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We study a class of 3d and 4d topological insulators whose topological nature is characterized
by the Hopf map and its generalizations. We identify the symmetry C′, a generalized particle-
hole symmetry that gives the Hopf insulator a Z2 classification. The 4d analogue of the Hopf
insulator with symmetry C′ has the same Z2 classification. The minimal models for the 3d and
4d Hopf insulator can be heuristically viewed as “Chern-insulatoroS1” and “Chern-insulatoroT 2”
respectively. We also discuss the relation between the Hopf insulator and the Weyl semimetals,
which points the direction for its possible experimental realization.

PACS numbers:

The 10-fold way classification has provided us the pro-
totypes of topological insulators and topological super-
conductors [1–3]. The usual wisdom is that, even the
topological insulators with symmetries beyond the 10-
fold way classification can also be understood as these
prototypes enriched with other symmetries. Depending
on the dimension and symmetry, the boundary states of
all these prototypes should be a gapless Dirac fermion,
or Weyl fermion, or Majorana fermion. One important
open question is, can these prototypes represent all pos-
sible topological insulators, or can we still find exceptions
that are different from states in the 10-fold way classifica-
tion? In this paper we present a class of such examples,
which we generally call Hopf insulator.

The Hopf insulator was studied in Ref. 4, 5, but the
key symmetry that protects the Hopf insulator was not
identified. Without a proper symmetry, the Hopf insu-
lator is actually trivial, which we will explain later in
this paper. We demonstrate that the topological na-
ture of the 3d Hopf insulator state, previously described
only by the homotopy group π3[S2] = Z in the sim-
plest two band model [4, 5], is more generally given by
π3[Sp(2N)/U(N)] = Z2 in a multi-band model [6], which
is the key to stabilizing this state under physical condi-
tions. As long as the system has the translation and a
C′ particle-hole symmetry (to be defined later), this Hopf
insulator has a Z2 classification. The same symmetry C′
also gives us a 4d topological insulator based on the ho-
motopy group π4[S2] = Z2 and π4[Sp(2N)/U(N)] = Z2.

The minimal model of the Hopf insulator was con-
structed in Ref. 4, 5, but one has to study it with caution.
The Brillouin zone of a 3d lattice model is a three-torus
T 3. A topologically nontrivial mapping from T 3 to S2

is equivalent to the mapping from S3 to S2 (i.e. the so
called Hopf map), as long as any two-torus submanifold
of the Brillouin zone has zero winding on the target man-
ifold S2. Thus the simplest Hopf insulator Hamiltonian
is a two-band model in the 3d Brillouin zone, which is
the composition of the standard mapping from T 3 to S3

with winding number 1, and the Hopf map [4, 5]:

H(k) = ~n(k) · ~σ. (1)

FIG. 1: An illustration of the Hopf map in the momentum
space, which is equivalent to T 3. The domain wall n3 = 0
forms a two-torus T 2, and (n1, n2) winds around both direc-
tions of the torus. Thus intuitively the Hopf insulator can be
viewed as “Chern-insulatoroS1”. The symbol o represents
the “winding of the Chern-insulator” along S1.

The three component vector field ~n(k) is a mapping from
the Brillouin zone to the target space S2, and we choose
it to have Hopf number +1. The schematic configuration
of ~n in the momentum space is depicted in Fig. 1.

FIG. 2: The Fermi ring at the XY boundary of the minimal
two-band model of the Hopf insulator for m = 2 in Eq. 5.

We can introduce the standard CP1 field z(k) =
(z1(k), z2(k))t for the three component vector ~n(k):

~n(k) = z†(k)~σz(k), (2)



2

the spectrum of the Hamiltonian is

E(k) = ±|~n(k)| = ±|z(k)|2 = ±| ~N(k)|2, (3)

where ~N(k) is a four component vector defined as z1(k) =
N1(k) + iN2(k), z2 = N3(k) + iN4(k). Thus as long

as the length of ~N never vanishes in the Brillouin zone,
this system is an insulator with a band gap between the
two bands. The configuration of ~n(k) with Hopf number

+1, corresponds to the configuration of ~N(k) with the
winding number +1:

Hopf number =
1

Ω3

∫
d3k N̂a∂kxN̂

b∂kyN̂
c∂kzN̂

d, (4)

where N̂(k) = ~N(k)/| ~N(k)|, and Ω3 is the volume of S3.
As an example of Hopf insulator, we can choose the

following configuration of ~N(k):

N1(k) = sin(kx), N2(k) = sin(ky), N3(k) = sin(kz),

N4(k) = m− cos(kx)− cos(ky)− cos(kz), (5)

the Hopf number defined in Eq. 4 equals +1 when 1 <
m < 3. This model is essentially the same model con-
structed in Ref. 4, 5. This two-band model alone appears
to be a nontrivial topological insulator with stable edge
states. The existence of edge states was demonstrated
numerically in Ref. 4, 5, and it was shown that the edge
state (at least on one of the edges) of this model is a
“Fermi ring”.

