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Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in exper-
iments to allow precise control over superposition of electronic states in quantum corrals. Using a
Green’s function approach, we demonstrate theoretically that such atom gating can also be used to
control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables
control not only on the direct interaction between magnetic adatoms, but also over superpositions
of many-body states which can then control long distance interactions. We illustrate this effect by
considering the competition between direct exchange between magnetic impurities and the Kondo
screening mediated by the host electrons, and how this is affected by gating. These results suggest
that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impu-
rity systems with tailored interactions, and may allow the control of entanglement of different spin
states.

There is considerable interest in readily controlling the
spin degree of freedom of atoms and electrons in order to
explore their dynamical behavior under different situa-
tions. It has also been suggested that one could use the
spin in electronic and information devices,1,2 as this cre-
ates possibilities for new technologies. The continuing
drive to miniaturize devices,3 further introduces inter-
esting quantum effects at the reduced length scales. In
particular, the availability and delicate control of scan-
ning probes at the nanometer scale has opened new areas
of inquiry where magnetic moments and quantum effects
may play important roles.4

Atomic manipulation with scanning tunneling micro-
scopes (STM) has indeed allowed the design and prob-
ing of nanometer scale systems to explore their quantum
behavior. Prominent among these are quantum corrals
defined by arrangements of atoms on metallic surfaces in
different geometries.5 Such structures have been used to
explore interesting concepts and phenomena, including
propagation of information,6 Kondo “mirages” in ellip-
tical corrals,7–9 and quantum manipulation using spin-
orbit coupling effects.10,11 Work in related structures has
also demonstrated the ability to create quantum super-
position of states using single atoms as “movable gates”
in a structure, as controlling the location of atoms al-
lows for mixing of degenerate states.12 Changing the lo-
cation of single styrene-based molecules with respect to
charged dangling bonds on a surface has allowed con-
trol of the conductance through the molecule, showing
that the electrostatic environment can be used to regu-
late the conductivity of an active species.13 Recent work
with phthalocyanine molecules has clearly demonstrated
the gating of single-molecule “transistors” by manipulat-
ing the location of charged ions in the proximity of the
molecule, all with nanometer precision.14

Motivated by this work, we present here our theoret-
ical studies on the control of the interaction between
magnetic impurities in an elliptical quantum corral. We
demonstrate that by choosing the location and charac-

teristics of a gating single atom, it is possible to dramat-
ically modify the effective exchange interaction between
magnetic adatoms in such system. We also explore and
demonstrate how the resulting configuration (such as the
strength and features of a Kondo mirage) can be modi-
fied by introduction of single-atom gates. We show that
suitable placement of the gating atom can directly af-
fect the competition for the ground state configuration
of multiple magnetic adatoms. In particular, we ana-
lyze how the Kondo screening of single impurities in the
quantum corral is dominated by the indirect exchange of
nearby impurities. These results demonstrate that one
could indeed implement rather exquisite control over the
coupling between magnetic degrees of freedom and su-
perposition of many-body states over distances of tens of
nanometers. These attractive and tantalizing results may
be applicable in different quantum structure systems.15

Our system includes a quantum corral (QC) built on
the two-dimensional electron gas (2DEG) of a metallic
surface by adatoms located along an elliptical shape that
defines it. To describe the QC, we consider the Hamilto-
nian

HQC =

∫

dr ψ†
s(r)

[

1

2m∗
p2 + V (r)

]

ψs(r) , (1)

where ψs(r) is the 2D electron field operator for spin-
s –we implicitly sum over spin indices–and r and p are
the electron’s position and momentum operators, with
effective mass m∗. V (r) is the potential describing the
QC’s elliptical wall. We are interested in the system’s
low-energy properties, and treat the atoms making up
the QC’s wall as a collection of s-wave scatterers16,17

V (r) = V0
∑

i

δ(r− ri) , (2)

where V0 parameterizes the s-wave scattering phase shift,
and the atoms defining the ellipse are located at posi-
tions {ri}. For simplicity, we take the s phase shift to be
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purely imaginary, as the results we report are found to be
robust to changes in the phase shift, having only quanti-
tative effects, leaving the overall physical discussion and
conclusions unaffected.17 As we will describe below, we
use a Green’s function formalism to extract information
on the system.
We will focus results on an elliptical QC defined by

