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We investigate the influence of spatial dispersion on atom-surface quantum friction. We show
that for atom-surface separations shorter than the carrier’s mean free path within the material, the
frictional force can be several orders of magnitude larger than that predicted by local optics. In
addition, when taking into account spatial dispersion effects, we show that the commonly used local
thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained
by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum fric-
tion. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections
to local thermal equilibrium not only change the magnitude but also the distance scaling of quantum
friction.

I. INTRODUCTION

Quantum fluctuations give rise to numerous fascinat-
ing physical effects, especially on sub-micrometer scales.
Some of these phenomena have been extensively studied
and carefully measured, thus demonstrating their rele-
vance for both fundamental physics and future technolo-
gies [1, 2]. Recently, there has been a renewed interest
in fluctuation-induced interactions in nonequilibrium sys-
tems. A prominent example is quantum friction [3, 4], the
quantum drag force between two uncharged, polarizable
objects in relative motion. A large part of the existing lit-
erature on quantum friction considers an atom (or some
other microscopic object) moving in front of a flat sur-
face, where the corresponding material is modeled using
local optics, i.e. assuming an optical response described
by a permittivity that only depends on frequency. [5–14].
Within the assumption of local optics, several concep-
tual questions have been previously addressed, including
the functional dependence of the frictional force on the
atom’s velocity [11, 14, 15], the impact of non-Markovian
effects [16], and even the relevance of nonequilibrium cor-
relations [17].

At short distances from the surface, however, a local
description of the material becomes inadequate. Earlier
works [18–21] have already shown that using a nonlocal
description can lead to corrections to equilibrium dis-
persion forces [22]. Nonlocality is to be understood in
the sense that spatial dispersion is included in an op-
tical response, i.e. the material’s permittivity depends
on both frequency and wavevector. Also, in the case of
surface-surface quantum friction, different material mod-
els that include spatial dispersion have been used to de-
scribe the drag force [4, 23–27]. The authors of these
works have demonstrated that for short distances spa-
tial nonlocality can lead to an enhancement of the force
relative to the case of a local material model [23–26].
These works, however, have resorted to the so-called lo-
cal thermal equilibrium (LTE) approximation, where it
is assumed that the subsystems in relative motion are at
equilibrium with their immediate surroundings. Such a

procedure allows to utilize results of equilibrium thermo-
dynamics, like the fluctuation-dissipation theorem (FDT)
[28], but neglects the contribution due to nonequilibrium
correlations [17, 29]. In fact, recent work has shown that
the LTE approximation is not well justified for atom-
surface quantum friction and underestimates the magni-
tude of the drag force [17]. Since the LTE approximation
relies on a short correlation length of the fluctuations that
mediate the interaction, one can expect that, when spa-
tial dispersion is taken into account, the deviation from
the LTE result is even larger than in the local optics
treatment.

In this work, we study effects of spatial dispersion in
atom-surface quantum friction and compare the results
obtained using the LTE approximation with those ob-
tained using a full nonequilibrium approach. We show
that spatial dispersion enhances the failure of the LTE
approximation, resulting in a 95% deviation from the
full nonequilibrium result compared to the 80% devia-
tion previously reported within local optics [17]. In ad-
dition, we show that the inclusion of spatial nonlocality
strongly affects the functional distance dependence of the
frictional force in the low-velocity limit. In contrast to
the local optics case, where both the LTE and the full
nonequilibrium approach predict the same distance scal-
ing law for the quantum frictional force, their distance
behaviors are different in the presence of spatial disper-
sion.

II. ATOM-SURFACE QUANTUM FRICTION

Consider an atom driven by an external force and mov-
ing with non-relativistic velocity (|v| � c) at constant
height za > 0 parallel to a conducting isotropic half-
space. The atom is modeled as an electric dipole, de-

scribed by the quantum operator d̂(t). Due to the inter-
action of the atom with the surrounding quantum elec-
tromagnetic field a drag force will progressively balance
the external drive until the system reaches a nonequi-
librium steady state, where the motion continues with
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constant velocity. Dissipation in the material gives rise
to a nonzero memory time, such that in the nonequilib-
rium steady state we can ignore the transient acceleration
process and assume that the atom has reached the tra-
jectory ra(t) = r0 + vxtx [15, 16] (we assume that the
motion is along the x-direction). In an earlier work [16],
we have shown that the zero-temperature drag force felt
by the atom in such a situation can be written as