The boundary Fermi ring can be heuristically under-
stood as follows: We can parameterize the 3d momentum

space as (kr, θ, kz), where kr =
√
k2
x + k2

y, and tan θ =

ky/kx. Fig. 1 shows that for every half plane (kr, kz) with
fixed θ, ~n(k) has a configuration with Skyrmion number
+1, thus for every θ with 0 < θ < 2π, there is a gapless
edge state along the radial kr direction at the XY bound-
ary. These edge states together will form a Fermi ring on
the XY boundary. This observation is confirmed by our
direct numerical calculation, see Fig. 2. In fact, the Hopf
mapping corresponds to the configuration of ~n in the 3d
Brillouin zone such that the domain wall between n3 > 0
and n3 < 0 forms a torus, and the two component vector
(n1, n2) has a nontrivial winding around both directions
of the torus. So in this sense, we can call the 3d Hopf
insulator as “Chern-insulator oS1”, where o represents
the winding of (n1, n2) along S1, so the Hopf insulator is
not a simple direct product between the Chern-insulator
and S1. This heuristic picture was previously discussed
in Ref. 7.[22]

However, this simple two-band Hopf insulator, with-
out any symmetry, is unstable against mixing with other
bands. A generic band insulator consists of m empty
bands and n filled bands, and in k space can be described
by an (m+n)×(m+n) Hermitian matrix H(k). For each

value of k, H(k) has m positive eigenvalues, correspond-
ing to the m empty bands, and n negative eigenvalues,
corresponding to the n filled bands. Without closing the
gap, the m positive eigenvalues (n negative eigenvalues)
can all be continuously deformed to +1 (−1). There-
fore, H(k) takes the form H(k) = U(k)Im,nU

†(k), where
Im,n is an (m + n) × (m + n) diagonal matrix with m
+1’s and n −1’s on the diagonal, and U(k) ∈ U(m+ n).
When there is no symmetry other than the U(1) charge
conservation and momentum conservation, the configura-
tion space of the Hamiltonian is topologically equivalent
to the complex Grassmannian manifold Gr(n,m + n) =

U(m+n)
U(m)×U(n) [4]. The band insulator is a map from the

Brillouin zone T d to Gr(n,m + n), which is induced by
classes of mappings Sd → Gr(n,m + n)[8, 9], we shall
focus on the latter.

In general π3[Gr(n, n+m)] = 0, as long as n and m do
not both equal 1. This observation implies that once the
two-band model described above starts mixing with other
bands, there will be no nontrivial topological insulator.
But in the following we will prove that with a special
symmetry C′, this system always has an even number
of bands, and its Hamiltonian belongs to the manifold
M = Sp(2N)/U(N), and because π3[Sp(2N)/U(N)] =
Z2 for N > 1, the Hopf insulator has Z2 classification
with symmetry C′.

For a 2N -band system, the symmetry C′ acts on
fermion operators as C′fkC′−1 = Jf†k . J is a 2N × 2N
matrix which we choose to be

J =

(
0 IN×N

−IN×N 0

)
. (6)

Thus C′ is a generalized particle-hole transformation, and
it can be viewed as the product between a particle-hole
transformation C (with C2 = −1) and the spatial inver-
sion I. The system does not have to satisfy C or I
individually, and in fact in our model both are explic-
itly broken. The symmetry C′ implies that for all k, the
Hamiltonian H(k) must satisfy

J−1H(k)J = −H(k)∗. (7)

Eq. (7) implies that for each k, H(k) is in the Lie algebra
of Sp(2N), and there is always an even number of bands.
When diagonalized, H(k) takes the form

H(k) = diag(λ1(k),−λ1(k), . . . , λN (k),−λN (k)). (8)

We can continuously deform all of the positive eigenval-
ues to +1, and all of the negative eigenvalues to −1.
Therefore, the deformed H(k) takes the form

