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Weyl fermions can be created in materials with both time reversal and inversion symmetry by
applying a magnetic field, as evidenced by recent measurements of anomalous negative magnetore-
sistance. Here, we do a thorough analysis of the Weyl points in these materials: by enforcing crystal
symmetries, we classify the location and monopole charges of Weyl points created by fields aligned
with high-symmetry axes. The analysis applies generally to materials with band inversion in the Td,
D4h and D6h point groups. For the Td point group, we find that Weyl nodes persist for all directions
of the magnetic field. Further, we compute the anomalous magnetoresistance of field-created Weyl
fermions in the semiclassical regime. We find that the magnetoresistance can scale non-quadratically
with magnetic field, in contrast to materials with intrinsic Weyl nodes. Our results are relevant to
future experiments in the semi-classical regime.

INTRODUCTION

Following their insulating counterparts[1], topological
semi-metals have attracted much recent theoretical and
experimental interest. Weyl and Dirac semimetals have
recently been theoretically predicted[2–6] and experimen-
tally observed[7–9]. Both display topologically protected
Fermi-arc surface states, as well as large negative magne-
toresistance due to the “chiral anomaly”[10–15]. While
Weyl fermions in these semimetals are robust to small
perturbations due to their topological character, Dirac
points require a combination of crystal symmetry, time
reversal, and inversion symmetry[16]. This suggests that
Weyl fermions can be engineered by breaking inversion
or time reversal symmetry in materials with four-band
crossings. While breaking inversion symmetry can be
accomplished by adding strain[17], it is more straight-
forward to break time reversal symmetry by turning on a
magnetic field. This route to creating Weyl fermions has
already been carried out in GdPtBi[18, 19], NdPtBi[19],
Na3Bi[13] and Cd3As2[20–22]. We predict that the same
route can be used to observe Weyl fermions in the exper-
imentally relevant materials HgTe[23, 24] and InSb[25].

Here, we consider turning on a magnetic field in ma-
terials with four-band crossings. We consider two types
of four-band crossings: symmetry-enforced band cross-
ings at the Γ point and Dirac points near the Γ point
on a high-symmetry line. In both cases, the magnetic
field breaks the four-band crossing into an even number
of Weyl nodes. We demonstrate the emergence of Weyl
nodes explicitly in GdPtBi, HgTe and InSb, which host
a symmetry-enforced four-band crossing near the Fermi
level, and Cd3As2 and Na3Bi, which host Dirac points
near the Fermi level, using k·p Hamiltonians generated by
ab initio calculations. We then show that this is a general
result when the magnetic field is along a high-symmetry
line. However, the emergent Weyls do not always reside
on the axis parallel to the magnetic field: instead, a com-
plex map of Weyl points (and nodal lines[26–29]) emerges

for different directions of the magnetic field. Since Weyl
points do not require symmetry protection, they persist
when the magnetic field is moved away from these axes.
Surprisingly, we find that in GdPtBi and HgTe, Weyl
points exist for all directions of the magnetic field. In the
Supplement, we give numerical evidence for this state-
ment and then prove it explicitly for all materials with
Td symmetry and j = 3/2 orbitals at the Fermi level.

We emphasize that while we use the language of apply-
ing an external magnetic field, our results apply equally
well to magnetically ordered materials that host a four-
band crossing above the Néel temperature and can thus
be tuned to display Weyl points below this temperature.
This is relevant for antiferromagnetic Heuslers[19].

Finally we consider the semiclassical negative mag-
netoconductance that is a consequence of the chiral
anomaly. This has previously been considered for Weyl
points that exist independent of the magnetic field[30,
31]. Here, we show that when the Weyl points are cre-
ated by a magnetic field, the magnetoconductance takes
a different scaling form. In particular, it can scale as
high as B5/2, where the exact scaling depends on the lin-
earized Hamiltonian near the Weyl point. We apply this
model to GdPtBi, in which recent experiments[18] have
observed the chiral anomaly.

EMERGENT WEYL NODES FROM A

SYMMETRY-ENFORCED FOUR-BAND

CROSSING

Here we focus on GdPtBi, which is in the Td point
group. However, because our analysis depends only on
symmetry and band inversion, it applies to all materials
with the same symmetry and relevant orbitals near the
Γ point, e.g., HgTe and InSb.

