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We present a general framework for studying strongly coupled radiative and conductive heat transfer between

arbitrarily shaped bodies separated by sub-wavelength distances. Our formulation is based on a macroscopic

approach that couples our recent fluctuating volume–current (FVC) method of near-field heat transfer to the

more well known Fourier conduction transport equation, in which case the former can induce temperature gra-

dients throughout the bodies. Although the FVC framework can in principle be applied to arbitrary geometries,

in practice it is most applicable in situations where only one of the bodies undergoes significant temperature

gradients. To illustrate the capabilities of this framework, we consider an idealized, proof-of-concept geometry

involving two aluminum-zinc oxide nanorods separated by a vacuum gap, with one of the rods heated by a

large-temperature reservoir one one side while the other is held at room temperature. We show that the presence

of bulk nanorod polaritonic resonances can result in very large radiative heat transfer rates (roughly five times

larger than what is achievable in the planar configuration) and leads to nonlinear temperature profiles.

Radiative heat transfer (RHT) between objects held at dif-

ferent temperatures can be many orders of magnitude larger

in the near field (short separations d ≪ thermal wavelength

λT = ~c/kBT ) than for far-away objects [1–5]. Recently,

we showed that that the interplay of near-field RHT and con-

duction in planar geometries can dramatically modify the

temperature and thermal exchange rate at sub-micron sepa-

rations [6, 7]. Such strongly-coupled conduction–radiation

(CR) phenomena are bound to play a larger role in situations

involving structured materials, where RHT can be further en-

hanced [8–13] and modified [14–17], and in on-going exper-

iments exploring nanometer scale gaps, where the boundary

between conductive (phonon- and electron-mediated) and ra-

diative transport begins to blurr [18, 19].

We present a general CR framework that captures the inter-

play of near-field RHT and thermal conduction along with the

existence of large temperature gradients in arbitrary geome-

tries. We show that under certain conditions, i.e. materials

and structures with separations and geometric lengthscales in

the nanometer range, RHT can approach and even exceed con-

duction, significantly changing the stationary temperature dis-

tribution of heated objects. Our approach is based on a gener-

alization of our recent fluctuating volume-current (FVC) for-

mulation of electromagnetic (EM) fluctuations, which when

coupled to the more standard Fourier heat equation describ-

ing conductive transport at macroscopic scales, allows stud-

ies of CR between arbitrary shapes, thereby generalizing our

prior work with slabs [6]. This generalizatin involves com-

pact expressions for the spatially resolved emission and ab-

sorption rates throughout the system. However, we show that

while there is a general and efficient expression for the spa-

tially resolved RHT rate, a computationally efficient expres-

sion for the spatially resolved absorbed power is only feasible

when the latter arises from bodies with uniform temperature,

which can limit the applicability of the technique to situations

involving either small objects or large temperature differen-

tials between objects. As a proof of concept, we consider

an idealized, example geometry involving aluminum-zinc ox-

ide (AZO) nanorods separated by vacuum gaps, where one of

the nanorods is heated by a large-temperature reservoir while

the other is kept at 300K. We show that bulk, nanorod res-

onances enhance RHT compared to typical surface–plasmon

resonances in planar geometries, leading to large and nonlin-

ear temperature gradients.

Coupled radiative and conductive diffusion processes in

nanostructures are becoming increasingly important [20],

with recent works primarily focusing on the interplay between

thermal diffusion and external optical illumination such as

laser-heating of plasmonic structures [21–25]. On the other

hand, while it is known that conduction has a strong influ-

ence on RHT experiments [26], the converse has thus far been

largely unexplored because RHT is typically too small to re-

sult in appreciable temperature gradients [27–30]. However,

our recent work [6] suggests that such an interplay can be sig-

nificant at tens of nanometer separations and may already be

present (though overlooked) in recent experiments [31–34].

Since planar structures are known to exhibit highly subopti-

mal RHT rates [8], we expect stronger interplay in structured

geometries, including recently studied metasurfaces [35], hy-

perbolic metamaterials [12, 36], and gratings [8, 9, 37].

