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In search of states with non-Abelian statistics, we explore the fractional quantum Hall effect in
a system of two-dimensional (2D) charge carrier holes. We propose a new method of mapping
states of holes confined to a finite width quantum well in a perpendicular magnetic field to states
in a spherical shell geometry. We take into account strong coupling between spin and motion
of charge parallel and perpendicular to the 2D layer. This method gives the single-particle hole
states used in exact diagonalization of systems with a small number of holes in the presence of
Coulomb interactions, density matrix renormalization group and topological entanglement entropy
calculations. The hole quantum Hall state at the half-filling of the ground state in a magnetic field
near crossing of single-hole states is likely the Moore-Read Pfaffian state.

Non-Abelian statistics paves the way to fault tolerant
quantum computing [1–3]. States with non-Abelian ex-
citations can arise in a two-dimensional (2D) quantum
liquids in magnetic fields. The fractional quantum Hall
(FQH) electron state at a filling factor ν = 5/2, most
studied theoretically and experimentally [4–9], is possi-
bly such a state. Non-Abelian excitations were discussed
for ν = 12/5, ν = 8/3 and ν = 1/4 FQH states [10–14],
and bilayer ν = 1/2 2D electron state [15–18].

Here we show that FQHE of 2D holes is a new non-
Abelian system. Luttinger valence band holes funda-
mentally differ from electrons. They exhibit non-Abelian
phases in transport even for single-hole states [19]. In a
magnetic field, the single-hole states are four-component
spinors with each component given by a distinct Lan-
dau level (LL) wavefunction un, n ≥ 0. The relative
weights of un in spinors vary with magnetic field [20] or
with strain, driving transitions between, e.g., Laughlin
ν = 1/3 state and gapless states [21]. The non-Laughlin
FQH electron correlations [22] arise in LL1 due to u1.
For holes, the ground state is often defined by un 6=0, in-
cluding u1. Thus, the non-Abelian FQH hole states can
arise when only the ground level in a single quantum well
is filled.

Single-hole spectra show multiple level crossings, e.g.,
in the ground state. Near crossings, interaction pseu-
dopotentials can be easily tuned. This can lead to Moore-
Read [4] or anti-Pfaffian states [23], like for electrons at
ν = 5/2 [24]. Crossing of electron levels dominated by
u0 and u1 is important at ν = 2/5 [2], but such electron
cases are rare. Hole level crossings are numerous, and
the phase diagram is richer compared to electrons.

We propose a theoretical framework for FQHE in hole
systems. Unusual hole spectra in a magnetic field stem
from a strong spin-orbit coupling between the in-plane
and z−direction motion in a quantum well. For electrons,
including multicomponent systems [25–28], these degrees
of freedom are independent. It is then possible to use the
Haldane technique[29] on a sphere in a monopole mag-
netic field. Hole four-spinors and the inseparability of the
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FIG. 1: Color online: a - Spherical shell geometry; b - Ground
level crossings in a spherical shell (red solid lines) and planar
geometry (black dotted lines); c,d - lowest nine states (n ≤ 5)
in a spherical shell (c) and planar geometry (d). The highest
index Landau wavefunction of the shown hole states: Black
lines - u0; blue - u1; green - u2; red - u3; magenta- u4; orange-
u5. Thick lines- even states, thin lines-odd states. The thin
red line state has significant u1-component.

in-plane and z−direction motion make the treatment of
Coulomb interactions challenging. The Haldane sphere
cannot be used for holes. We propose a new method for
holes in a spherical shell geometry, Fig. 1, and study the
many-body wavefunctions and topological entanglement
entropy. We investigate the ν = 1/2 hole system and
show that it is not in the Halperin 331 FQH state[30]
but in a Moore-Read (MR) state.
Holes in the spherical shell geometry. The Luttinger

Hamiltonian [31] in magnetic field B is

Ĥ0 =

(
γ1 +

5

2
γ

)
k̂2

2
I − γ

(
k̂ · s

)2
−
(γ

2
+ κ
)
sz,(1)



2

where energies are in units of h̄ω0
c = h̄eB/m0c, coordi-

nates r are in units of magnetic length (` =
√
h̄c/eB),

wavevectors k = −i∇r + e`A/(h̄c), A is the vector po-
tential, s is spin 3/2 operator, and γ1, γ and κ are
isotropic Luttinger parameters. Ĥ0 commutes with the
z-projection of the total angular momentum jz = lz +sz,
l is the angular momentum. In the symmetric gauge, the
hole wavefunctions in a quantum well of width L are:

Ψ{α}n,m =


ζ
{α}
0 (z)un,m

ζ
{α}
1 (z)un−1,m+1

ζ
{α}
2 (z)un−2,m+2

ζ
{α}
3 (z)un−3,m+3

 , (2)

un,m are symmetric eigenfunctions [32], and ζ(z) stems
from Ψ(±L/2) = 0. Index α describes the size quantiza-
tion and odd/even inversion parity about z = 0. Energies
and wavefunctions scale with w = L/(2λ)[20]. For n < 3,

Ψ
{α}
n,m vanish for n− l < 0, l = 1, 2, 3. For holes, the finite

well width is intrinsically important, because of strong
coupling of spin, 2D and z-direction motions. This cou-
pling distinguishes our case from exact diagonalization
with finite width on the sphere [33].

Constructing states with translationally invariant
wavefunctions, we confine holes to a spherical shell with
radius R0 − δR ≤ r ≤ R0 + δR as shown in Fig. 1 a. A
magnetic field B = 2Qhc/(4πer2) is related to an inte-
ger monopole of strength 2Q, and magnetic flux through
spherical surfaces around it is φ = 2Qhc/e. Because
j = l+s is a good quantum number for single-hole states,
the eigenfunctions of (1) for spherical shell are

ψαjm(r, θ, φ) =
∑l=j+ 3

2

l=j− 3
2
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 , (3)

〈j,mj | l,m− l; 3
2 ,ms

〉
are the Clebsch-Gordan coeffi-

cients of j = l + s, YQ,l,m are the monopole harmonics
[34], and α labels subbands. Radial functions Rlαj(r) are
defined by ψαjm(R0 ± δR) = 0. The wavefunction (3)
contains 4 spinors, each with 4 components. YQ,l,m are
defined if l ≥ Q [34], so 2j ≥ 2Q − 3. Figs. 1c,d show
hole spectra in spherical and layer geometries. Fig. 2c-
d, show radial charge distributions for the lowest states.
The 2D layer and spherical shell spectra are nearly iden-
tical, and crossings of the corresponding states occur al-
most at the same w. In much the same way as for Hal-
dane sphere, there are finite size effects, but shell spectra
and the charge density converge to the layer limit for
large Q. Thus, we mapped layer holes over a spherical
shell. Each spherical state with total angular momen-
tum j corresponds to a layer state with n = j−Q+ 3/2.
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FIG. 2: Color online. a,b: pseudopotentials for w = 1.6
for 2Q = 10 (blue dots) and 2Q = 15 (red squares) for odd
n = 3 state (a), and even n = 3 state (b). c,d: The charge
density ρ. Vertical axis is for odd n = 3 state (c) and for even
n = 3 state (d). Black line: −3/2 spin component, contains
u0(r), red line: spin −1/2 spin component, contains u1(r),
magenta: 1/2 spin component, contains u2(r), blue: spin 3/2,
contains u3(r). The odd n=3 state, which is the ground state
between crossings in Fig.1b, has a biggest u1 admixture, and
its pseudopotential resembles that of LL1 electrons. In c,d
solid lines are for the planar case, dashed lines are for Q = 15,
and dotted lines with Q = 108 merge with solid lines.

Each spinor of spherical wavefunctions with angular mo-
mentum l corresponds to a spin component in the layer
with sz = j − l, and Rlαj(r) are spherical equivalents of
ζ(z). Hole states mix various un(r). The weights of un
in (3) and average spin of states depend on w, and can
be sizably varied by changing magnetic field.
Coulomb Interactions. The Coulomb interactionsHi =∑
ij

e2

εrij
are treated non-perturbatively. The many-body

basis is given by wavefunctions obtained when N holes
are placed in single-particle states (3) in a spherical shell
geometry. The integral of motion in a many-body hole
system is the total angular momentum J =

∑
i ji and its

z-projection. We apply the Wigner-Eckart theorem [35]

< J ′,M ′, β′|Hi|J,M, β >= δJJ ′δMM ′Vββ′(J ) , (4)

and reduce the Hilbert space by using independence of
interaction matrix elements on Jz. Here index β la-
bels the multiplets with the same total J and M , and
Vββ′(J) =< J ′, β′|Hi|J, β > are the pseudopotentials
[29]. We first compute the main contribution to the
two-body pseudopotentials of two holes, each with an
angular momentum j, without including virtual transi-
tions to other states, V 0

00(J = j + j) ≡ V0(R), where
R = j1 + j2 − J is the relative angular momentum. For
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the two-body interactions, there is one multiplet for each
allowed J . The two-hole pseudopotentials V0(R) are
shown in Fig. 2a-b for holes whose wavefunctions are
the spherical shell counterparts of the odd n = 3 and the
even n = 3 layer states, correspondingly.