40 atoms regularly spaced along the ellipse, similar to
what has been realized experimentally,7,12 and described
by (x/a)2+(y/b)2=1 with b=57.2Å, a/b=1.5, and (±c, 0)
being the ellipse’s foci, c =

√
a2 − b2 = 63.9Å. We fur-

ther consider physical values of the parameters of the
2DEG relevant to the surface of Cu(111), with 2D Fermi
energy EF=0.45eV and m∗=0.38me (me is the bare elec-
tron mass).11

As noted above, we are interested in using magnetic
atoms to explore their interaction inside the QC, and
how this is affected by single-atom gating. To describe
the coupling of magnetic adatoms to the surface 2DEG,
we consider a local exchange Hamiltonian,18 where each
of two magnetic impurities interacts with the electrons
in the host via

Hsd = J ~τ1 · S(R1) + J ~τ2 · S(R2) , (3)

where ~τi is the spin-operator for impurity-i, and
S(R) is the 2DEG’s spin density operator at R,

S(R)=(1/2)ψ†
s(R)~σs,s′ψs′(R) with {σµ} being the Pauli

matrices. We take J > 0, as expected for the antiferro-
magnetic coupling between a magnetic adatom and the
metallic host,18 and for simplicity assume the magnetic
adatoms to have spin-1/2 moment.33

When placed in a metallic host, a magnetic atom expe-
riences screening of its magnetic moment by the host elec-
trons. This many-body effective antiferromagnetic corre-
lation between the magnetic atom and the surrounding
electrons is characterized by an energy scale, the Kondo
temperature TK , such that many properties of the sys-
tem are drastically affected for temperatures below TK .18

In particular, the Kondo effect gives rise to a resonance
in the spectral function (electronic density of states) at
or near the Fermi energy, (the Kondo or Abrikosov-Suhl-
Nagaoka resonance), which has been detected in a variety
of systems by differential conductance studies in STM
experiments.19,20 Interestingly, the Kondo resonance has
been used as a ‘signal source’ or electronic beacon which
can be projected across the system. This concept was
demonstrated in beautiful experiments that showed that
the Kondo resonance of a magnetic adatom at one of
the foci in a QC could indeed be projected across to the
other (empty) focus, and give rise to a non-zero differen-
tial conductance signal there.7 We explore below how a
second atom in the system (magnetic or not) can provide
further control of such signal.
It is also important to consider that whenever two mag-

netic adatoms are placed in the metallic host, as would
be the case in Eq. (3), the electrons may also mediate an
effective exchange interaction between impurities. This
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is

long-ranged (as it decays as the square of the impu-
rity separation for this 2D system), and changes sign
(oscillates between anti- and ferromagnetic character))
with a wavelength of half the Fermi wavelength in the
host.21 This interaction has been explored at the atomic
level in different STM experiments, including engineered
atomic structures.22–24 Most interestingly, there is a clear
competition between the RKKY and Kondo interactions,
which depends critically on the relative impurity separa-
tion and strength of different couplings. This competi-
tion has been studied in detail in different systems, both
theoretically and experimentally.25–27 As we will demon-
strate below, single-atom gating may also strongly affect
this competition, and as such, provide a unique tool to
control the relative effect of many-body screening effects.
The RKKY interaction can be obtained after integrat-

ing out the 2DEG’s degrees of freedom.28 Upon doing
this, the effective interaction between impurities is writ-
ten as

HRKKY = K ~τ1 · ~τ2 , (4)

with

K = −J
2

π

∫ EF

0

dω Im [G0(R1,R2;ω)G0(R2,R1;ω)] , (5)

where EF is the Fermi energy of the 2DEG. Here,
G0(r, r

′;ω) is the retarded Green’s function (GF) of the
QC in the absence of the magnetic impurities (i.e. with
J=0). It is determined by the Dyson equation

G0(r, r
′;ω) = G00(r, r

′;ω) (6)

+
∑

i

G00(r, ri;ω)V0 G0(ri, r
′;ω) ,

with G00(r, r
′;ω) denoting the free-particle GF, i.e. the

GF in the absence of the QC’s wall and impurities
[G00(r, r

′;ω) ∝ H0(|r − r′|
√
2m∗ω), where H0(z) is a

Hankel function.29] Previous work has discussed control
of the RKKY interaction in different shape QCs and the
consequent spin correlations.30

