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ABSTRACT 

We predict a predominance diagram for electron defects in the temperature-hydrostatic 

stress space for SrTiO3 by combining density functional theory and the quasiharmonic 

approximation. We discovered two regimes where small polarons dominate; under tensile stress 

at lower temperature due to a larger relaxation volume of the defect Ω, and under compressive 

stress at higher temperature due to a smaller Ω and larger formation entropy. This provides new 

means to modulate the electronic conductivity via controlling the underlying charge carrier.  

Furthermore, the results challenge the common association between larger Ω and charge 

localization by demonstrating that at high temperature the free electron can induce larger Ω 

compared to the smaller polaron. This finding is attributed to the ability of the free electron to 

generate greater vibrational entropy upon finite isothermal expansion. 
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An electron can move freely in a periodic crystal unless the lattice is polarizable, in 

which case the electron can begin to exhibit localization by deforming surrounding ions to form 

so-called large polaron. Assisted by lattice vibrations, electron localization can become enhanced 

to be self-trapped on a single ion. The latter is termed a small polaron or a self-trapped electron. 

While large polarons traverse crystals in a rapid band-like fashion, small polarons tend to hop 

slowly from one ion to the next [1]. Holstein predicted that in a given polarizable crystal, a 

transition from large to small polaron behavior occurs as the temperature increases above half the 

Debye temperature ΘD [2]. Understanding and controlling the extent of electron localization in 

the family of metal oxides underpin their performance in various applications. For example, 

delocalization is desired for increasing the electronic conductivity of oxides that function for 

water splitting and CO2 reduction [3]. On the other hand, the ease of creating oxygen vacancies 

in reducible metal oxides is generally correlated with localizing electrons on neighboring host 

cations; that is reducing them  [4–6]. Temperature and stress are readily available 

thermodynamic forces to tune the degree of localization of electronic defects. In this 

communication, we reveal how the localization of electron polarons in the metal oxide SrTiO3 is 

controlled by these forces, primarily via changes in relaxation volume of electronic defects with 

temperature and pressure. 

Strontium titanate SrTiO3 is an archetype of the versatile perovskite oxides family. The 

electronic defects (electrons and holes) of bulk SrTiO3 give rise to desirable properties 

unpossessed by the underlying perfect crystal such as superconductivity [7], ferromagnetism  [8], 

and blue-light luminescence  [9]. Thus, extensive experimental  [10–14] and theoretical  [15–17] 

works have probed the degree of localization of electronic defects in SrTiO3. Experiments have 

indicated that both large  [10,11] and small  [12,13] electron polarons can exist or even coexist 
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 [14] in bulk SrTiO3. These experiments were rationalized [16] by suggesting that in the dilute 

limit (i.e., less than 1% defect per unit cell) large polarons prevail, and at higher doping 

concentrations small polarons prevail. Density functional theory (DFT) calculations at 

temperature of 0 K consistently predict the predominance of free electrons over small polarons 

 [15,16], where it is noted that free electrons are the accessible representation of large polarons in 

DFT calculations. 

 Notwithstanding these meticulous studies, we still lack a clear thermodynamic 

description of the electronic defects in SrTiO3 and in metal oxides in general. For example, 

SrTiO3 does not adhere [10] to the Holstein prediction [2] of a transition from large to small 

polaron behavior at ΘD/2. Moreover, the relaxation volumes for polarons have not been reported 

experimentally for SrTiO3 and are challenging to obtain theoretically for any charged defect in a 

semiconductor [18,19]. The relaxation volume of a defect Ω is the change in crystal volume upon 

attaining full relaxation including this defect. This quantity is fundamental because it both 

dictates the chemical expansivity  [19,20] and is related directly to the absolute deformation 

potentials of the conduction and valence bands in the case of free electrons and holes, 

respectively [18,19]. Finally, it is well established that mechanical stresses and strains can 

substantially alter the concentration [21,22] and mobility of both ionic [23] and electronic 

defects [24] in semiconductors and insulators. In spite of this, there are few reported studies 

