𝒢!! 𝒓!, 𝑧 = 𝑔!/2;𝐾  for the TE-polarized 
LCP modes in (h), and 𝒢!! 𝒓!, 𝑧 = 𝑔!/2;𝐾  for the TM-polarized RCP state in (i). Arrows: in-plane 
power flux illustrating the orbital state of the modes. Physical dimensions of the PhG lattice: ℎ! = 𝑎!, 
𝑑! = 0.345𝑎!, 𝑔! = 0.05𝑎!. Lagrangian densities and helicity densities plotted in (b-i) correspond to the 
fields at the 𝐾point of the Brillouine zone. Note that the corresponding densities for RCP and LCP states 
switch at the 𝐾!-point. 

  



 

 
Figure 4: Three representative unit cells of QVH-PTI. (a) A unit cell with the tips of the tripod 
pointing along 𝛤 − 𝐾 𝐾!  directions (red dashed lines) that does not break the inversion symmetry. (b,c) 
Tripod orientations that maximize the absolute values |Δ!| of the bandgap. The signs of Δ!are opposite 
for (b) and (c): Δ! < 0 for (b), and Δ! > 0 for (c). 

  



 

 

Figure 5: Topologically protected edge waves (TPEWs) propagating along zigzag-type interfaces 
between heterogeneous PTI claddings. Photonic band structures of the super-cells containing (a,b) 
QSH/QVH, and (c,d) QSH/QH PTI interfaces.  The super-cells contain a single cell along the propagation 
x-direction and 20 cells on each side of the interface. Black circles: bulk modes, blue solid/dashed lines: 
dispersion curves of the TPEWs with positive/negative (+/−) refractive indices and ↑/↓ spins. Boxed 
tags: spin-Chern and valley-Chern numbers of the bulk modes below the bandgap that belong to 
top/bottom claddings. Due to band-folding, 𝑘! < 0 (𝑘! > 0) modes originate from 𝐾(𝐾!) valleys. 

  



 

 

Figure 6: Topological protected edge wave against a large disordered defect. (a) A disordered defect 
is an 8×8 array of random unit cells inside the red box. The circles represent QSH-PTI unit cells with the 
top plate gaps sized at 𝑔!"# = 0.15𝑎! (white), 𝑔!"# = 0.09𝑎! (green), and 𝑔!"# = 0.03𝑎! (red). The 
tripods represent QVH-PTI unit cells with different orientations. The red arrows indicate the propagation 
of the TPEW launched along the domain wall between QSH-PTI and QVH-PTI. (b) Transmission 
spectrum of the TPEW. Red line marks 𝑇 = 0.9 to guide the eye. 

  



 
 

 
Figure 7: Valley-filtering of TPEWs. (a) Schematic: a QVH-PTI cavity with Δ! < 0 embedded in a 
QSH-PTI matrix containing an interface between Δ!"# > 0 (dots) and Δ!"# < 0 (crosses) domains. (b,c) 
Valley-dependent deflection of TPEWs launched into the (b) 𝐾-valley (negative index) and (c) 𝐾!-valley 
(positive index) modes. The 𝐾/𝐾!-valley TPEWs are deflected to the upper/lower arms of the embedded 
cavity. Color: 𝐸! !. 
  



 

 
Figure 8: Four-port circulator based on (a) a QH-PTI cavity with Δ! < 0 embedded into a QSH-PTI 
matrix with two domain walls separating the Δ!"# < 0 domain from the Δ!"# > 0 domains. White 
dashed lines: interfaces between PTIs with indicated signs of Δ’s. Red (green) arrows: propagation 
directions of TPEWs with up-spin (down-spin) supported by the interfaces. (a) Energy density profile of 
TPEW launched from port 1 and heading port 2. (b) The isolation ratio spectra for two different launching 
ports. Inset: energy density profile of TPEW launched from port 2 and heading port 3. QSH-PTIs’ 
parameters: ℎ! = 𝑎!, 𝑑! = 0.346𝑎!, 𝑔!"# = 0.1𝑎!. QH-PTIs’ parameters: ℎ! = 𝑎!, 𝑑! = 0.346𝑎!, 
𝑔! = 0.05𝑎!, gyromagnetic material parameters are the same as Fig.2(b). 