Let us first explore the role of the QC on the RKKY
between impurities. Figure 1a shows the interaction be-
tween two magnetic impurities, where one atom is fixed
at the focus (−c, 0) while the other is moved away along
the long axis of the ellipse (the x-direction). As men-
tioned, this interaction arises from the spin polarization
induced in the 2DEG by one of the adatoms and commu-
nicated to the other by the host electrons, inducing an
effective long-range interaction between the adatoms.28

It is clear that the QC reduces the amplitude of the in-
teraction (see red curve), and shifts the phase of the os-
cillations by ≈ π/2.
Figure 1b shows the effect of a single nonmagnetic

atom introduced as gate, which modifies the effective spin
interaction by disturbing the charge density inside the
QC. The curve shows the resulting RKKY interaction
when the two magnetic impurities are fixed at 1 nm from
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FIG. 1. (Color online) RKKY interaction between magnetic
adatoms in a QC and nonmagnetic atom gating. (a) One of
the magnetic atoms is moved along the x direction, while the
other is kept fixed at the left focus, xc ≈ 64Å (red curve). The
QC phase shifts and reduces the interaction in comparison
with the free 2DEG (blue curve). (b) Two magnetic atoms
are fixed at 1nm separation, while a third nonmagnetic atom
moves along the line y = 1nm. The RKKY interaction is
strongly modulated when near the two magnetic adatoms.
(c) RKKY for magnetic adatoms at 2.1nm separation; the
nonmagnetic atom gating greatly enhances as it sits few nm
away from the magnetic pair. Notice different vertical scales
in all panels. We have set J = 0.2 eV in all these plots.

each other (one at the left focus), while a third nonmag-
netic atom is displaced inside the QC along a line 1 nm
above the x-axis (i.e., y = 1 nm), with x as indicated in
the horizontal axis.. The nonmagnetic atom can be seen
to both enhance and suppress the RKKY interaction be-
tween the magnetic adatoms depending on its location,
with a characteristic length scale of the Fermi wavelength
in the 2DEG. Notice that when the gating atom is far
away (x > 2 nm), its effect is greatly diminished, as one
could anticipate. In Fig. 1c, we see that even when the
two magnetic impurities are held at 2.1 nm, and the cor-
responding RKKY interaction is much weaker, the pres-
ence of the gating atom enhances the effective exchange
when nearby. This control of the effective interaction can
be seen as arising from the modification of the single elec-
tron states in the 2DEG reservoir. As we will see below,
the gating can also be shown to modify many body co-
herent states, as we illustrate by considering the Kondo
effect.

We will now consider the gating effects on the com-
petition between RKKY interaction and the Kondo ef-
fect. To this end, we consider the effective Hamiltonian
H = HQC+Himp, whereHimp=Hsd+HRKKY, to describe

the system, and focus here on the case of antiferromag-
netic RKKY coupling, K > 0. To analyze this effec-
tive Hamiltonian, we employ a fermion representation of

the spin operators ~τi=(1/2)f †
i,s~σs,s′fi,s′ where the {fi,s}

satisfy the constraint f †
i,sfi,s=1. A path integral repre-

sentation of the partition function allows us to decou-
ple the Kondo and RKKY interactions using Hubbard-
Stratonovich fields {χi} and Φ, enforcing the fermion
constraint with Lagrange multiplier fields {λi}. The de-
coupled effective Hamiltonian is then

Himp =
∑

i

[

λi

(

f †
i,sfi,s − 1

)

(7)

+
2

J
|χi|2 − χ†

iψ
†
s(Ri)fi,s − χif

†
i,sψs(Ri)

]

+
2

K
|Φ|2 − Φf †

1,sf2,s − Φ†f †
2,sf1,s .

To proceed further, we treat Eq. (7) in mean-field, so
that the {χi, λi,Φ} fields are taken to be c-numbers, to
be determined self-consistently via (taking χi,Φ ∈ R)

χi = (J/2)〈f †
i,sψs(Ri) + ψ†

s(Ri)fi,s〉 , (8a)

Φ = (K/2)〈f †
1,sf2,s + f †

2,sf1,s〉 , (8b)

1 = 〈f †
i,sfi,s〉 . (8c)

The physical quantity of interest is the spectral func-
tion or local density of states (LDOS) in the QC11,17

A(r, ω) = −(1/2π) Im [G(r, r;ω)] , (9)

where G(r, r′;ω) is the retarded GF in the QC, taking
into account the two magnetic impurities