In GdPtBi, the low-energy spectrum near the Γ
point is described by the four p-orbitals with jz =
±3/2,±1/2. Thus, the symmetry operators comprise
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a four-dimensional representation of the Td symmetry
group. The k · p Hamiltonian takes the form[32],

HΓ(kx, ky, kz) =
(

A0 + (A+ C√
3
)k2

)

I4×4 +

+ C(k2x − k2y)Γ1 +
C√
3
(2k2z − k2x − k2y)Γ2 +

+ E(kxkyΓ3 + kxkzΓ4 + kykzΓ5) +

+D(kxU1 + kyU2 + 2kzU3), (1)

where the Γ1,...,5 are Clifford algebra matrices, Γij =
[Γi,Γj]/(2i) and U1 =

√
3Γ15 − Γ25, U2 = −

√
3Γ14 −

Γ24, U3 = Γ23. The parameters A0, A, C,D,E are ob-
tained by an ab initio fit and given in the Supplementary
Material. We note here only that A0 ≈ 0, meaning that
at the Fermi level the spectrum is four-fold degenerate at
the Γ point[18]; two bands disperse upwards and two dis-
perse downwards. The D 6= 0 parameter breaks inversion
symmetry.
We now consider what happens in the presence of a

magnetic field by adding an effective Zeeman coupling to
Eq (1),

HZ = ~B · ~J, (2)

where ~J is a vector of the spin-3/2 matrices. Using this
model, oppositely-dispersing bands have either a pro-
tected or avoided crossing, regardless of their g-factor.
Notice that band inversion is crucial here: if all bands
dispersed in the same direction, then the presence or ab-
sence of a crossing would depend crucially on the precise
values g-factors of the bands. However, as long as the
system exhibits band inversion, and all bands have the
same sign of the g-factor, then the physics described be-
low is universal. In the following analysis, we will ignore
the effects of cyclotron motion to lowest order, focusing
purely on the Zeeman splitting. This is a good approxi-
mation for large g−factor materials such as GdPtBi.
When the magnetic field is along an axis of rotation,

band crossings along this axis between bands with dif-
ferent eigenvalues under the rotation are protected; thus,
Weyl points are guaranteed to exist. Because the original
four-band quadratic crossing was at the Fermi energy at
zero field, these Weyl points will also lie near the Fermi
level. Additionally, since the nontrivial Chern number
of a Weyl point cannot disappear under small deforma-
tions of the Hamiltonian, these Weyls will continue to
exist even as the magnetic field is moved away from the
rotation axis. This protection is crucial to experimental
observation. However, as the magnetic field is moved far
away from a high-symmetry axis, it is possible for two
Weyl points of opposite chirality to meet and annihilate.
Surprisingly, we have verified numerically, using the k · p
Hamiltonian (1), that this is not the case for every pair
of nodes: Weyl points exist in GdPtBi for all directions
of the magnetic field.
Weyl points can also be protected between high-

symmetry planes with different Chern numbers; we

~B Emergent Weyl points

[001], [010], [100] 6 + 8k1 Weyl points

[110], [11̄0], [101],

[101̄], [011], [011̄]

0, 1, or 2 line nodes,

4 + 8k2 Weyl points

[111],

[111̄], [11̄1], [1̄11],

[1̄1̄1], [1̄1̄1], [11̄1̄]

4 + 6k3 Weyl points

TABLE I. Weyl points in GdPtBi when a magnetic field is ap-
plied along one of the high-symmetry axes in the first column.
The integers ki indicate Weyl points that appear at generic
points Brillouin zone; for GdPtBi, a numerical analysis of our
k · p model yields k1 = k2 = 0, k3 = 1, but these numbers are
material-dependent.

show[32]that in GdPtBi, when the magnetic field is ap-
plied along the ẑ direction, two such Weyl points exist in
the kx = 0 plane and another pair in the ky = 0 plane.
These points persist –albeit moving in momentum-space–
when the magnetic field is moved off this axis until they
reach each other and annihilate. The same analysis ap-
plies to a magnetic field in the x̂ and ŷ directions.

