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Multi-Weyl semimetals are a new type of Weyl semimetals which have anisotropic non-linear
energy dispersion and a topological charge larger than one, thus exhibiting a unique quantum
response. Using a unified lattice model, we calculate the optical conductivity numerically in the
multi-Weyl semimetal phase and in its neighboring gapped states, and obtain the characteristic
frequency dependence of each phase analytically using a low-energy continuummodel. The frequency
dependence of longitudinal and transverse optical conductivities obeys scaling relations that are
derived from the winding number of the parent multi-Weyl semimetal phase and can be used to
distinguish these electronic states of matter.

Introduction — A Weyl semimetal (WSM) is a gapless
topological state of matter possessing k-space singulari-
ties where its valence and conduction bands make contact
at a point. This singularity is a k-space monopole pro-
viding a quantized source or sink of a Berry’s flux and
can occur only in materials in which either time reversal
symmetry or inversion symmetry is broken. In the pro-
totypical WSM, a twofold band degeneracy at the Weyl
point is broken linearly in momentum in all directions
and the node is characterized by the topological winding
number (also referred to as chirality) ±1. A transition to
an insulating phase is possible only if Weyl nodes with
opposite chirality pairwise merge and annihilate. The
gapped phase produced by this merger can be in a nor-
mal insulating state or a topological quantum anomalous
Hall state. The linear dispersion around the Weyl point
has important consequences for the low frequency op-
tical properties, which have been explored theoretically
and used as an experimental fingerprint of the topological
state [1–9].

A k-space merger of Weyl points with the same chiral-
ity produces a new type of Weyl semimetal, referred to
as a multi-Weyl semimetal (m-WSM) [10, 11]. In these
states, the merger of the nodes is robust if it is protected
by a point group symmetry. The low energy dispersion
can then be characterized by double (triple) Weyl nodes
with linear dispersion along one symmetry direction and
quadratic (cubic) dispersion along the remaining two di-
rections. Because of the change in topological nature, the
enhancement of the density of states, the anisotropic non-
linear energy dispersion and a modified spin-momentum
locking structure, these states will have optical and trans-
port signatures that distinguish them from elementary
WSMs.

In this paper, we report calculations of the optical con-
ductivity in m-WSMs, and analyze their characteristic
frequency dependence in the semimetallic state and in
nearby insulating states, focusing on the effects of the
winding number, lattice regularization and phase tran-
sitions. We find that the results for m-WSMs can be
clearly distinguished from those for WSMs by their low-

energy frequency dependence, which is determined by the
winding number of the m-WSM phase.

(a)

(b)

WSM WSM

NI QAH NI

WSM|NIQAH NIQAH|WSM WSM

FIG. 1: (a) Phase diagrams of J = 2 lattice models on the
tz/m0 and mz/m0 plane and (b) evolution of the energy band
structure from the 3D quantum anomalous Hall (QAH) phase
to the normal insulator (NI) phase. Here, we use several val-
ues of mz/m0 corresponding to different phases, indicated
by circled numbers in the phase diagram. QAH|WSM and
WSM|NI denote the transition phase between 3D QAH and
WSM, and WSM and NI, respectively. The phase diagram for
J = 1 has a similar shape, but has a different phase boundary
between the WSM and 3D QAH represented by the dashed
line [12].

Model — The low-energy effective Hamiltonian for m-
WSMs of order J near a single Weyl point can be de-
scribed by the Hamiltonian:

HJ = ε0

(

k̃J−σ+ + k̃J+σ−
)

+ ~vzkzσz, (1)

where k̃± = k±/k0 with k± = kx ± iky, σ± =
1
2 (σx ± iσy), and σ are Pauli matrices acting in the space
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of two bands that make contact at the Weyl point. Here,
vz is the effective velocity along the kz direction, and
k0 and ε0 are material dependent parameters in units
of momentum and energy, respectively. For simplic-
ity, we assumed the axial symmetry around the kz-axis.
Note that the eigenenergies of the Hamiltonian are given

by ε± = ±
√

ε20k̃
2J
‖ + (~vzkz)2 where k̃‖ =

√

k̃2x + k̃2y,

and the in-plane energy dispersion is characterized by
J . Thus the winding number determines not only the
topological nature of the wave function but also the
anisotropic energy dispersion of the system.