F = −2

∫ ∞
0

dω

∫
d2p

(2π)2

× pxtr [SR(pxvx − ω, vx) ·GsI(p, za, ω)] , (1)

where p = |p| =
√
p2x + p2y is the parallel component

of the three-dimensional electromagnetic wave vector
k = pxx+ pyy+ qz [30]. For symmetry reasons, the fric-
tional force is only along the direction of the motion, i.e.
F = Fx. Quantum friction is determined by the velocity-
dependent nonequilibrium power spectrum tensor of the
dipole fluctuations, S(ω, vx), and by the Fourier trans-
form (in time and xy-direction) of the electromagnetic
surface Green tensor, G(p, za, ω). In Eq. (1) and in the
remainder of the paper the subscript R (I) denotes the
real (imaginary) part of an expression and the superscript
s gives the symmetric part of a tensor [30]. The Green
tensor is given by the sum of a vacuum contribution G0

and a scattering contribution g. Because of Lorentz in-
variance, only the latter contributes to the final result
[13, 31, 32]. In all this work we focus on atom-surface
distances within the surface’s near-field region. In this
case the part of the scattered Green tensor relevant to
quantum friction [30] is

gs(p, za, ω) =
pe−2zap

2ε0
r(ω, p)

[
p2x
p2

xx +
p2y
p2

yy + zz

]
,

(2)

where ε0 is the vacuum permittivity. The description of
the material properties enters via the transverse magnetic
reflection coefficient, r(ω, p), which in general depends on
both the frequency and, for symmetry reasons, the mod-
ulus of the wavevector p. In a spatially local description
of the material and in the near-field limit, the depen-
dence on the wave vector disappears and the reflection
coefficient is only a function of frequency [13, 16].

In order to calculate the nonequilibrium power spec-
trum, we model the dipole’s internal dynamics as a har-
monic oscillator [16]

∂2t d̂(t) + ω2
ad̂(t) = ω2

aα0 · Ê(ra(t), t), (3)

where ωa is the oscillator’s frequency corresponding to
the atom’s characteristic dipolar resonance frequency
[33], Ê is the electric field, and α0 is the static polar-
izability tensor, assumed to be symmetric for simplicity
(it is proportional to a projector parallel to the direction
of the dipole moment). We suppose that the oscillator
has no intrinsic dissipation and that all the dissipative

dynamics arises from the coupling to the electromagnetic
field. The harmonic oscillator model allows for an ana-
lytical expression of S(ω, vx) given by [17]

S(ω, vx) =
~
π

[θ(ω)αI(ω, vx) + J(ω, vx)] , (4)

where θ(ω) is the Heaviside-theta function. In contrast to
the LTE approach which relies on the equilibrium FDT,
this nonequilibrium FDT (4) contains the extra term

J(ω, vx) =

∫
d2p

(2π)2
[θ(ω + pxvx)− θ(ω)]

×α(ω, vx) ·GI(p, za, ω + pxvx) · α∗(ω, vx).

(5)

In the previous equations

α(ω, vx) =
ω2
a

ω2
a −∆(ω, vx)− ω2 − iωγ(ω, vx)

α0 (6)

is the velocity-dependent atomic polarizability, where
γ(ω, vx) and ∆(ω, vx) denote, respectively, the velocity-
dependent radiative damping and frequency shift [34]

∆(ω, vx)

ω2
a

=

∫
d2p

(2π)2
Tr [α0 ·GR(p, za, ω + pxvx)], (7a)

ωγ(ω, vx)

ω2
a

=

∫
d2p

(2π)2
Tr [α0 ·GI(p, za, ω + pxvx)]. (7b)

According to Eq. (4), the frictional force in Eq. (1)
decomposes into two contributions,

F = FLTE + F J . (8)

The first, FLTE, is what one would have obtained by ap-
plying the LTE approximation, while the second, F J , is
the correction entirely due to the nonequilibrium dynam-
ics of the system.