examining effects of mechanical stress on the degree of localization of the electronic 

defects [25]. For example, DFT calculations at 0 K  [17] indicated that tensile hydrostatic stress 

facilitates hole self-trapping in perovskite titanates based on energetic rather than enthalpic 

considerations. It is not clear whether this prediction holds when the enthalpy of self-trapping is 

explicitly computed at 0 K.  
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In this communication we combine density functional theory and the quasiharmonic 

approximation (QHA) to depict the thermodynamic stability of small and large polarons in the 

temperature T – pressure P space for SrTiO3. This coupling between DFT and QHA has been 

applied successfully by others to sample finite T and P effects and quantum mechanical zero 

point energies for perfect crystals [26,27] and defects in metals [28]. However, to our 

knowledge, employing DFT and QHA to quantitatively decipher the coupled effect of 

thermodynamic forces (T and P) on a charged defect in a semiconductor has not been reported 

previously. We identified two stability zones for the small polarons in the T-P space; at low T 

under tensile stress and at high T under compressive stress. In the first zone, predominance of 

small polarons is attributable to the larger Ω of this defect, as compared with free electrons. In 

the second zone, a combination of smaller Ω and larger formation entropy stabilize the small 

polaron. The unexpectedly larger Ω for the free electron at high T is attributed to its ability to 

generate more vibrational entropy upon finite isothermal expansion. 

DFT calculations were conducted using the projector-augmented plane-wave (PAW) 

method  [29,30] as implemented in VASP code  [31–34]. The exchange correlation was described 

using the revised Perdew, Burke, and Ernzerhof functional for solids (PBEsol)  [35] equipped 

with on-site Coulomb interaction terms U  [36] on Ti 3d states and on O 2p states. Following the 

approach of Ref.  [17], we determined that UTi=5 eV and UO=8 eV achieve a near piecewise 

linearity in the total energy as a function of fractional occupation between unfilled and filled 

polaronic states on Ti and O, respectively  [37]. To describe the stability of small polarons vs. 

free electrons (the latter are DFT accessible representation of large polarons), we define the 

Gibbs free energy of self-trapping of the electron polaron on a Ti cation as 

),,(),(),( PTGPTGPTG freesmalltrapself −=−     (1) 
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where Gsmall and Gfree are the Gibbs free energies of the defective crystals that contain the small 

polaron and the free electron, respectively. In each case PVTSUG vib +−= . In this relation, U 

is the internal energy which is the sum of the 0 K DFT energy and the vibrational energy 

inclusive zero point energy, Svib
 is the vibrational entropy, and V is the equilibrium volume. 

Contributions from other entropies are discussed separately. U, Svib, and V are all functions of T 

and P determined through the quasiharmonic approximation. In addition, since pressure is related 

directly to hydrostatic stress, the two terms are used interchangeably here. QHA dynamical 

matrices for perfect crystal, small polaron, and free electron were calculated using frozen phonon 

approximation with the aid of the code PHONOPY  [38]. We note that trapselfG −  is a purely 

thermodynamic quantity that does not include any notion of activation barriers. As such it cannot 

help in deciding whether the higher free energy state co-exists with the lower free energy state. 

Only the predominance of the low free energy state can be ascertained based on trapselfG − . In this 

work, trapselfG −  is a faithful representation for the polaronic stability at the concentration and 

defect order in the computational supercells from which it is derived. It is also our best 

computationally-affordable approximation for the dilute limit small polaron stability. More 

details, including a comparison with hybrid functional calculations for 0 K analysis of electron 

and hole self-trapping energies, are provided in the Supplemental Material (SM)  [39].  

 The bottom of the conduction band of SrTiO3 is composed of Ti t2g states. A free electron 

partially occupies these states, as schematically shown in FIG. 1(a). An electron small polaron 

occupies an in-gap state derived from a dxy-like orbital, and is localized on a single Ti ion to 

result in Ti3+ as shown in FIG. 1(b).  