Let us consider a lattice model that shows at some pa-
rameter range the m-WSM phase described by Eq. (1). A
simple lattice model for the Weyl semimetals with J = 1
which has inversion symmetry with broken time-reversal
symmetry is given by [12–14]

H1 = tx sin(kxa)σx + ty sin(kya)σy +Mzσz , (2)

Mz = mz − tz cos(kza) +m0[2− cos(kxa)− cos(kya)],

where a is the lattice spacing, and tx,y,z, mz and m0

are material dependent parameters. Similarly, we can
generalize the above lattice model in Eq. (2) to J = 2
so that near the Weyl points the low-energy Hamiltonian
reduces to the form of Eq. (1) [15]:

H2 = tx[cos(kya)− cos(kxa)]σx

+ ty sin(kxa) sin(kya)σy +Mzσz . (3)

Depending on the model parameters, the Hamiltonian in
Eqs. (2) and (3) show various phases such as normal insu-
lators (NIs), Weyl semimetals, and 3D quantum anoma-
lous Hall (QAH) states, as shown in Fig. 1 along with
the corresponding energy band structures. The phase di-
agram for J = 2 has a similar shape to that for J = 1 [12],
but because of the change in the electronic structure, op-
tical properties in the m-WSMs show strong dependence
on their chirality.

For the continuum model corresponding to each phase,
we choose the parameter range where Weyl nodes arise
at (kx, ky) = (0, 0). Other choices of parameter ranges
give fundamentally identical settings. Using the k · p
method, we can write a generic continuum model for var-
ious phases as [16]

H = ε0

(

k̃J−σ+ + k̃J+σ−
)

+Mzσz , (4)

where the mass term is given by Mz ≈ ~vzqz +α+βq2z +

γ(k2x + k2y). Here we set γ = m0a
2

2 > 0 except for the
WSM phase with γ = 0 where the linear term in Mz

dominates over the quadratic term associated with γ at
low energies. Note that for the NI (3D QAH) phase,

α = mz ∓ tz and β = ± tza
2

2 . Then, for each phase, we

find

NI : qz = kz; vz = 0; α, β > 0,
NI|WSM : qz = kz; vz = 0; α = 0, β > 0,
WSM : qz = kz ∓ b; vz 6= 0; α = β = 0,
WSM|QAH : qz = kz ∓

π
a ; vz = 0; α = 0, β < 0,

QAH : qz = kz ∓
π
a ; vz = 0; α, β < 0,

(5)

where cos(ba) ≡ mz/tz with |mz|/tz < 1. For calcula-
tion, we set k0 = 1/a, tx = ty = 4m0 and tz = 0.5m0

with m0 > 0, and vary −m0 < mz < m0 with other
parameters fixed to induce various phases.
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FIG. 2: Real part of (a)-(d) longitudinal and (e), (f) trans-

verse optical conductivities in units of σ0 = e
2

~a
for the lattice

(blue solid line) and continuum (black dotted line) models in
the WSM phase. The arrows in the insets indicate interband
transitions corresponding to kink structures in σxx(ω) and
σxy(ω). Here mz/m0 = 0, b = 0.5π/a and kc = π/a are used
for calculation.

Optical conductivity — The Kubo formula for the op-
tical conductivity in the non-interacting limit can be ex-
pressed as [17]

σij(ω) = −
ie2

~

∑

s,s′

∫

d3k

(2π)3
fs,k − fs′,k
εs,k − εs′,k

×
M ss′

i (k)M s′s
j (k)

~ω + εs,k − εs′,k + i0+
(6)

where i, j = x, y, z, fs,k = 1/[1 + e(εs,k−µ)/kBT ] is the
Fermi distribution function, µ is the chemical potential
and M ss′

i (k) = 〈s,k|~v̂i|s
′,k〉, with the velocity operator

v̂i obtained from the relation v̂i =
1
~

∂Ĥ
∂ki

.
In the following, we consider only the undoped case

with µ = 0. In the clean limit at zero temperature, the
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real part of the longitudinal optical conductivity for m-
WSMs within the continuum model is given by [16]

σxx(ω) =
gN
24π

Je2

~vz
ω, (7a)