Previous works [16, 17, 32, 35, 36] have shown that
the quantum frictional process is characterized by a non-
resonant and a resonant contribution, both being a func-
tion of the atomic velocity and the atom’s separation
from the surface. The resonant part occurs for suf-
ficiently high velocities which bring the atomic transi-
tion frequency within the range of the surface plasmon-
polariton resonances that exist at the vacuum/material
interface. Here, we consider only the non-resonant part
of the frictional force which takes place at lower veloc-
ities and is more likely to play a central role in typical
experimental setups. In Appendix A we show that the
main contribution to the force comes from the frequency
range 0 < ω . vx/za (see also Refs. [16, 17]). Therefore,
at sufficiently low velocities [37] the drag force is deter-
mined by the low-frequency behavior of the material’s
electromagnetic response. Under the assumption that
the material is Ohmic for these low frequencies (we will
see below that this applies to our nonlocal model), the
low-velocity approximation of the LTE and the nonequi-
librium contributions to the friction can be written as
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(see Appendix A)

FLTE ≈ −2~
v3x
π

Φ0Φ2

3

D0(za)D2(za)

[1−∆(0, 0)/ω2
a]

2 , (9a)

F J ≈ −2~
v3x
π

Φ2
1

D2
1(za)

[1−∆(0, 0)/ω2
a]

2 . (9b)

This shows that at low velocities the zero-temperature
frictional force grows as the third power of the atom’s
velocity [8–10, 13, 14]. In the above expressions, we have
introduced the abbreviations

Φn =

(
2n

n

) 2n+1
2(n+1)αxx + 1

2(n+1)αyy + αzz

22n+3πε0
, (10)

associated with the dipole’s direction in space, and

Dn(za) =

∫ ∞
0

dp p2(n+1)e−2zapr′I(0, p), (11)

which depends on the properties of the surface (the prime
indicates the first derivative with respect to the fre-
quency). The functions Dn(za) are the [2n]-th deriva-
tive with respect to za of the low-frequency behavior
of the electromagnetic density of states near the vac-
uum/material interface. In particular, D0(za) is related
to the atomic decay rate induced by the interaction with
the radiation (radiative damping). Eqs. (9) show that,
under the assumption of Ohmic dissipation, the LTE and
the nonequilibrium correction have the same functional
dependency on the velocity, while their behavior as a
function of the distance can be distinct. In the local op-
tics approximation, however, we have that D0(za) ∝ z−3a ,
D1(za) ∝ z−5a , and D2(za) ∝ z−7a (see Eq. (B8) in Ap-
pendix B). In this case FLTE and F J have the same z−10a

distance dependency, as was already shown in [17].

III. THE SPATIALLY DISPERSIVE MATERIAL
MODEL FOR THE METALLIC BULK

The previous results allow for a quantitative evaluation
of the impact of spatial dispersion on quantum friction.
At this point, we would like to recall that spatial disper-
sion becomes physically relevant for materials in which
the free-carriers can move over distances which are much
larger than the interatomic separation. This extreme mo-
bility of charged particles is also related to collective phe-
nomena, such as plasmon oscillations in metals [38], dy-
namical screening [39, 40] and quantum many-body phe-
nomena [41]. In a macroscopic continuum description of
the material, spatial dispersion leads to a nonlocal re-
lation between the displacement and the electric fields,
leading to a permittivity that depends on the wavevector
of the radiation [22]. In this paper we focus on a metal-
lic surface and describe its properties using the so-called
semi-classical infinite barrier (SCIB) model [42, 43]. In
this model, electrons are treated as a Fermi fluid whose

dynamics is governed by the Boltzmann equation. At in-
terfaces, electrons are assumed to be specularly reflected
by an infinite potential barrier [44, 45]. Although more
sophisticated models are available (see, for example, Refs.
[39, 46]), the SCIB model takes into account important
phenomena, such as Landau damping [47, 48], which are
absent in simpler nonlocal models (e.g. the hydrody-
namic model) [15, 39]. Landau damping occurs when
the frequency and the wavevector of the radiation fulfill
the condition ω ≈ k·vp, i.e., when the quasi-particle’s ve-
locity vp becomes comparable to the phase velocity vph
of the radiation, vp ∼ vph = ω/k (k = |k|). Since quan-
tum friction is very sensitive to any form of dissipation
present in the system [14, 16], this intrinsic damping due
to the exchange of energy between the electronic wave
function and the radiation [41] will play an important
role in our analysis.