When the magnetic field is in the x̂ + ŷ direction, we
find four Weyl nodes which, for D → 0, are confined
to the (k, k, kz) plane; these nodes persist as D is con-
tinuously varied from zero to its experimentally relevant
value in either GdPtBi or HgTe. Additionally, at least
one line node appears in the (k,−k, kz) plane.[32]For the
ab initio parameters, two line nodes appear; however,
for other choices of parameters, one of these lines moves
towards the edge of the Brillouin zone and disappears.

Last, when the magnetic field is in the x̂+ ŷ+ ẑ direc-
tion, there are four Weyl points along the kx = ky = kz
axis.

Additional Weyl points at generic points in the Bril-
louin zone must occur in multiples of six or eight, de-
pending on the symmetry that remains when a particu-
lar magnetic field is present. A summary of Weyl points
that emerge in GdPtBi upon applying a magnetic field
along a high-symmetry axis are shown in Table I.

The symmetry-protected Weyl points we describe in
this section also persist for arbitrary magnetic fields. In
particular, at the special point E = 2C,D = 0 in Eq (1),
the Hamiltonian HΓ + HZ is exactly solvable and has
Weyl points along the momentum axis parallel to the
magnetic field. We show in the Supplement that as E is
moved away from this fine-tuned value, the Weyl points
move in space, but do not annihilate; we confirm this
claim with a numerical analysis. Because the Weyl points
are topologically protected, they will also persist for small
values of D.
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EMERGENT WEYL NODES FROM DIRAC

POINTS NEAR THE Γ POINT

In Cd3As2 and Na3Bi, a different, but similar, scenario
develops, where again band inversion plays a crucial role.
There are two pairs of relevant orbitals at the Γ point
near the Fermi level: the s-orbitals with jz = ±1/2 and
the p-orbitals with jz = ±3/2; each pair transforms as
a two-dimensional representation of Dnh, where n = 4
in Cd3As2 and n = 6 in Na3Bi. The two representa-
tions have different energies at the Γ point, but, because
the bands are inverted, they can cross elsewhere in mo-
mentum space. In the materials of interest, the crossings
occurs at the Fermi level and are protected by Cnz sym-
metry. Furthermore, the crossings occur close enough to
the Γ point to be described by the effective k · p model,

HDirac(kx, ky, kz) =
(

C0 + C1k
2
z + C2k

2
‖

)

I4×4 + (3)

τz ⊗
((

M0 +M1k
2
z +M2k

2
‖

)

σz +A(σxkx + σyky)
)

,

where k2‖ = k2x + k2y. Eq (3) describes two Dirac points

on the kz axis at kz = ±
√

−M0/M1 (M0 and M1 have
opposite signs in the ab initio fit; the fitting parameters
for the quadratic terms and the symmetry-allowed third
order terms are included in the Supplementary Mate-
rial.) Because the four relevant bands come in pairs with
distinct angular momentum character, we allow for two
different g-factors gs and gp in the Zeeman coupling[32].
In the presence of a magnetic field, each Dirac point can
split into up to four Weyl points. As in the previous
section, putative crossings will exist regardless of the g-
factors of the different orbitals because the bands dis-
perse in opposite directions. Furthermore, Weyl points
that emerge when the magnetic field is along a partic-
ular high-symmetry axis must persist when the field is
slightly off-axis because they can only annihilate in pairs
of opposite chirality.

We now summarize our results[32]. When the mag-
netic field is along the ẑ direction all band crossings are
protected by Cnz symmetry: depending on the value of
the magnetic field, this implies between four and eight
Weyl points. Band crossings between the jz = ±3/2 and
∓1/2 bands are double Weyl points – these are not robust
to small changes in the magnetic field; instead, they can
split into two single Weyl points. Line nodes, protected
by M001, can also emerge in the kz = 0 plane for large
enough magnetic field.

When the magnetic field is along the x̂ direction, C2x

symmetry can protect between two and four total Weyl
points and M100 symmetry protects line nodes in the
kx = 0 plane. The same is true for the other symmetry-
related directions.