Formulation.— We first describe a general formulation of

coupled CR applicable to arbitrary geometries. Consider a

situation involving two bodies (the same framework can be

extended to multiple bodies), labelled a and b, subject to ar-

bitrary temperature profiles and exchanging heat among one

other, shown schematically in Fig. 1(a). Neglecting convec-

tion and considering bodies with lengthscales larger than their

phonon mean-free path, in which case Fourier conduction is

valid, the stationary temperature distribution satisfies:

∇ · [κ(x)∇T (x)] +

ˆ

d3x′ H(x,x′) = Q(x) (1)

where κ(x) and Q(x) describe the bulk Fourier conductivity

and presence of external heat sources at x, respectively, and

H(x,x′) is the radiative power per unit volume from x
′ to x.

Our ability to compute H(x,x′) in full generality hinges

on an extension of a recently introduced FVC method that

exploits powerful EM scattering techniques [38] to enable
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Figure 1. (a) Schematic illustration of two square lattices of nanorods (labelled a and b) of thickness t, period Λ, cross-sectional area l× l, and

separation d, whose temperature distribution and energy exchange is mediated by both conductive ∇· [κ(x)T (x)] and radiative H(x,x′) heat

transfer. (b) Total radiative heat transfer spectrum Φ(ω) between two AZO nanorods (solid lines) of thickness t = 500 nm and cross-sectional

area A = l2, separated by d = 20 nm and held at temperatures Ta(b) = 800(300) K. The spectrum is shown for different cross-sections

l = {10, 20} nm (blue and red lines) and in the limit l = ∞, corresponding to two planar slabs. (c) Spatial radiative heat flux emitted from

nanorod a for the case l = 20 nm, corresponding to the (i) first, (ii) second, and (iii) SPP plasmon resonances, respectively, annotated in (b).

fast calculations of RHT under arbitrary geometries and tem-

perature distributions. The starting point of this method is

the volume-integral equation (VIE) formulation of EM, in

which the scattering unknowns are 6-component polariza-

tion currents ξ in the interior of the bodies coupled via the

homogeneous 6 × 6 Green’s function Γ of the intervening

medium [38]. Given two objects described by a susceptibil-

ity tensor χ(x) and a Galerkin decomposition of the induced

currents ξ =
∑

i yibi, with {bi} denoting localized basis func-

tions throughout the objects (i is the global index for all bod-

ies), the scattering of an incident field due to some fluctuating

current-source σ =
∑

i sibi can be determined via solution

of a VIE equation, y + s = Ws, in terms of the unknown

and known expansion coefficients {yi} and {si}, respectively,

where W−1
i,j = 〈bi, (I + iωχG)bj〉 and Gi,j = 〈bi,Γ ⋆ bj〉

are known as VIE and Green matrices [38]. Previously, we

exploited this formalism to propose an efficient method for

computing the total heat transfer between any two compact

bodies [38], based on a simple voxel basis expansion (uniform

discretization). The solution of (1) requires an extension of

the FVC method to include the spatially resolved heat transfer

between any two voxels, which we describe below.

Consider a fluctuating current-source located at xa = bα in

body a; such a source induces polarization–currents and EM

fields in both objects, with the heat flux at xb = bβ given by:

Φ(ω;xa → xb) =
1

2
〈Re

(
ξ∗βφβ

)
〉 (2)

where the subscript β denotes the amplitude of the corre-

sponding quantity at bβ , and “〈. . .〉” the thermodynamic en-

semble average. Expressing the polarization–currents and

fields in the localized basis {bα}, and exploiting the volume

equivalence principle to express the field as a convolution of

the incident and induced currents with the vacuum Green’s

function (GF), φ = Γ ⋆ (ξ + σ), one finds that (2) can be

expressed compactly in terms of the VIE matrices [Supple-

mentary Material (SM)]:

Φ(ω;xa → xb) =
1

2
Re

[

Dα,αW
†
α,β(GW )β,α

]