Within the SCIB model, the reflection coefficient takes
the form [43]

r(ω, p) =
1− Z(ω, p)/Z0(ω, p)

1 + Z(ω, p)/Z0(ω, p)
, (12)

where Z(ω, p) is the transverse magnetic surface
impedance and Z0(ω, p) is the corresponding vacuum
value. In the non-retarded limit (formally equivalent to
the limit for c→∞) we have [43, 49]

Z(ω, p)

Z0(ω, p)
≈ 2

π

∫ ∞
0

dq
1

k2
p

εl(ω,k)
, (13)

such that the reflection coefficient only depends on the
longitudinal part of the bulk dielectric function, εl(ω,k).
For the latter we use the semi-classical limit of Lindhard’s
quantum dielectric function [41, 42, 50]

εl(ω,k) = 1 +
ω2
p

ω + iΓ

3u2fl(u)

ω + iΓfl(u)
, (14)

where Γ is the metal’s dissipation rate, ωp is the plasma
frequency, the function fl(u) reads

fl(u) = 1− u

2
ln

[
u+ 1

u− 1

]
, (15)

and u = (ω + iΓ)/(vF k) with vF the Fermi velocity.
Equation (14) is obtained within linear response theory
[41, 42, 50] by assuming a thermal equilibrium Fermi-
Dirac carrier distribution. Furthermore, the expression
for the permittivity is valid for wavevectors much smaller
than the Fermi wavevector kF = mevF /~ (me the ef-
fective electron mass) or, equivalently, when the wave-
length of the radiation is much larger than the de Broglie
wavelength λB of the electron at the Fermi surface [51–
53]. Deviations from a Fermi-Dirac distribution have to
be considered for strong interactions occurring at time
scales shorter than the carrier equilibration time ω−1p .
τEq . Γ−1 (usually shorter than 1 ps in metals) [41, 54].
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In addition, corrections to the semi-classical approach
are expected for atom-surface separations za � λB/π,
which for metals corresponds to half the Bohr radius, i.e.,
few tenths of an Ångström. As explained in section II,
quantum friction is a weak low frequency phenomenon
and, therefore, by considering distances za > 1 Å our
approach is well within the range of validity of such a
description.

Depending on the value of u, different mechanisms
dominate the optical response of the metal. In the limit
|u| → ∞ we recover the local Drude model εl(ω, k) →
εD(ω) = 1 − ω2

p[ω(ω + iΓ)]−1. In this case the main
contributions to the atom-surface interaction stem from
wavelengths λ ∼ 1/k much larger than the electron’s
mean free path, λ � ` = vF /Γ. For typical physical
parameters ` ranges from a few tens up to a few hun-
dreds of nanometers. Since vF /c is of the order of the
fine-structure constant, we then obtain ` ≈ 50 nm for a
gold bulk with Γ ∼ 30 meV. The local (Drude) regime
corresponds to a situation where the electrons’ dynam-
ics averages over a multi-scattering scenario and their
ballistic motion is negligible. In this limit the phase ve-
locity velocity vph becomes larger than the Fermi veloc-
ity vF , inhibiting the interaction responsible for Landau
damping [41] (see also below). On the other hand, for
|u| → 0, the wave resolves the ballistic motion of the
electron (λ � `), leading to a distinct spatially disper-
sive response to the electromagnetic field [22]. Scatter-
ing becomes less relevant and, since the phase velocity of
the radiation is smaller or equal than the Fermi velocity,
Landau damping takes over as the dominant damping
mechanism. Mathematically, this phenomenon is repre-
sented by the imaginary part of the function fl(u) in the
limit |u| → 0 due to the logarithm appearing in Eq. (15)
(see also Eq. (B2) in Appendix B).