σzz(ω) =
gN
24π

e2vz
~v2‖

AWSM
zz

(

ω

ω0

)
2

J
−1

ω0, (7b)

where gN = 2 is the number of nodes, ε0 = ~ω0 = ~v‖k0,

AWSM
zz =

3
√
πΓ( 1

J )
2

2

J J2Γ( 1

J
+ 3

2 )
and Γ(x) is the Gamma function

[18]. Note that σxx(ω) ∝ Jω while σzz ∝ ω
2

J
−1, ex-

hibiting the chirality dependent power-law exponents in
frequencies. Also note that the effect of a finite µ simply
produces a small gap due to Pauli blocking in interband
transitions and a conventional Drude peak from intra-
band transitions, which does not alter the characteristic
frequency dependence of the conductivity as long as µ
is not high enough that the effective Hamiltonian is still
characterized by a m-WSM Hamiltonian [16].
Next, consider the real part of the Hall or transverse

optical conductivity. Note that a sign change of Mz in
the Brillouin zone can produce a nontrivial state that
supports a Hall effect in the kx-ky plane for a fixed kz.
We therefore focus only on the in-plane off-diagonal part
σxy(ω). If two Weyl nodes with opposite chirality are lo-
cated at ±b = ±bẑ, the real part of the Hall conductivity
up to second order in ω is given by

σxy(ω) = Jχ
e2

~

(

b

2π2
+

1

24π2v2z

b

k2c − b2
ω2

)

, (8)

where kc is the cutoff along the kz direction. Here χ
represents the right-handed/left-handed chirality, which
has χ = ±1 if the node with positive chirality is at ±bẑ
and the other at ∓bẑ. Note that the Hall conductivity
for m-WSMs is given by J times that for J = 1 Weyl
semimetals, thus their surface states could be manifested
by J Fermi arcs connecting the two Weyl nodes.
Figure 2 shows the calculated optical conductivities for

J = 1 and J = 2 lattice and continuum models, respec-
tively. At low frequencies, the lattice models are approxi-
mated by the corresponding low energy model in Eq. (1),
thus the optical conductivities obtained from the lattice
and continuum models are in good agreement. As the fre-
quency increases, however, optical conductivities deviate
from the continuum model and show a kink structure in
σxx(ω) and σxy(ω) at ~ω = 2|mz − tz | due to the in-
terband transitions between states around the van Hove
singularity [8], as shown in the insets to (a) and (b).
For the NI phase (α > 0) and 3D QAH phase (α < 0),

we obtain the leading-order ω dependence of longitudinal
optical conductivities analytically assuming γ = 0 in the
vicinity of ~ω = 2|α|:

σxx(ω) ∼ (~ω − 2|α|)
1

2 Θ(~ω − 2|α|), (9a)

σzz(ω) ∼ (~ω − 2|α|)
1

J
+ 3

2 Θ(~ω − 2|α|). (9b)
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FIG. 3: Real part of (a)-(d) longitudinal and (e), (f) trans-
verse optical conductivities in the 3D QAH phase for the lat-
tice model (blue solid line), the continuum model (red dashed
line), and the analytic results (black dotted line). For the lon-
gitudinal (transverse) conductivities, the analytic results are

obtained for γ = 0 (γ = m0a
2

2
). Solid (dashed) lines in the

inset to (a) represent the energy dispersion for J = 1 along
the kz direction with kx = 0 (kx = π

a
) and ky = 0. The

left inset to (b) represents the energy dispersion for J = 2
along the kx direction with kz = π

a
and ky = 0, and the right

inset to (b) shows an enlarged view in σxx(ω) near the in-
terband transition. Arrows in the insets indicate interband
transitions corresponding to the kink structures appearing in
σxx and σxy. Here, mz/m0 = −0.8 and kc = π/a are used for
the calculation.

Note that similarly to the WSM phase, σxx(ω) has the
same ω dependence regardless of the chirality index J ,
while σzz(ω) has different power-law exponents depend-
ing on J . Here the analytic results are obtained assum-
ing γ = 0 for simplicity, which is valid when the effect
of the band distortion associated with nonzero γ is small
(γk20 ≪ ε0 or m0 ≪ tx, ty). As γk20/ε0 increases, the
power-law exponent deviates from the analytic expres-
sion in Eq. (9) obtained assuming γ = 0, and the deriva-
tion is more significant for J = 2 than J = 1 because
the kinetic term associated with J is comparable to the
quadratic γ term at low frequencies [16].
The transverse optical conductivities in the NI and 3D

QAH phases up to second order in ω are given by

σxy(ω) = ξσQAH
xy +

e2

~
Bxyω

2, (10)

where σQAH
xy = Je2

~

kc

2π2 and ξ = 0 (ξ = 1) for the NI (3D
QAH) phase. The static part (ω = 0) in Eq. (10) can
be obtained after properly subtracting the residual term,
because the static Hall conductivity for the continuum
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model is not properly regularized carrying an arbitrary
residual value. Thus only the difference in this quantity
between different electronic states is experimentally mea-
surable, giving a quantized value in the 3D QAH phase
while zero in the NI phase. In this sense, we choose the
momentum cutoff along the kz direction as kc = π/a so
that the properly subtracted static Hall conductivity in
the 3D QAH phase has the same quantized value as in the
lattice model. The detailed discussion on the regulariza-
tion process and the expression for Bxy can be found in
the Supplemental Material [16]. Note that for the trans-
verse optical conductivities, we present analytic results
with non-zero γ.