SEMICLASSICAL MAGNETOTRANSPORT

The presence of Weyl points near the Fermi surface in
a material - whether intrinsic or created by an external
field - leads to an experimentally measurable negative
magnetoresistance.[13–15, 18] The origin of this effect is
due to the non-trivial Berry curvature surrounding each
Weyl node, and is a manifestation of the so-called “chi-
ral anomaly.” Previous theoretical analysis of this effect
has been carried out for materials with intrinsic, field
independent Weyl nodes, in both the semiclassical and
ultra-quantum (only the lowest Landau level occupied)
limits.[12, 30, 31, 33] For these intrinsic Weyls, chiral ki-
netic theory implies that, in the semiclassical limit and
at low temperature, there is an anomalous positive mag-
netoconductance of the form

σµν
a =

∑

i

τv3i
8π2µ2

i

BµBν ,

where τ is the inter-nodal scattering rate, vi is the (ge-
ometric) mean velocity of node i, and µi is the chem-
ical potential measured from node i. We wish to gen-
eralize this result to the case where the Weyl nodes are
created by an external magnetic field. Relegating the
details of the derivation to the Supplementary material,
we find that the magnetoconductance acquires additional
field dependence due to the field dependence of the Weyl
velocities, which enters both explicitly and through the
now-strongly-field-dependent scattering time. We find
for low fields

σµν
a =

∑

i

τ i(B)| detAi|
8π2µ2

i

BµBν(1 +O(B)). (4)

where Ai, along with the vector ui, which, in the materi-
als we consider, enters the O(B) corrections, parameter-
ize the linearized two-band Hamiltonian near the Weyl
point at ki:[34]

H = ui
j(kj − kij)I+ (kj − kij)A

i
jkσk (5)

τ i(B) is the rate for scattering out of node i. For short-
range impurities we find

τ i(B) = τ0
2π2| detAi|

µ2
i

(1 +O(B)) (6)

We now make three observations. First, because
| detAi| depends on magnetic field, we expect that the
magnetoconductance for field-created Weyls scales dif-
ferently than that for intrinsic Weyl semimetals; in par-
ticular, we provide a simple model in the Supplemen-
tary Material where |detAi| ∼ |B|1/2. Second, because
| detAi| is not a rotationally invariant function of B, we
expect that the magnetoconductance will also fail to be
rotationally invariant. Finally, as B increases, we expect



4

the O(B) corrections to Eq. (4), given explicitly in the
Supplementary material, to become significant. This can
cause the directionality of the magnetoconductance to
acquire additional field-dependence.
Similarly, thermoelectric transport in Weyl materials

is also influenced by the chiral anomaly. In particular,
the thermoelectric conductivity αµν , relating the current
response to a temperature gradient, is experimentally rel-
evant. Using Onsager reciprocity[35, 36], we can compute
this by looking instead at the energy current response to
an electric field. Using the same semiclassical treatement
as above and neglecting interactions we recover the Mott
formula

αµν =
π2T 2

3

∂σµν

∂µ
, (7)

valid for both the anomalous and non-anomalous parts
of the thermoelectric conductivity. In particular, we ex-
pect that the magnetic field dependence of the anomalous
thermoelectric conductivity should simply follow that of
the ordinary conductivity. Differences between these two
effects serves to measure the significance of electron-
electron interactions, which explicitly modify the heat-
current[37].
Lastly, we remark on the effects of higher-order Weyl

crossings on magnetotransport. In particular, we focus
on double-Weyl points, since – as mentioned above –
these are present in Na3Bi and Cd3As2. Using the fact
that the Berry curvature transforms as a tensor under
reparametrizations of the Brillouin zone, we can easily
repeat the semiclassical analysis above for double (or
even n-fold) Weyl points. We find that the forms of all
transport coefficients remain the same. The only change
is that the response coefficients are proportional to the
square of the Chern number (i.e. 4 in the case of a dou-
ble Weyl), and that the form of the density of states
changes. In particular, the density of states for a double
Weyl point is linear in the chemical potential.

VALIDITY OF SEMICLASSICAL TRANSPORT

We now consider whether Weyl points can be well sep-
arated when the system is in the semiclassical regime.
This introduces two competing criteria. First, the Weyl
points must be well-resolved: the Fermi level must be
close enough to the nodal point that the Fermi surface
consists of disconnected pockets encircling each node.
Quantitatively, this translates to the constraint,

kF ∼ µ

v
≪ k0 (8)

where v = (detA)1/3 is the mean velocity of the Weyl
point at position k0, kF is the Fermi wavevector mea-
sured as the deviation from k0, and the chemical poten-
tial µ is the deviation in energy from the Weyl point.