Landau level mixing. The hole LL mixing parameter
e2/(ε`h̄ωC) is large, so we include virtual transitions to
other states [36, 37]. In the two-hole states with J , both
holes are in the same single-hole state. We diagonalize
the system in this basis with lowest energy acting as an
effective interaction. We include virtual transitions into
17 excited states that span the energy range 4h̄ωC [38]
due to non-regular separation between hole states. The
results are corrections δV to the two-hole pseudopoten-
tials V0(R). Differences between δV at different R in
units of e4/(`ε)2/(h̄ω0

C) are shown in Fig. 3a.

The three-body pseudopotentials V00(J ), J = j+j+j)
are due to LL mixing. At R3 = 3j − J < 9 there is
one multiplet at each value of J . The effective three-
body pseudopotential is found using a basis set made
of the three-hole states, which are comprised of single-
hole states with energy < 4h̄ωC . We extract its irre-
ducible part Ṽ (R3) like for electrons [39], by subtracting
the ground state energy of a three-hole system, whose
interactions are given by the two-body pseudopotentials
above. Differences between Ṽ at different R3 in units of
e4/(`ε)2/(h̄ω0

C) are shown in Fig.3b. See the Supplemen-
tal Material at [URL] for pseudopotentials, interaction
matrix elements and equations for Rlαj(r).

Hole FQHE at ν = 1/2. Simulating N holes at ν = 1/2
on a spherical shell at a total angular momentum j given
by 2j = 2N − 3, and magnetic monopole 2Q = 2j − 3
, we obtain a ground state J = 0 separated by the gap
from excited states for N = 6, 8, 10, 12, 14, 16. Simulat-
ing N = 6 and N = 12 systems can describe ν = 2/3
and ν = 3/5, respectively, besides ν = 1/2, and we use
only N = 8, 10, 14, 16 results. The gaps indicate an in-
compressible FQH state, like for electrons [40–42]. Fig.
3c shows N = 10 spectrum. The incompressible state for
holes persists in the entire range 1.4 < w < 2.2 includ-
ing crossings of the ground odd and even n = 3 levels.
The maximal gap occurs at w = 1.6, like in experiments
[43]. For understanding correlations in an incompress-
ible state, we calculate the many-body wavefunctions and
density matrix, the topological entanglement entropy and
the overlap with wavefunctions of model states.

We examine whether the FQH state in experiments
[43] is the 331 state. The Halperin 331 state arises for
two species of interacting electrons. The wavefunction
of the model 331 state was found in [44], and for bilayer
electrons in [17]. For the 331 state of holes at ν = 1/2,
the many-body Hilbert space is made using the n = 3
odd and even states. Its size is very large (≈ 106 for
10 particles). The calculated wavefunction overlap of the
J = 0 ground state with the 331 state [44] is only 0.165−
0.17 for all fields giving an incompressible state. It was
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FIG. 3: Color online: a. LL mixing corrections to the two-
hole pseudopotentials. Red: δV (R = 3) − δV (R = 1); blue:
δV (R = 5) − δV (R = 1), w = 1.6. b. Three-hole irre-

ducible pseudopotentials. Red: Ṽ (R3 = 5) − Ṽ (R3 = 3);

blue: Ṽ (R3 = 6) − Ṽ (R3 = 3), w = 1.6. c. Spectra for 10
holes at ν = 1/2. J = 0 ground state (red circle) separated
by a gap indicates an incompressible state. d. Pair quasihole
excitations of ν = 1/2 state for N = 10. Values of overlap be-
tween low lying excitations (red circles) and the Moore-Read
excitations are shown.

suggested for bilayers [45] that no interlayer tunneling
favors the 331 state. For holes, crossings correspond to
no single-hole tunneling. However, mixing induced by
hole-hole interactions due to the non-conservation of the
”pseudospin” comprised of n = 3 odd and even states
takes the role of tunneling and precludes the 331 state.