Figure 3 shows calculated optical conductivities for the
J = 1 and J = 2 lattice and continuum models in the
3D QAH phase. If γ = 0, the energy gap with a size
of 2|α| for both NI and 3D QAH phases leads to zero
conductivity for frequencies ~ω < 2|α| due to the optical
gap. Because of the non-zero γ, a Mexican hat structure
appears in the 3D QAH phase (but not in the NI phase)

if α < αc = −
ε2
0

2γk2

0

for J = 1, and if α < 0 for J = 2

exhibiting a shifted interband peak with respect to the
γ = 0 result [16]. For the J = 1 lattice model in the
3D QAH phase, an additional kink structure appears at
~ω = 2|mz − tz + 2m0| due to the interband transitions
at local minima (kx, ky, kz) = (±π

a , 0, 0), (0,±
π
a , 0), as

shown in Fig. 3(a).
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FIG. 4: Real part of (a)-(d) longitudinal and (e), (f) trans-
verse optical conductivities at the transition between the 3D
QAH and WSM phases for the lattice model (blue solid line),
the continuum model (red dashed line), and the analytic re-
sults (black dotted line). For the longitudinal (transverse)
conductivities, the analytic results are obtained for γ = 0

(γ = m0a
2

2
). Here, mz/m0 = −0.5 and kc = π/a are used for

calculation.

At the transition point between the WSM and NI
phases or between the WSM and 3D QAH phases, the
longitudinal (transverse) optical conductivities obtained
assuming a zero (non-zero) γ are given by

σxx(ω) =
e2

~
Axx(~ω)

1

2 , (11a)

σzz(ω) =
e2

~
Azz(~ω)

2

J
− 1

2 , (11b)

σxy(ω) = ξσQAH
xy +

e2

~
Cxyω

ν . (11c)

Note that similarly as in the NI and 3D QAH phases,
the static part of σxy(ω) should be properly subtracted
by the residual term. The expressions for Axx and Azz

can be found in the Supplemental Material [16]. Here,
the exponent ν ≈ 0.5 is found numerically for J = 1, 2
with a frequency independent coefficient Cxy. Note that
the longitudinal conductivities for both transition points
are identical (within a γ = 0 approximation), whereas
the Hall conductivities have different static values, with
the difference given by σQAH

xy .

Discussion — Recently, Huang et al. [19] demon-
strated that strontium silicide (SrSi2) hosts double Weyl
nodes with a chirality J = 2. The effective Hamiltonian,
which describes one of the Weyl nodes with a chirality
J = 2 in SrSi2, resembles that of bilayer graphene with
the interlayer hopping replaced by the spin-orbit coupling
∆ connecting the two J = 1 Weyl Hamiltonians. If we
assume µ = 0, at low frequencies the optical conductiv-
ity for the double Weyl nodes in SrSi2 behaves similar to
that of the J = 2 Weyl semimetals, showing σxx ∼ ω and
σzz ∼ ω0 dependence, whereas at high frequencies, the
optical conductivity shows two copies of the J = 1 Weyl
semimetals exhibiting a linear ω dependence in σxx and
σzz . At intermediate frequencies, kink structures appear
at frequencies comparable to the energy scales of inter-
band transitions determined by ∆. Note that the double
Weyl nodes in SrSi2 are not actually located at µ = 0,
thus the longitudinal conductivity in real SrSi2 will give
additional features of the Pauli blocking and the Drude
peak. In addition, in a real sample, multiple Weyl nodes
coexist thus the optical conductivity can be obtained by
the sum of contribution from each node. Tilt and impu-
rities will also affect the optical conductivity. However,
the characteristic frequency dependence described here
will not be altered above the frequency corresponding to
the energy scale of the tilt or impurity potential [16].

In summary, we studied the optical properties of m-
WSMs in semimetallic and nearby insulating phases, fo-
cusing on the frequency dependence of optical conduc-
tivity. We demonstrated that the optical conductivi-
ties σxx(ω), σzz(ω) and σxy(ω) show a characteristic fre-
quency dependence that strongly varies according to the
winding number and phase of the system, thus can be
used as a spectroscopic signature of m-WSMs.
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