(3)

where Dα,β =
´ ´

d3x d3y b∗α(x)〈σ(x)σ
∗(y)〉bβ(y) is

a real, diagonal matrix encoding the thermodynamic

and dissipative properties of each object [38] and de-

scribed by the well-known fluctuation–dissipation theorem,

〈σi(x, ω)σ
∗
j (y, ω)〉 = 4

π
ω Im ε(x, ω)Θ(Tx)δ(x − y)δij ,

where Θ(T ) = ~ω/[exp(~ω/kbT )−1] is the Planck distribu-

tion, and ε(x, ω) the dielectric constant at the position x and

frequency ω. Note that we consider situations where the tem-

perature gradient is small compared to the material-dependent

current-current correlation lengthscale (of the order of the

atomic scale or phonon mean-free path), such that the charge

distribution reaches local equilibrium [38, 39]. It follows then

that the heat flux emitted or absorbed at xa, the main quantity

entering (1) through
´

d3x′ H(x,x′) =
´

dωΦ(ω;x), is:

Φ(ω;xa) =

ˆ

Vb

d3xb [Φ(ω;xb → xa)− Φ(ω;xa → xb)]

=
1

2
Tr β|bβ∈Vb

Re
[

Dβ,βW
†
β,α(GW )α,β − (α ↔ β)

]

=
1

2
Re



GWDbW †
︸ ︷︷ ︸

Φa

−DW †P bGW
︸ ︷︷ ︸

Φe





α,α

(4)

Note that here we only integrate over body b because we only

consider the impact of externally incident radiation where the

temperature differential is largest. To write the matrices and

vectors in subspaces spanned by localized basis in each body,

we introduce the projection operator P a(b) that selects only

basis functions in a(b), such that Db = P bDP b is a diagonal

matrix involving only fluctuations in object b (with a more
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explicit expression given in [SM] [40]). Furthermore, the first

(second) term in (4) describe the absorbed (emitted) power in

xa, henceforth denoted via the subscript “a(e)”.

Equation (4) yields the spatially resolved power through-

out the entire geometry. In Ref. 38, we showed that the low-

rank nature of the GF operator enables truncated, random-

ized SVD factorizations and therefore efficient evaluations

of the corresponding matrix operations, which applies to Φe

[SM]. We find, however, that in this case, the existence of

Φa does not permit such a factorization. To understand why,

we make use of the detailed balance condition Φ(ω;xb →
xa) = Φ(ω;xa → xb) whenever T (xa) = T (xb), to obtain

an equivalent expression [SM],

Φa(ω;xa) =
1

2

[
Re(MaaW ba†KbbGbaW aa)

+MaaW ba† sym(KbbGbb)W ba
]

α,α

(5)

where Mα,α = Im ε(xα, ω), and Kα,α = Dα,α/Mα,α are

real, diagonal matrices encoding only the dissipative proper-

ties of the bodies, and the Planck function, respectively, and

X ij = P iXP j denotes the sub-block of matrix X connect-

ing basis functions in object i to object j. By inspection,

one finds that the symmetrized operator in the second term is

full rank except whenever the temperature of object b is close

to uniform, in which case Kbb is nearly diagonal and hence

sym(KbbGbb) = Kbb symGbb+(Gbb,†Kbb−KbbGbb,†)/2 ≈
Kbb symGbb. While solution of (5) is in principle feasible, it

becomes prohibitive when the number of degrees of freedom

is large. It therefore remains an open problem to establish a

formulation allowing fast evaluations of the spatially resolved

absorbed power under arbitrary temperature distributions.

Given (4), one can solve the coupled CR equation in any

number of ways [41]. Here, we exploit a fixed-point iteration

procedure based on repeated and independent evaluations of

(3) and (1), converging once both quantities approach a set

of self-consistent steady-state values. Equation (1) is solved

via a commercial, finite-element heat solver whereas (3) is

solved through a free, in-house implementation of our FVC

method [38]. While the above formulation is general, for com-

putational convenience we consider situations in which object

b is kept at a constant, uniform temperature by means of a

thermal reservoir, such that the absorbed power in object a
can be computed efficiently via (5). The power emitted by

a (the heated object), turns out to be much more convenient

to compute, since the time-consuming part of the scattering

calculation can be precomputed independently from the tem-

perature distribution and stored for repeated and subsequent

evaluations of (1) under different temperature profiles.