The MR state is favored by a sizable weight of u1 and
by an average spin ∼ −1 of both n = 3 states. We test
the MR state of ν = 1/2 holes using (i) a Hilbert space
built using the ground state away from degeneracies, and
(ii) a Hilbert space made of both n = 3 states. In case
(i) we include LL mixing accounting for all higher states,
and in case (ii), the closest state to the ground state is
included exactly. Using the obtained wavefunctions, we
find overlaps of the model MR ground state [46] with the
ground state wavefunctions in 8–16 hole systems ranging
from 0.8 to 0.6. We also examine excitations, Fig. 3d.
Removing one flux quantum in the ground state gives two
quasielectrons in a hole system, and adding flux quantum
creates two quasihole excitations. The MR quasiholes
obey non-Abelian statistics [4]. We find the overlap of
the wavefunctions of quasiholes in ν = 1/2 N = 10 hole
system with the wavefunctions of MR quasiholes ∼ 0.65.

Topological entnagelement entropy for ν = 1/2 holes.
The universal aspects of the FQHE are efficiently
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FIG. 4: Entanglement entropy for single ground level basis
(upper panel) and two-level basis (lower panel). The insets
show fitting for NA = 10 orbitals. Red dots: the MR state.

revealed by investigating entanglement properties of
ground states [47–51]. Entanglement entropy gives a
measure of correlations in FQHE. The system is parti-
tioned in blocks A and B, and the reduced density ma-
trix ρA is computed by tracing over B degrees of freedom.
Bipartite topological entropy is SA = −TrρA ln ρA. 2D
systems exhibit topologically ordered states with correla-
tions not contained in usual correlation functions. It was
shown that for these states, SA = αL − γ + O(L−1), L
is the length of the boundary between A and B, and α is
a non-universal constant. The γ-term is the topological
entanglement entropy (TEE), which is the logarithm of
the inverse quantum dimension [47–51]. This method was
applied successfully to probe the Laughlin correlations at
ν = 1/m and MR correlations at ν = 5/2 [52].

We first compute the TEE for Hilbert space (i). Using
the orbital partition, with block A including the first NA
orbitals near the south pole of the spherical shell, and
other orbitals in the block B, entanglement entropy is
computed for N = 8, 10, 14, 16 holes and NA = 2 − 10
orbitals. For each number of orbitals, we obtain the ther-
modynamic limit of entanglement entropy by parabolic
fit of the data. This limit of SA is linear in

√
NA. The

y−intercept shows the topological part −γ. A value of
γ = 1.04 corresponds to the MR state [49, 51]. Nu-
merical calculation for the MR state of electrons gives
γ = 1.1± 0.3. Our result γ1 = 1.4± 0.4 agrees well with
these values indicating a MR state, as shown in Fig.4
upper panel.

For holes populating the two lowest levels (case ii), we
use the density matrix renormalization group (DMRG)
for N = 14, 16, because very large Hilbert spaces makes
exact diagonalization difficult. We start with few orbitals
of the spherical shell, dividing the system into L and R
parts. Adding orbitals between them, L • •R, we ob-
tain the ground state density matrix. Tracing it over
•R and diagonalizing the reduced part, we retain up to
2000 states with largest eigenvalues, forming the basis L
used in the next iteration. The procedure stops when
the required accuracy is reached [53, 54]. Here we obtain
γ2 = 1.0± 0.4, as shown in Fig.4 lower panel. This value
is larger than ln

√
6 ≈ 0.9, where 6 is the degeneracy of

MR state on torus, indicating a non-Abelian state [49].

Conclusion. We proposed the method to study the
quantum Hall hole systems in a spherical shell geome-
try. We demonstrate the incompressible FQH state at
ν = 1/2 of the hole ground state in a magnetic field.
The hole liquid at ν = 1/2 is not in the Halperin 331
state but is described by the Moore-Read-like correla-
tions, with sizable overlap of wavefunctions of hole excita-
tions and the Moore-Read Pfaffian excitations. The topo-
logical entanglement entropy indicates the non-Abelian
character of correlations for ν = 1/2 hole state. Exper-
imentally, besides direct interference tests aimed at the
discovery of non-Abelian statistics [1, 6], it is interesting
to compare transport characteristics and response to hy-
drostatic pressure[55] of ν = 1/2 hole state and ν = 5/2
electron state in high magnetic fields.
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