6 

 

 

FIG. 1. (color online). Visualization of a spin density isosurface shown in yellow of (a) a free 
electron taken at 0.0018 e/Å3 and (b) a small polaron taken at 0.0030 e/Å3. For illustration 
purposes only, the free electron spin density was generated using a low accuracy single k-point. 
Accurate calculations used for the rest of the work do not yield a net spin for the free electron 
inside the PAW sphere. Blue (large), gray (medium), and magenta (small) balls represent Sr, Ti, 
and O, respectively.  Visualization rendered with the software VESTA  [40]. 
  

FIG. 2(a) depicts the resulting T-P predominance map of these two electronic defects in 

SrTiO3, based on Gself-trap which is expressed in units of meV in FIG. 2(b). It is insightful to first 

examine other thermodynamic potentials of self-trapping separately and sequentially, from FIG. 

2(c) to 2(e), with the understanding that ultimate predominance is decided by Gself-trap. Before 

discussing these maps, we clarify their boundaries in the T-P space. The largest accessible tensile 

strain at 0 K is 0.035 in <001>, beyond which an optical zone center phonon softens (SM Fig.S4 

 [39]). Thus, two equations of state are needed to describe the crystal, one below and one above 

this critical strain. Here we restrict the analysis to strains below 0.035. The largest accessible 

compressive strain at 0 K is 0.010 in <001>, beyond which it is not possible to stabilize the small 

polaron solution in DFT. The black dashed lines in all panels of FIG. 2 point to the experimental 

boundary between the cubic and tetragonal phases of SrTiO3 [41]. The highest temperature (1000 
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K) is chosen to remain within the range of validity of the QHA, since the corresponding thermal 

energy is less than the energy of the fastest vibrational mode at the largest tensile strain 

considered here.  

 

FIG. 2 (color online) (a) Predominance map of electronic defects as a function of temperature 
and pressure in cubic SrTiO3 calculated quasiharmonically based on self-trapping Gibbs free 
energy. (b) Gself-trap in meV as a function of T and P corresponding to the map in (a). 
Predominance maps based on other thermodynamic potentials are shown in (c) internal energy, 
(d) Helmholtz free energy, and (e) enthalpy. In (a), (c), (d) and (e) green and red indicate small 
polaron and free electron predominance zones, respectively. The black dashed line in all panels 
represents the experimental boundary between the cubic and tetragonal phases of SrTiO3 from 
Ref. [41]. Cubic SrTiO3 is stable above the boundary. 
 

 With those boundaries in place, if we limit the comparison of stability between the free 

electron and small polaron to only the internal energy (U) as in FIG. 2(c), then the free electron 

predominates except at high temperature mainly in the tensile zone, where the small polaron is 

dominant due to its vibrational energy Uvib. Next, FIG. 2(d) shows that, based on Helmholtz free 

energy of self-trapping, the free electron is always more stable. In the tensile zone, Svib promotes 

stabilization of the free electron, thus concealing the role played by Uvib in stabilizing the small 
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polaron in FIG. 2(c). However, in the compressive zone the small polaron does in fact generate 

more Svib
 but this is not enough for it to predominate. These observations are corroborated by 

explicit calculation of Svib of formation for both defects in SM Fig.S5 [39]. The predominance 

map based on the enthalpy of self-trapping is shown in FIG. 2(e). Under tensile hydrostatic stress 

where P < 0, a larger positive relaxation volume Ω of the defect implies a greater minimization 

of the enthalpy (and hence Gibbs energy). Conversely, a smaller positive Ω would be preferred 

under compressive stress where P > 0. As we present below, Ω for both of the electronic defects 

is positive throughout this T-P space, but the small polaron exhibits a larger Ω at low T tensile 

stress and a smaller Ω at high T compressive stress compared to the free electron. Consequently, 

the new predominance zones of the small polaron that appear in FIG. 2(e) on top of those already 

present in FIG. 2(c) can be explained by the PV term.  