Results.— As a proof of principle, we consider CR effects

in a simple geometry consisting of two metallic nanorods of

cross-sectional widths l and thickness t; in practice, to ob-

tain even larger RHT [42], such a structure could be real-

ized as a lattice or grating on a substrate, shown schemati-

cally in Fig. 1(a). However, for computational convenience,

we restrict calculations to a two-body configuration involving

two nanorods separated by a gap, in which only one of the

nanorods experiences a large temperature gradient while the

other is held at 300K. Such a situation, while highly restric-

tive, could for instance be realized by requiring large grating

periods (in which case multiple-scattering can be safely ig-

nored), low-index substrates (in which case the nanorods are

effectively suspended in air), and that one of the nanorods

has much higher effective conductivity than the other (e.g.

through nanostructuring [43]). The strongest CR effects gen-

erally will arise in materials that exhibit large RHT, e.g. sup-

porting surface–plasmon polaritons (SPP), and low thermal

conductivities, including silica, sapphire, and AZO, whose

typical thermal conductivities ∼ 1 W/m·K [44, 45]. In the

following, we take AZO as an illustrative example and as-

sume a temperature-independent dielectric constant to illus-

trate the main effects stemming from CR coupling, leaving

a full description, which is more relevant in the presence of

large temperature gradients, to future work. Note that we

recently considered the full temperature-dependent dielectric

response in the context of far-field emission [46, 47], which

can also be handled by the FVC framework. To begin with,

we show that even in the absence of CR interplay, the RHT

spectrum and spatial distribution inside the nanorods differs

significantly from those of AZO slabs of the same thickness.

Figure 1(b) shows the RHT spectrum Φ(ω) per unit area

A = l2 between two AZO nanorods (with doping concentra-

tion 11wt% [45]) of length t = 500 nm and varying widths

l = {10, 20,∞} nm (blue solid, red solid, and black dashed

lines), held at temperatures Ta(b) = 800(300) K and vacuum

gap d = 20 nm. The limit l → ∞ of a slab–slab geometry

was recently studied in Ref. 6, with Φ(ω) exhibiting a sin-

gle peak at the SPP frequency ≈ 3 × 1014 rad/s. The finite

size of the nanorods leads to additional peaks at lower fre-

quencies, corresponding to bulk plasmon resonances (red and

blue solid lines) that provide additional channels of heat ex-

change, albeit at the expense of weaker SPP peaks, leading

to a roughly 5-fold enhancement in RHT compared to slabs.

More importantly and well known, such structured antennas

provide a mechanism to tune plasmon resonances at near-

and far-infrared wavelengths (much lower than many planar

materials), which can result in more effective heat exchange.

The contour plots in Fig. 1(c) show the spatial RHT distribu-

tion Φe(ω,x) (in arbitrary units) at three separate frequencies

ω = {0.4, 0.8, 2.3} × 1014 rad/s, corresponding to the first,

second, and SPP resonances, respectively. As expected, the

largest-frequency resonance is primarily confined to the cor-

ners of the nanorods (approaching the slab SPP resonance as

l → ∞), with the lowest-order resonances contributing flux

primarily from within the bulk. Such enhancements not only

result in larger temperature gradients but also qualitatively

change the resulting temperature distributions.

To begin with, we consider a situation in which the bound-

ary I of nanorod a is kept at TI = 800 K while the entire

nanorod b is held at Tb = 300 K. Figure 2(a) shows the tem-

perature profile along the z direction for the l = d = 20 nm
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Figure 2. (a) Temperature profile along the z coordinate of a nanorod (solid lines) when it is heated from one side to a temperature of 800 K,

and is separated from an identical, constant- and uniform-temperature nanrod held at T = 300 K on the other side, by a gap size d = 20 nm.

The nanorods have cross-sectional width l = 20 nm and thicknesses t = 500 nm, and are made up of AZO with results shown for multiple

values of the doping concentration {2, 6, 11}wt% (blue, red, and black lines). Also shown are the temperature profiles of slabs (dashed lines)

of the same thickness (corresponding to the limit l → ∞). (Inset:) Temperature distribution throughout the nanorod in the case of 11wt%.

(b) Temperature profiles of nanorods of width l = 10 nm under various separations d = {5, 10, 20, 30} nm (black, blue, red, and green lines).