G(r, r′;ω) = G0(r, r
′;ω) (10)

+

2
∑

i,j=1

G0(r, ri;ω)T̂ij(ω)G0(rj , r
′;ω) ,
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FIG. 2. Spatial scan of the LDOS at the Fermi energy. (a)
Empty QC with no magnetic impurities. (b) QC with two
magnetic impurities, one at the left focus, and the other one
2 nm away.
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where T̂ij(ω) is the retarded GF at the impurity sites,

T̂ij(t) = −iΘ(t)〈{fi,s(t), f
†
j,s}〉 χiχj . (11)

As before, G0(r, r
′;ω) is determined by Eq. (6). We note

that the T̂ matrix characterizes the magnetic order in the
adatom system, as related to the fermion representation
operator. In the case of a single impurity, for example,
T̂ (ω) exhibits a clear resonance feature at/near the Fermi
level (the Abrikosov-Suhl-Kondo resonance), of a width
proportional to the Kondo temperature (energy scale) of
the Kondo screening provided by the host electrons.11

Figure 2 shows a spatial map of the QC’s LDOS at the
Fermi energy, for two different cases. Figure 2a shows
the LDOS for the empty QC (no other adatoms), while
Fig. 2b shows the influence of the two magnetic adatoms
(separated 2 nm) on the LDOS. It is noticeable that the
LDOS on the right side of the QC is nearly unchanged.
Two magnetic adatoms. Let us now discuss how sin-

gle atom gating can modify the well known mirage sig-
nal in the QC.7 We discuss first gating with a magnetic
adatom, so that we also explore how the competition be-
tween RKKY and Kondo interactions is ‘transmitted’ in-
side the QC. Figure 3 shows the spectral function A(~r, ω)
(LDOS) at the empty (right) focus of the QC, ~r = (c, 0),
for different configurations of the magnetic pair inside
the QC. The inset shows the corresponding T̂11 matrix.
In all cases here, one adatom is placed at the left fo-
cus, ~r1 = (−c, 0), while the second magnetic adatom is
located at the ~r2 positions indicated by the label, dis-
placed horizontally from the focus by 1, 2.1, and 5 nm
(red, green, and blue curves, respectively). The main
panel also shows results for an empty QC (‘no impurity’,
dashed cyan curve), showing a featureless curve over the
window shown, as it essentially measures the underlying
2DEG inside the QC. The LDOS for a single impurity
at ~r1 (black dotted curve) shows a characteristic Fano
lineshape at ~r,31 associated with the Kondo resonance
present in T̂11, as shown in the inset. In all cases, the
signal at the empty focus carries the information on the
global configuration of the adatoms in the QC. The res-
onance in T̂11 and Fano curve in A are the experimen-
tal signatures in the differential conductance seen in the
well-known mirage experiments.9

When the second magnetic adatom is placed with only
1 nm separation from the one at the left focus, their in-
teraction is dominated by the host-mediated RKKY (an-
tiferromagnetic at this distance, K ≈ 0.65 meV, as seen
in Fig. 1b). The formation of a strong local singlet be-
tween the two impurities destroys the Kondo resonance,
as seen both by the nearly zero T̂11 (red) curve in the
inset, and the correspondingly small two features in the
LDOS, which can be associated with the local singlet and
triplet configurations of the two adatoms. As the second
adatom moves away, the spectral functions display and
increasing Kondo character: at 2.1 nm separation (green

curves), the T̂11 matrix is nonzero, but away from the
Fermi energy, and the lineshape in the main frame starts
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FIG. 3. Magnetic adatom gating of quantum mirage sig-
nal: RKKY vs Kondo competition. Spectral function A

(LDOS) at the empty focus in the QC, ~r = (c, 0), as func-
tion of energy near the Fermi energy for different configura-
tions. One adatom is held at left focus, ~r1 = (−c, 0), while
second is placed at ~r2 as labeled (10, 21, and 50 Å away).

Inset shows corresponding T̂11 vs energy. When close to each
other, adatoms form a local singlet as RKKY dominates (red
curves), while Kondo prevails at large separation (blue).

resembling the Fano form. At 5 nm separation (blue),
the Kondo resonance is fully developed near the Fermi
energy, with a width somewhat smaller than for the sin-
gle impurity (dotted) case. Moving the second adatom
further away results in a return to the single impurity
case (not shown), as expected from the vanishing RKKY
interaction at that distance. This figure illustrates that
monitoring the empty focus reveals the competition be-
tween magnetic adatoms, be it a local singlet for strong
RKKY pairing, or a well-resolved Kondo signal for large
separation.