The same physical mechanisms determine the behavior
of the surface impedance. For p` � |ω/Γ + i| we have
Z(ω, p)/Z0(ω, p) ≈ 1/εD(ω) which leads to the usual local
limit for the reflection coefficient [14]. In the limit p`�
|ω/Γ + i| spatial dispersion is relevant and in Appendix
B we show that we can write

Z(ω, p)

Z0(ω, p)
≈ pλTF√

1 + p2λ2TF

− i

ω
ωp
Q
(
pλTF,

π2−4
2πp`

)
pλTF(1 + p2λ2TF)

, (16)

where we have defined the function

Q(a, b) =
a2
(
a2 + 1

)
√

3

∫ 1

0

dx
1 + bx√
1− x2

x3

(a2 + x2)2
. (17)

Note that the function Q(a, b) is real and nonzero also for
b = 0, which corresponds to the limits `→∞ or Γ→ 0.
Indeed, due to the Landau damping and despite a vanish-
ing collision rate Γ, Eq. (16) still has a nonzero imaginary
part at low frequencies, which implies a dissipative re-
flection coefficient. In Eq. (16) λTF = vF /(

√
3ωp) is the

Thomas-Fermi screening length, which is on the order of
few Ångströms for typical metals [52] (see also Appendix
B) and characterizes the electrostatic screening of charges

in the Fermi fluid (it can be considered as the analog of
the Debye length at zero temperature [52, 55]). In our
system λTF is also related to spatial distribution of the
electron density near the surface [56]. Within the nonlo-
cal region, the values for which pλTF < 1 correspond to
electromagnetic waves that propagate with a phase ve-
locity vph > vF in the metal. Since at zero temperature
no particles exist with velocity larger than the Fermi ve-
locity, in this region both, Landau damping and impurity
scattering, are concurrent but not fully effective dissipa-
tive processes. Conversely, for pλTF > 1 dissipation is
dominated by the interaction between the electrons and
the electromagnetic waves. From Eqs. (12) and (16) and
for vx � vF we have that the imaginary part of the re-
flection coefficient is

rI(ω, p) ≈
2 ω
ωp
Q
(
pλTF,

π2−4
2πp`

)
pλTF

(√
1 + p2λ2TF + pλTF

)2 ≡ 2ωε0ρ(p),

(18)
showing that the material has an Ohmic behavior and
that, formally, the resistivity ρ(p) depends on the wave
vector when spatial dispersion is relevant. The function
ρ(p) grows as |pλTF ln(pλTF)| for small wave vectors, fea-
tures a maximum around p ∼ 1/(5λTF), and then de-
creases as a power law for large pλTF (see Appendix B).
Importantly, at its maximum ρ(p) can be more than an
order of magnitude larger than the typical resistivity of
a metal in the local optics description, ρ = Γ/(ε0ω

2
p). We

show in the next Section that the previous characteristics
deeply impact the distance dependency of quantum fric-
tion between an atom and a spatially dispersive metal.

IV. EFFECTS OF SPATIAL DISPERSION ON
QUANTUM FRICTION

Combining Eq. (18) with Eqs. (9-11), we are able to
compute the low-velocity quantum frictional force includ-
ing spatial dispersion in the material’s optical response.
The results are presented in Fig. 1, where the force is
normalized with respect to F̄LTE

local , which is the force ob-
tained by the simultaneous use of local optics and LTE
approximations (see Eq. (19) below). The normalization
is chosen in order to highlight the impact of the non-LTE
corrections and of the nonlocal material properties. We
also perform an average over the dipole’s spatial direc-
tions (denoted by the bars above the forces) and define
α0 = Tr[α0]/3, which coincides with the expression of the
static isotropic atomic polarizability. According to Sec.
III, we can distinguish between three physically different
regions of atom-surface separations.

For distances za � `, local optics is a valid description
of the metal. From Eqs. (9) we recover the results for
quantum friction obtained in Ref. [17] (see also the end
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of the Appendix B)

F̄LTE
local ≈ −~

189

2π3

(
α0

ε0

Γ

ω2
p

)2
v3x

(2za)10
,

F̄ Jlocal
F̄LTE
local

≈ 29

35
.

(19)

Here, for simplicity, we neglected the contribution orig-
inating from the frequency shift, which for distances
za � (α0/ε0)1/3 (few Ångströms for typical atoms) gives
only a subleading contribution to the force that arises
from the term [1−∆(0, 0)/ω2

a] in Eqs. (9).
When spatial dispersion is relevant, i.e. for separa-

tions smaller than the electron’s mean free path, we can
identify two distinct distance regimes. Starting with
λTF � za < `, we obtain

F̄LTE

F̄LTE
local

≈
ω2
p

Γ2

[
ln
(
B0za
λTF

)
+ C0za

`

] [
ln
(
B2za
λTF

)
+ C2za

`

]
1
7

(
2za
λTF

)2 ,

(20a)