The resulting predominance map in FIG. 2(a) illustrates the coupling between these 

electronic defects and thermomechanical forces based on Gself-trap. First, we note that at P = 0, we 

do not observe a transition at ΘD/2 from a free electron at low T to a small polaron at high T. 

This is in accordance with experiments [10] but in contrast to the Holstein model  [2]. That 

model is insightful, but its simplifying assumptions of a one-dimensional crystal and one phonon 

mode do not capture the complexity of SrTiO3. Second, the predominance zone of the small 

polaron under tensile stress and low temperature is due chiefly to the PV term for which the 

small polaron has larger Ω. Lastly, the predominance zone of the small polaron under 

compressive stress and high temperature is due to the synergy between PV and –TS terms. In 

FIG. 2(b) we show the magnitude Gself-trap(T, P). This graph shows that T and P can vary Gself-trap 

between -180 meV and +360 meV. In SM Fig. S6  [39] we provide the magnitude of self-

trapping based on other thermodynamic potentials. This rich thermodynamic picture revealed by 
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the QHA would be overshadowed if analysis was restricted only to 0 K and/or constant volume 

investigations (SM section 5  [39]).  

 The dependence of Ω on T and P has far reaching implications that do not appear to have 

been considered for electronic defects in semiconductors  [18,42] such as SrTiO3. In FIG. 3(a) 

and (b), we show Ω for free electron and small polaron as a function of T and P. The positivity of 

Ω for both defects indicates that both lead to lattice expansion, which is also known as chemical 

expansion [43]. Moreover, on an isotherm, Ω increases from compressive to tensile stress for 

both defects as would be expected intuitively. In addition, ( ) 0|/ >∂Ω∂ PT  for both defects, 

except for the small polaron at stresses exceeding -2 GPa. The most intriguing observation is the 

temperature dependence of the ratio of the two relaxation volumes, shown in FIG. 3 (c).  

 

FIG. 3 (color online) Pressure dependence of relaxation volume Ω isotherms for (a) free electron 
and (b) small polaron. (c) The ratio of the relaxation volumes of both defects as a function of T 
and P. 
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 At 0 K, Ωsmall > Ωfree , consistent with the notion that charge localization leads to larger 

chemical expansion [44,45]. However, ( ) ( ) PfreePsmall TT |/|/ ∂Ω∂<∂Ω∂  and as such there is a 

transition temperature (that depends on pressure) above which the free electron exhibits a larger 

Ω than the small polaron. This result implies that ( ) ( ) PfreePsmall TVTV |/|/ ∂∂<∂∂  where V is the 

volume of the crystal containing the electronic defect. In other words, the thermal expansion of 

SrTiO3 with a small polaron is smaller than the thermal expansion of SrTiO3 with a free electron 

(See SM Fig. S9  [39]). The origin of this feature can be understood via a Maxwell relation to 

obtain ( ) ( ) TfreeTsmall PSPS |/|/ ∂∂>∂∂ , which indicates that upon finite isothermal expansion the 

small polaron generates less entropy than the free electron (See SM section 7  [39]). Since only 

Svib is considered here, we rationalize this result by observing that the free electron is uniformly 

spread over Ti ions, and thus it leads to uniform expansion of all cation-anion bonds. This bond 

loosening lowers the accessible vibrational states at a given temperature and generates more Svib. 

The localization of the small polaron, however, leads to a complex relaxation pattern around the 

Ti3+ site as schematically shown in FIG. 4(c, d). Under either hydrostatic tension or compression, 

with respect to the defect-free crystal the first-neighbor anions are repelled (SM Table S4  [39]). 

The bonds between these anions and Ti3+ exhibit a Jahn-Teller distortion [46] and are relatively 

elongated and reduced in stiffness (FIG. 4(c), red), which increases Svib. Simultaneously, first-

neighbor Ti cations are attracted to the Ti3+ site and the bonds between them and first-neighbor 

anions are shortened (FIG. 4(d), blue), leading to a harder vibrational spectrum and less Svib. The 

net effect is that the small polaron generates less Svib under finite isothermal expansion. This is 

exemplified in FIG. 4(a, b) depiction of phonon density of states at 800 K. The peak spanning 60 

meV to 80 meV is derived predominantly from oxygen vibrations  [47]. Hydrostatic expansion 
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from +3 GPa to 0 GPa left-shifts this peak for both the free electron and small polaron. However, 

for only the free electron, this entire peak is shifted below 800kB (black vertical line in FIG. 