Second, we demand that the number ν of filled Landau
levels is large. Recall that for a single Weyl point,

µ ∼
√
2Bν. (9)

Hence, we demand,

µ ≫
√
2B (10)

We now consider when the two constraints (8) and (10)
are simultaneously satisfiable. For Weyl points that orig-
inate from a symmetry-enforced band touching, such as
those in GdPtBi, v ∼ k0 ∼

√
B, and hence we need si-

multaneously that

B ≫ γ1µ and B ≪ γ2µ
2 (11)

where γ1 and γ2 are material-dependent parameters.
Whether or not there exists a regime that satisfies Eq (11)
depends on µ, which is nearly fixed (for B not too
large) for a bulk 3d material. For GdPtBi, we find from
experiment[18] that the Weyl points become well resolved
for B ∼ 6T ; however quantum oscillations reveal that
the Landau level index ν ∼ 5 at this value of the field.
However, the preceding analysis ignores the magnetiza-
tion of GdPtBi. Near the Néel temperature of about
9K, the spins will have a large magnetic susceptibility,
in which case a smaller field will have the same effect.
Additionally, this will be compounded by the quenching
of the orbital magnetism in the crystal, leading to an
enhancement of the Zeeman energy relative to the cy-
clotron energy. In this case, it is quite possible that the
experimental regime satisfies Eq (11)[19].
If the scale of inversion breaking, D in Eq (1), is much

larger than the magnetic field, then k0 ∼
√
B and v ∼ D.

Then Eq (11) is replaced by,

γ1µ ≪ D
√
B and

√
B ≪ γ2µ, (12)

which is satisfied for small enough fields when D exceeds
other scales.
We now consider Weyl points that emerge from split-

ting a Dirac point with a magnetic field. In this case,
for the two Weyl points to be well-resolved, the spacing
between the Weyl points, which scales like B, must be
greater than kF ∼ µ/v. To leading order, v depends
on the initial dispersion (i.e., determined by Eq (3)) and
only has sub-leading B dependence. This again leads to
Eq (11). The recent experiment on Na3Bi[13] reports the
nodes to be well separated when B = 12T , but the onset
of the lowest Landau level to be near 6 − 8T . Hence,
the semiclassical regime will likely not quantitatively de-
scribe this experiment.

DISCUSSION

A magnetic field can create Weyl points from four-
band crossings by breaking time reversal symmetry. This



5

is a powerful technique for creating Weyl points whose
position in energy-momentum space is tunable. Here,
we have studied two canonical and experimentally rele-
vant examples: a symmetry-enforced four-band crossing
at the Γ point and a Dirac node near the Γ point. We
have shown that a complex map of Weyl points (and line
nodes) emerges, depending on the direction and mag-
nitude of the magnetic field. It would be interesting to
experimentally track the movement of these points by ob-
serving how the surface Fermi arcs move as the magnetic
field is changed, e.g., in STM experiments. Furthermore,
for the particular cases of GdPtBi and HgTe, our numer-
ical analysis indicates that Weyl points exist near the
Fermi level for all directions of the magnetic field: this
should prompt future experiments that probe the chiral
anomaly with fields away from the high-symmetry axes.

We computed the anomalous longitudinal conductance
in the semiclassical regime for Weyl points created by a
magnetic field. The conductance scales with a higher
power of the magnetic field than the conductance for in-
trinsic Weyl points. Naively, this is consistent with ex-
perimental data: for example, the low-field data in Ref 18
shows that σxx scales like a higher power of B than B2;
we plot this data in the Supplement. However, this agree-
ment should be taken with a grain of salt, because, as
mentioned in the previous section, the experiment is not
fully in the semi-classical regime. Our theory will be bet-
ter tested in future experiments that are in this regime,
where we expect the scaling of longitudinal conductance
to go beyond B2 for magnetic-field created Weyl points.

Our analysis readily generalizes to other point groups.
This would be a useful course of study to identify future
candidates for magnetic field created Weyl points. In
addition, an analysis of the quantum regime could be
used to describe existing experiments. We leave these
questions for future works.
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