H(k) = U(k)IN,NU
†(k), (9)

where U(k) ∈ Sp(2N). We now show that the entire
configuration space of the Hamiltonian is Sp(2N)/U(N).
A generic element that does not move IN,N is g =
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diag(U1(k), U2(k)), where U1(k), U2(k) ∈ U(N). How-
ever, in order for g to be in Sp(2N), it has to satisfy(

U1

U2

)
J

(
U1

U2

)T
= J. (10)

Imposing this condition tells us that U1U
T
2 = 1, which

implies that the configuration space of the Hamiltonian
is Sp(2N)/U(N). From the mathematics literature [10],

π3[Sp(2N)/U(N)] =

{
Z N = 1

Z2 N ≥ 2
(11a)

(11b)

π4[Sp(2N)/U(N)] = Z2 (11c)

To connect the two-band Hopf insulator with Hopf
number 1 to the nontrivial 2N -band model, one simply
needs to make the Hamiltonian a block-diagonal Hamil-
tonian, with two bands being the Hopf insulator and the
other bands being a 2(N − 1) band trivial insulator, i.e.

H2N-band(k) =

(
H(k)2×2

IN−1,N−1

)
, (12)

where H(k)2×2 is defined in Eq. (1). In other words, the
U(k) matrix in Eq. (9) is also block-diagonal, i.e.

U2N-band(k) =

(
U(k)2×2

I(2N−2)×(2N−2)

)
, (13)

Here U(k)2×2 is a SU(2) matrix that will contribute nw =

1, and H(k) = U(k)2×2σ
3U(k)†2×2.

The conclusion that the classification for the multi-
band system with the C′ symmetry is no larger than
Z2 can be understood as follows. Let us take N = 2.
The nontrivial mapping from S3 to Sp(4)/U(2) is in-
duced by the mapping from S3 to Sp(4), characterized
by the winding number nw = 1

24π2

∫
d3k tr[(U−1dU)3],

where U ∈ Sp(4). Any two U(k) with the same nw can
be continuously deformed into each other, since there is
no topological obstruction. In the case of nw = 2, the
induced four-band Hamiltonian H(k) = U(k)I2,2U

†(k)
can be continuously deformed into two copies of two-
band Hopf insulators each with the Hamiltonian Eq.(1),
whose three-component vectors are ~n(k)1 and ~n(k)2, re-
spectively, where ~n(k)1 = −~n(k)2. This is because if
H(k)1 = ~n(k)1 · ~σ is generated by SU(2) matrix U(k),
then H(k)2 = −H(k)1 can be generated by another

SU(2) matrix Ũ(k) = U(k)iσ2, which always gives the
same nw as U(k). Then each (kr, kz) half-plane for
a fixed θ now has zero total Skyrmion number (the
Skyrmion numbers of ~n1 and ~n2 cancel out), so this state
is a trivial insulator.

The classification for C′ can be understood in another
way. Under ordinary C transformation, the position vari-
ables are invariant, but all of the momenta variables pick

up a sign. However, under the C′ transformation, the
momenta do not change, but all of the position vari-
ables pick up a sign. Therefore, for all intents and
purposes, we can replace C′ with C as long as we re-
verse the roles of the position and momenta variables.
Therefore, following Ref. 11, the classification of a d-
dimensional TI with C′ is the same as the classification
of a δ = 0 − d ≡ 8 − d(mod 8)-dimensional TI with C,
which is simply Class C. As expected, the classifications
match for all d.

We note that because the general multi-band model
of the Hopf insulator requires the C′ symmetry which
involves spatial inversion, the boundary of the system
necessarily breaks C′ and hence the system does not have
protected edge states. However, the classification of the
Hopf insulator is still well-defined in the bulk, like all the
topological insulator/superconductors with the ordinary
inversion symmetry [12–14].

This heuristic picture of the Hopf insulator in Fig.1
points the possible direction of its experimental realiza-
tion. The Hopf insulator can be naively viewed as lay-
ers of Chern insulators stacked along a ring in the mo-
mentum space (with a nontrivial winding along the ring)
[7]. A 3d Weyl semimetal [15] can be viewed as layers of
Chern insulators stacked along a line in the momentum
space, and the Chern insulator terminates at the mo-
mentum layers with the Weyl points. Now if we can take
a Weyl semimetal with two pairs of Weyl points in the
momentum space, such as the material MoTe2 [16], and
annihilate the Weyl points to connect the “Chern lines”
into a ring, then this system could effectively become a
Hopf insulator, with a proper winding of the Hamilto-
nian along the ring. Its boundary Fermi rings are just
connected Fermi arcs of the Weyl semimetal.