F̄ J

F̄LTE
local

≈ 145

7

ω2
p

Γ2

 ln
(
B1za
λTF

)
+ C1za

`

2za
λTF

2

, (20b)

where Bn and Cn are the following numerical constants:
B0 ≈ 0.69, B1 ≈ 0.44, B2 ≈ 0.32, C0 ≈ 0.98, C1 ≈ 0.59,
and C2 ≈ 0.42 (see also Appendix B). We note that spa-
tial nonlocality induces a non-algebraic change in the dis-
tance dependence of the force and, in contrast to the lo-
cal optics case, the distance scalings of F̄LTE and F̄ J are
different. As it was expected from the considerations re-
garding the system’s nonequilibrium dynamics (see Sec.
I), the contribution of the term F̄ J to the full frictional
force is larger than in the local case, inducing a correc-
tion that reaches about 95 % rather than 80 % of the
LTE contribution (see inset of Fig. 1). Importantly, the
full nonequilibrium force in the nonlocal case is larger
than the corresponding local counterpart calculated for
values of the damping rate Γ = 30 meV and of the plasma
frequency ωp = 9 eV. For both the LTE and the nonequi-
librium contribution, nonlocality leads to an increase in
the force that scales with ω2

p/Γ
2 (see Eqs. (20)). There-

fore, it is particularly relevant for very clean materials.
The largest enhancement of roughly three orders of mag-
nitude is reported for a distance za ∼ 10λTF (of the order
of 1 nm for typical metals; see Fig 1). This value is effec-
tively an additional intrinsic length scale of the system
which derives from the combination of geometry and ma-
terial properties. It is related to the value of za for which
the functions p2(n+1)e−2zap and r′I(0, p) (see Eq. (18))
appearing in the integral defining Dn(za) have the maxi-
mum overlap. Physically speaking, p2(n+1)e−2zap selects
as a function of the distance za the parallel component
of the wavevectors participating in the dissipative pro-
cess in the material described by r′I(0, p). For each n
this occurs at za ≈ 5(n + 1)λTF. Another interesting
point to note is the influence of spatial dispersion on the

100 101 102 103 104 105 106100
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102

103

104
ℓ10 λTF

za [Å]

F
/F
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c
a

l

L
T

E

100 101 102 103 104 105
80

85

90

95

100
ℓ10 λTF

za [Å]

F
J
/
F

L
T

E
[%

]

spatial

dispersion

non-eq. FDT

+

spatial dispersion non-eq. FDT

+ local optics

FIG. 1. Quantum frictional force acting on an atom moving at
constant velocity and parallel to a metallic surface described
by the SCIB model. The low-velocity limit of the force (Eqs.
(9)) F̄ is plotted as a function of the atom-surface separation
za. In all plots, the parameters ωp = 9 eV, Γ = 30 meV, and
vF /c = 1/137 are fixed to these same values. In order to em-
phasize the role of spatial dispersion and the nonequilibrium
physics, the force F̄ is normalized to its expression obtained
using local optics and the LTE approximation, F̄LTE

local . In the
low-velocity regime the normalized force does not dependend
on the velocity (see Eqs. (9) and (19)). For atom-surface
separations much larger than the electron’s mean free path
za � ` = vF /γ, the force approaches a value which is almost
twice that of F̄LTE

local , recovering the result reported in Ref. [17].
For za < `, spatial dispersion and the non-LTE correction re-
sult in a substantial increase of the force, with a maximum
enhancement at za ∼ 10λTF, where λTF = vF /(

√
3ωp) is the

Thomas-Fermi screening length. The curve is dotted for dis-
tances less than 10 Å, where our description might not be
reliable (see text). The black dashed line shows the total
asymptotic behavior for distances λTF � za < ` given by
the sum of the expressions in Eqs. (20). The inset shows
the correction exclusively due to the nonequilibrium physics,
i.e. F̄ J/F̄LTE with spatial dispersion taken into account in
both forces of the numerator and the denominator. The curve
shows a larger contribution of the non-LTE correction in the
nonlocal case than in the local limit. It also indicates that,
for the parameters used here, nonlocality is the main source
of the force enhancement observed for za < `.

metal’s resistivity. The magnitude of the frictional force
at za ∼ 10λTF is equivalent to that obtained via local
optics but with a much larger dissipation rate of Γ ∼ 1
eV. This corresponds to a ∼30 times higher resistivity,
showing the relevance of spatial dispersion on quantum
friction. This behavior can be understood with more de-
tail by looking at the wavevector-dependent resistivity
implicitly defined in Eq. (18): As described above, for
values of p`� 1, ρ(p) can reach values much larger than
those of the local optics description.