4(a,b)). Thus, it is available for phonon occupation at this temperature and pressure. The same 

peak in the case of the small polaron is broader and part of it is split to form a smaller peak at 

higher energy. As such part of it remains above 800kB upon isothermal expansion. The choice of 

the specific pressures and temperature implemented in FIG. 4 (a,b) is because they clearly 

illustrate visually a phenomenon that actually affects the full density of states; the integrated 

effect is reflected in the predominance map of FIG. 2 (a) and the overall formation vibrational 

entropies of both defects as a function of T and P are calculated explicitly in SM Fig. S5  [39]. 

Clearly, more Svib is generated in the case of the free electron. 
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FIG. 4 (color online) Phonon density of states in arbitrary units (a. u.) for SrTiO3 containing free 
electron and small polaron at T = 800 K and (a) P = 3 GPa and (b) P = 0 GPa. These plots were 
obtained by spline interpolation. The black line represents 800 K in energy units of Boltzmann 
constant (800kB). Visualizations of the lengthened (red) and shortened (blue) Ti-O bonds around 
a small polaron are shown in (c) and (d), respectively. Sr ions were removed for clarity and the 
rest of the color code is the same as in FIG. 1.  
 

The relaxation of the small polaron encompasses both softening and hardening of the 

vibrational spectrum. Thus, it is anticipated that under tensile stress the softening component 

dominates, whereas under compressive stress the hardening component takes over. This the 
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underlying reason for the sign reversal of ( ) PT |/ ∂Ω∂ at -2 GPa in FIG. 3(b) and the presence of 

a corresponding minimum in the small polaron formation Svib isotherms in SM Fig. S5(a)  [39]. 

The strong dependence of Ω on T and P presented here in the case of the electronic defects could 

possibly explain the observed temperature-dependent chemical expansion coefficient in Fe-

doped SrTiO3 [48]. Conclusive analysis, however, requires computing Ω(T , P) for relevant 

intrinsic and extrinsic defects in doped SrTiO3. 

Another utility of our analysis is extraction of the absolute hydrostatic deformation 

potential of the conduction band edge ca  from freeΩ . Because of the ambiguity in defining 

pressure in charged defects calculations  [18], freeΩ  was not calculated directly but obtained 

from ca  [18,19]. The latter is obtained from non-trivial DFT calculations [49]. Here the pressure 

was obtained unambiguously by fitting the defective crystal energy vs. volume to an equation of 

state, and thus it is possible to directly compute freeΩ  . From )0,0( ==Ω PTfree  we obtain a 

value for ca of -10.4 eV. It is not possible to validate this prediction given the wide scatter in the 

suggested values reported to date for ca in SrTiO3 (-0.33 eV  [50] to -15 eV  [51]) and the 

absence of direct experimental measurement  [19,50–53]. This new approach to compute ca  

offers prediction of T and P dependence of ca  at a low computational cost, but further studies 

are needed to confirm its accuracy.  

Future extensions of this work can investigate the effects of the large anharmonicity of 

SrTiO3 beyond the QHA  [54] and its large LO-TO phonon splittings  [55]. We did not account 

here for concentration-dependent quantities such the electronic and configurational entropies. 

These are coupled to other defects via the chemical potential of electrons (Fermi level). Thus, it 
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is not possible to address their effects without accounting for other important point defects in the 

analysis such as oxygen vacancies  (section 9 in SM [39]). 