Nonmagnetic adatom gating. Figure 4 illustrates the
effects of a nonmagnetic adatom used to gate the inter-
action between two magnetic adatoms in the QC. For
this figure, we consider two magnetic adatoms kept 2.1
nm apart, with one of them at the left focus, (−c, 0).
The nonmagnetic adatom is then introduced at different
locations, as indicated by the ~r3 label. In the absence
of the gating atom, the RKKY interaction is relatively
weak, as seen in Fig. 1a. When the nonmagnetic adatom
is close to the magnetic impurity, at ~r3 = (−c + 30, 10)

Å, K ≈ −0.03meV. Correspondingly, T̂11 in Fig. 4, pink
curve, appears weak and with a split peak well below the
Fermi energy, indicating the dominant role of the RKKY
pairing. As the gating atom moves away, the RKKY is
weakened further (see Fig. 1c), and the LDOS and T̂11
show the characteristic Fano lineshape and Kondo res-
onance. In other words, even when the two magnetic
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FIG. 4. Nonmagnetic atom gating regulates RKKY vs Kondo
states. LDOS at the empty right focus, ~r = (c, 0), as function
of energy, for different configuration of three adatoms. Two
magnetic impurites are 2.1 nm apart, with one at the left
focus. The third nonmagnetic adatom is placed at different
locations, as indicated by ~r3. When gating adatom is close
to magnetic pair, the RKKY interaction dominates, causing
only small features in LDOS and weak T̂11 (pink curves). At
larger separations, the RKKY nearly vanishes (see Fig. 1),
and the Kondo screening of each impurity dominates, as seen
clearly in the green curves.

impurities are relatively distant (or close), the gating
adatom is able to enhance (suppress) the RKKY pairing
and weaken (strengthen) the Kondo state of the adatom
at the left focus. Moving the gating adatom further away
in this case results in stable Kondo signatures.

These results exemplify the important role of gating
adatoms in the QC as a way to control the effective in-
teraction between magnetic impurities in the QC. The
gating control has different character, depending on the
magnetic character (or not) of the adatom, as well as
on the relative configuration. The competition between

RKKY and Kondo screening provided by the host elec-
trons can be modified thanks to the control of the cor-
responding single-particle and singlet many-body states
involved. In that sense, one could see atomic gating as
a way to modify the resulting entanglement of different
adatom configurations.
We should comment that microscopic details of the

adatom-surface combination used to implement these
ideas would of course be important in direct compari-
son with experiments. Our model has ignored coupling
to the (typically remote) bulk bands, which may affect
the strength of the gating effect, since the bulk electrons
would not be confined to the QC. Similarly, host lat-
tice anisotropies may modify the isotropy of the RKKY
interaction we have assumed, and introduce directional
dependencies that would reinforce the gating effects. Fi-
nally, strong adatom hybridization may result in weaker
magnetic moments, which may also reduce the RKKY or
Kondo interactions. However, we believe that the large
variety of experimentally accessible systems used to build
and study QCs–such as cobalt adatoms on copper or gold
surfaces–would allow for the successful implementation of
these atom gating techniques.
To summarize, we have demonstrated how single gat-

ing atom effects enable precise control over the cou-
pling between spin degrees of freedom in a quantum cor-
ral structure. We demonstrated that this coupling en-
ables control over superpositions of many-body states,
and, subsequently, the resulting stable configuration of
magnetic impurities in the system. Although we have
demonstrated this effect only on elliptical QCs, it is clear
that such control could be implemented by the use of
other ‘reflecting’ surfaces.32 We also notice that gating
in such confined spaces is a more subtle non-additive ef-
fect, as would have been expected in open geometries.
One could also imagine that this control over state su-
perposition could find utility in various other systems.
One could fabricate model systems for the investigation
of low-dimensional magnetic assemblies with tunable in-
teractions, or perhaps employ these approaches to control
entanglement of different configurations of magnetic mo-
ments and implement spin-based computation schemes.
This work was supported by NSF-DMR grant 1508325
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S. Blügel, P. H. Dederichs, and R. Wiesendanger, Nature
Phys. 6, 187 (2010).

24 A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S.
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