Now let us move on to the 4d model. A 4d band struc-
ture is not just for pure theoretical interest, we can also
view the fourth momentum as a periodic time coordi-
nate. Thus the entire band structure can be viewed as a
time-dependent 3d Hamiltonian. In 4d, the set of maps
S4 → Gr(n,m+ n) is classified by π4[Gr(n,m+ n)]. We
will start with the minimal model m = n = 1 . In this
case, the band insulator is a map S4 → S2, which has
homotopy group π4[S2] = Z2.

We need to construct a nontrivial map F : T 4 → S2.
Heuristically this mapping can be viewed as the follow-
ing: in the 4d space, the domain wall between n3 > 0
and n3 < 0 will form a three-torus T 3, and (n1, n2) winds
nontrivially along all three directions of the three-torus.
Thus the 4d Hopf insulator constructed with the three
component vector ~n and Pauli matrices, can be heuris-
tically viewed as “Chern-insulatoroT 2”. Consequently,
the 3d boundary states will have a torus of zero energy
modes (no symmetry is needed in this minimal two-band
model).

A concrete band structure of this kind was discussed in
Ref. 17. We review the idea but implement it somewhat
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FIG. 3: The boundary zero energy states of the 4d minimal
two-band model for Hopf insulator with m = 2 in Eq. 15, plot-
ted in the 3d boundary Brillouin zone. Because this model can
be heuristically viewed as “Chern-insulatoroT 2, its boundary
has a torus of zero energy states.

differently and also generalize it. F can be constructed
via the reduced suspension technique in algebraic topol-
ogy [18, 19]. Pictorially,

T 4 Σ[f ]−−−→ ΣS2 = S3 f−→ S2

where Σ[f ] [20] is the reduced suspension of the Hopf
map f , defined as

Σf : (k, t) 7→ (N1, N2, N3, N4), (14)

where ~N is a four component vector with nonzero norm:

N1 = sin(t/2)(sin kx sin kz
+ sin ky(m− cos kx − cos ky − cos kz)),

N2 = sin(t/2)(sin kx(m− cos kx − cos ky − cos kz)
− sin ky sin kz),

N3 = cos t(sin2 kx + sin2 ky) + sin2 kz
+ (m− cos kx − cos ky − cos kz)

2,
N4 = sin t((m− cos kx − cos ky − cos kz)

2

+ sin2 kz). (15)

The Hopf map, as before, is defined as
f : (N1, N2, N3, N4) 7→ (n1, n2, n3),

n1(k, t,m) = 2(N1N3 +N2N4)
n2(k, t,m) = 2(N1N4 −N2N3)
n3(k, t,m) = N2

1 +N2
2 −N2

3 −N2
4 . (16)

Finally, we define the Hamiltonian H(k, t,m) (up to nor-
malization) as H(k, t,m) = ~n(k, t,m) · ~σ. The variable t
in this 4d model can be viewed as time. This means we
can consider our system as an adiabatic time-dependent
band insulator, with a period of 2π. In Fig. 3 we plot the
zero energy states computed numerically at the bound-
ary Brillouin zone of the minimal two-band model of the
4d Hopf insulator. The zero energy states indeed form a
torus in the boundary Brillouin zone, which is consistent
with our expectation.

We now consider a general multi-band system, and im-
pose the C′ symmetry. With the C′ symmetry, there is

still an even number of bands, and just like the 3d story
discussed before, since π4[Sp(N)/U(N)] = Z2 for all N ,
there is only one class of nontrivial Hopf insulator with
the C′ symmetry.

In 4d there is a well-known integer quantum Hall state
without assuming any symmetry other than the charge
conservation [21], but unlike the 2d Chern-insulator, the
4d integer quantum Hall state necessarily breaks the C′,
because its response to the external electromagnetic field
jeµ ∼ εµνρτσFνρFτσ breaks C′, where jeµ is the charge
current.

In summary, we found a class of 3d and 4d topological
insulators whose topological nature is characterized by
the Hopf map and its generalizations. We identified a
C′ symmetry which gives these states a Z2 classification.
The states we constructed are also mathematically equiv-
alent to topological superconductors with total spin Sz
conservation (but there is no charge conservation). Now
the C′ symmetry becomes a special inversion symmetry
I ′ which is a product of the ordinary inversion and spin
Sz flipping. Thus our system can also be viewed as a
crystalline topological superconductor with the Sz con-
servation and the I ′ symmetry.
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