 In summary, we combined DFT and the QHA to enable the assessment of the effect of 

temperature and pressure on charged defects in semiconductors. By applying this approach to 

SrTiO3, we elucidated the rich thermodynamics underlying the free energy landscape of free 

electrons and small polarons. We showed that the combined action of temperature and 

mechanical stress can tune the relative stability of these electronic defects. We anticipate that the 

results presented here for electrons in SrTiO3 are applicable for the family of titanate perovskites. 

In order to deduce the associated electronic conductivity changes, kinetic analyses of stress-

dependent mobility and defect co-existence are needed. However, to a first approximation the 

electronic defect predominance uncovered here can guide the design of optimal thermodynamic 

functional conditions to promote the desirable form of electronic defects in electronic or 

electrochemical applications. For example, at a given temperature, mechanical stress can be 

tuned to promote free electrons in electronics and photoelectrodes to accelerate electronic 

conductivity. Alternatively, stress can be altered to stabilize small polarons and decelerate 

electronic conductivity for design of protective corrosion-resistant coatings.  

This work was supported primarily by the MRSEC Program of the National Science 

Foundation (NSF) under award number DMR – 1419807. We are grateful for the computational 

support from NSF through the XSEDE Science Gateways program under allocation TG-DMR 

140065. 

[1] J. Appel, in Solid State Phys., edited by D. T. and H. E. Frederick Seitz (Academic Press, 1968), pp. 
193–391. 
[2] T. Holstein, Ann. Phys. 8, 343 (1959). 
[3] A. J. E. Rettie, W. D. Chemelewski, D. Emin, and C. B. Mullins, J. Phys. Chem. Lett. 471 (2016). 
[4] N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 
89, 166601 (2002). 



15 

 

[5] M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep. 62, 219 (2007). 
[6] C. Gionco, M. C. Paganini, E. Giamello, R. Burgess, C. Di Valentin, and G. Pacchioni, Chem. Mater. 
25, 2243 (2013). 
[7] J. F. Schooley, W. R. Hosler, and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964). 
[8] W. D. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. A. 
Crooker, Nat. Mater. 13, 481 (2014). 
[9] D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, 
Y. Shimakawa, and M. Takano, Nat. Mater. 4, 816 (2005). 
[10] G. M. Choi, H. L. Tuller, and D. Goldschmidt, Phys. Rev. B 34, 6972 (1986). 
[11] J. L. M. van Mechelen, D. van der Marel, C. Grimaldi, A. B. Kuzmenko, N. P. Armitage, N. Reyren, 
H. Hagemann, and I. I. Mazin, Phys. Rev. Lett. 100, 226403 (2008). 
[12] A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, M. Abbate, F. M. F. de 
Groot, M. T. Czyzyk, J. C. Fuggle, O. Strebel, F. Lopez, M. Domke, and G. Kaindl, Phys. Rev. B 46, 9841 
(1992). 
[13] Y. Yamada, H. K. Sato, Y. Hikita, H. Y. Hwang, and Y. Kanemitsu, Phys. Rev. Lett. 111, 047403 
(2013). 
[14] T. Kohmoto, D. Ikeda, X. Liang, and T. Moriyasu, Phys. Rev. B 87, 214301 (2013). 
[15] A. Janotti, J. B. Varley, M. Choi, and C. G. Van de Walle, Phys. Rev. B 90, (2014). 
[16] X. Hao, Z. Wang, M. Schmid, U. Diebold, and C. Franchini, Phys. Rev. B 91, 085204 (2015). 
[17] P. Erhart, A. Klein, D. Åberg, and B. Sadigh, Phys. Rev. B 90, 035204 (2014). 
[18] F. Bruneval, C. Varvenne, J.-P. Crocombette, and E. Clouet, Phys. Rev. B 91, 024107 (2015). 
[19] A. Janotti, B. Jalan, S. Stemmer, and C. G. V. de Walle, Appl. Phys. Lett. 100, 262104 (2012). 
[20] D. Marrocchelli, S. R. Bishop, H. L. Tuller, and B. Yildiz, Adv. Funct. Mater. 22, 1958 (2012). 
[21] B. Yildiz, MRS Bull. 39, 147 (2014). 
[22] S.-Y. Choi, S.-D. Kim, M. Choi, H.-S. Lee, J. Ryu, N. Shibata, T. Mizoguchi, E. Tochigi, T. Yamamoto, 
S.-J. L. Kang, and Y. Ikuhara, Nano Lett. 15, 4129 (2015). 
[23] A. Kushima and B. Yildiz, J. Mater. Chem. 20, 4809 (2010). 
[24] K. Rim, J. Chu, H. Chen, K. A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, 
J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H. S. Wong, in 2002 
Symp. VLSI Technol. Dig. Tech. Pap. Cat No01CH37303 (2002), pp. 98–99. 
[25] A. L. Shluger and A. M. Stoneham, J. Phys. Condens. Matter 5, 3049 (1993). 
[26] S. Baroni, P. Giannozzi, and E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010). 
[27] K. Umemoto, E. Sugimura, S. de Gironcoli, Y. Nakajima, K. Hirose, Y. Ohishi, and R. M. 
Wentzcovitch, Phys. Rev. Lett. 115, 173005 (2015). 
[28] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, 
Rev. Mod. Phys. 86, 253 (2014). 
[29] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). 
[30] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 
[31] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993). 
[32] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994). 
[33] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). 
[34] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 
[35] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, 
and K. Burke, Phys. Rev. Lett. 100, 136406 (2008). 
[36] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 
1505 (1998). 
[37] S. Lany and A. Zunger, Phys. Rev. B 80, 085202 (2009). 