(c) The flux value of radiative heat transfer for nanorods (red) and slabs (blue) in the presence (solid lines) or absence (dashed lines) of the

temperature gradients induced by the interplay of conduction and radiation. (Inset:) The temperature TI at the interface I of nanorod a as a

function of heat pumping rate at I, under various separations d = {5, 10, 20, 30} nm (black, blue, red, and green lines).

nanorod geometry of Fig. 1(a), obtained by solving (1) un-

der Q = 0. For the sake of generality, we show results un-

der various doping concentrations {2, 6, 11}wt% (green, red,

and black solid lines), resulting primarily in different SPP fre-

quencies [45], and assume an AZO thermal conductivity of

κ = 1 W/m·K [44]. As illustrated for the particular case of

11wt% concentration (inset), the temperature along the x–

y cross sections of the nanorods is nearly uniform (due to

the faster diffusion rate along this dimension), allowing us

to focus on variations along z. In all scenarios, the temper-

ature gradient is significantly larger for nanorods (solid lines)

than for slabs (t → ∞, dashed lines), becoming an order of

magnitude larger in the case of 6wt% due to the larger SPP

frequency, which lies closer to peak Planck wavelength near

800K. Furthermore, while slabs can only exhibit visible linear

temperature profiles in situations involving the largest possi-

ble RHT (since RHT here in planar media is dominated by

the resonant surface emission [1]), the bulk and de-localized

nature of nanorod resonances lead to nonlinear temperature

gradients.

Figure 2(b) shows the temperature profile at various sepa-

rations d = {5, 10, 20, 30} nm (black, blue, red, and green

lines) and for nanorods of width l = 10 nm and doping con-

centration 11wt%. The figure illustrates the sensitive relation-

ship between CR interplay and gap size. Notably, while RHT

and therefore temperature gradients are expected to increase

as d decreases, the profile becomes increasingly linear as the

geometry approaches the slab–slab configuration. The tran-

sition from bulk- to surface-dominated RHT is also evident

from Fig. 2(c), which shows the flux rate H × d2 as a func-

tion of d for slabs (black lines) of thickness t = 500 nm and

nanorods (red lines) of equal thickness and width l = 10 nm,

in the presence (solid lines) or absence (dashed lines) of CR

interplay (with the latter involving uniform temperatures).

While RHT between bodies of uniform temperatures scales

as 1/d2 (dashed lines), the temperature gradients induced by

CR interplay in the case of nanorods begins to change the ex-

pected powerlaw behavior at d ≈ 20 nm; the same occurs

for slabs but at a shorter d . 10 nm. As shown in Ref. 6,

in the limit d → 0, RHT will asymptote to a constant (not

shown) rather than diverge. Finally, we also consider the typi-

cal and more experimentally relevant scenario of a fixed ther-

mal source of flux rateQ dumping heat evenly at boundary I of

nanorod a and thus raising the temperature TI at the interface.

Such a pumping mechanism can be implemented through di-

rect laser heating [48], Joule heating [49], or contact with a

high-temperature body described by a finite transfer coeffi-

cient [30]. The inset of Fig. 2(c) shows TI as a function of

Q at multiple d = {5, 10, 20, 30} nm (black, blue, red, and

green lines), illustrating an decreasing slope ∂TI/∂Q with de-

creasing d, with RHT making it harder to maintain higher tem-

peratures. Nevertheless, we find that the previous scenario of

a high-temperature boundary TI = 800 K requires a moder-

ate heat flux ∼ 10 nW at d = 20 nm, achievable via recent

nanoscale thermal transportation techniques [20].

Concluding remarks.— As experiments continue to push

toward larger RHT by going to smaller vacuum gaps or by

nanostructuring, accurate descriptions of CR interplay will

become increasingly important [19, 20]. In this work, we

focused primarily on describing the extension and applica-

tion of the FVC technique to such situations, providing only

a proof-of-concept example where CR interplay is relevant

while ignoring other practically important effects associated

with the possibility of significant temperature gradients in

multiple bodies or additional nonlinearites stemming from the

temperature-dependent dielectric response of materials [47].
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Future work along these directions could also focus on ex-

tending our work to periodic structures, which could poten-

tially exhibit much larger RHT and hence CR effects. Finally,

the asymptotic behavior of RHT at short separations is also

impacted by surface roughness [50] and ballistic effects (treat-

able by thermokinetic approaches [27, 51]), making a full de-

scription of their combined effects of increasing importance.
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