16 

 

[38] A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008). 
[39] See Supplemental Material at [URL Will Be Inserted by Publisher] for Supplemental Methods, Soft 
Normal Mode, Vibrational Entropy, Slef-Trapping Potentials, and Thermal Expansion of Defective and 
Perfect SrTiO3. (n.d.). 
[40] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). 
[41] M. Guennou, P. Bouvier, J. Kreisel, and D. Machon, Phys. Rev. B 81, 054115 (2010). 
[42] S. Grieshammer, T. Zacherle, and M. Martin, Phys. Chem. Chem. Phys. 15, 15935 (2013). 
[43] S. R. Bishop, D. Marrocchelli, C. Chatzichristodoulou, N. H. Perry, M. B. Mogensen, H. L. Tuller, 
and E. D. Wachsman, Annu. Rev. Mater. Res. 44, 205 (2014). 
[44] D. Marrocchelli, S. R. Bishop, H. L. Tuller, G. W. Watson, and B. Yildiz, Phys. Chem. Chem. Phys. 
14, 12070 (2012). 
[45] N. H. Perry, S. R. Bishop, and H. L. Tuller, J. Mater. Chem. A 2, 18906 (2014). 
[46] G. Corradi, I. M. Zaritskii, A. Hofstaetter, K. Polgár, and L. G. Rakitina, Phys. Rev. B 58, 8329 
(1998). 
[47] N. Choudhury, E. J. Walter, A. I. Kolesnikov, and C.-K. Loong, Phys. Rev. B 77, 134111 (2008). 
[48] N. H. Perry, J. J. Kim, S. R. Bishop, and H. L. Tuller, J. Mater. Chem. A 3, 3602 (2015). 
[49] C. G. Van de Walle and R. M. Martin, Phys. Rev. Lett. 62, 2028 (1989). 
[50] M. Stengel, Phys. Rev. B 92, 205115 (2015). 
[51] C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler, and E. R. Pfeiffer, Phys. Rev. 163, 380 
(1967). 
[52] A. N. Morozovska, E. A. Eliseev, G. S. Svechnikov, and S. V. Kalinin, Phys. Rev. B 84, 045402 
(2011). 
[53] A. M. Dehkordi, S. Bhattacharya, T. Darroudi, H. N. Alshareef, and T. M. Tritt, J. Appl. Phys. 117, 
055102 (2015). 
[54] T. Tadano and S. Tsuneyuki, Phys. Rev. B 92, 054301 (2015). 
[55] W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994). 
 