For distances za � λTF, the functional behavior of the
frictional force changes once again. Although our model
allows for a full mathematical characterization of the in-
teraction in this distance range, atomic scale effects, dy-
namical screening and electron spill-out become relevant
at such short separations (shorter than an Ångström for
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usual metals), and the continuum description of the ma-
terials is no longer reliable. For recent discussions on
these topics see [57, 58]. Nevertheless, it is worth men-
tioning that for distances za . 10λTF the frictional force
(denoted by the dotted line in Fig. 1) is still stronger, but
increases more slowly than its local counterpart (see Fig.
1). In this case the overlap in Eq. (11) for Dn(za) selects
wavevectors for which the dissipative process described
by the resistivity in Eq. (18) becomes less effective.

Finally, we comment on the difference between the be-
havior of the frictional force for microscopic systems dis-
cussed so far, where dissipation is induced by the interac-
tion with the electromagnetic field, and for systems where
the source of dissipation is internal, like for instance in
metallic nanoparticles. As pointed out in previous work
[16], the LTE approximation usually provides the leading
contribution to the frictional force for the latter case, for
which internal dissipation is much stronger than radia-
tive damping. Within our treatment, such systems can
be described by a polarizability like in Eq. (6), but with
a vanishing frequency-shift, ∆(ω, vx) = 0 and a constant
damping rate γ(ω, vx) ≡ γ. At low velocities the force is
given by the relation

FLTE ≈ −2~
v3x
π

Φ2

3

γ

ω2
a

D2(za) . (21)

When compared with Eq. (9a), the previous expression
shows a difference in the functional dependence on the
distance. In the local case this corresponds to a change
in the exponent of the power law from z−10a for radia-
tive damping to z−7a for intrinsic damping [14] (see Eq.
(B8)). In the spatially dispersive case using the SCIB
model, however, a more qualitative modification of the
functional behavior occurs. For distances λTF � za < `
one has

F̄LTE

F̄LTE
local

≈ 7√
3

ωp
Γ

ln
[
B2za
λTF

]
+ C2za

`

2za
λTF

(22)

which shows that, in addition to a change in the power
law exponent, the system with intrinsic dissipation fea-
tures a single logarithm instead of the product of two
logarithms as obtained in Eq. (20a) (see also Eqs. (B7)
and (B8)). For such separations Eq. (21) also reveals an
enhancement of the interaction due to spatial dispersion.
The strengthening of the nonlocal frictional force with
respect to its local counterpart has a maximum around
za ≈ 15λTF. However, in the case of intrinsic dissipa-
tion, the force enhancement is less significant because
F̄LTE/F̄LTE

local in Eq. (22) is proportional to ωp/Γ and not
to its square (see Eq. (20a)).

V. CONCLUSIONS

In the present work we investigated the impact of
spatial dispersion on atom-surface quantum friction for

non-relativistic velocities. Our description goes beyond
the widely used local thermal equilibrium approximation
and does not rely on the usual equilibrium fluctuation-
dissipation theorem, but rather on an extension of it for
nonequilibrium steady states [17]. The analysis focuses
on the behavior of the frictional force for small veloci-
ties, which are more likely to be achieved in experimen-
tal setups. We show that for distances shorter than the
electron’s mean free path `, spatial dispersion and the
system’s nonequilibrium processes have a large impact
on quantum friction enhancing the interaction with re-
spect to the LTE value. The closer the atom gets to the
surface, the less important the collision-induced damping
becomes and the more the Landau damping takes over
as source of dissipation (see Sec. III). A maximum en-
hancement of three order of magnitude is attained for
distances that are of the order of ten times the Thomas-
Fermi screening length λTF. Our results also show that in
the nonlocal system the failure of the LTE approximation
is more significant than in the local system, and under-
estimates the force by about 95 % (the nonequilibrium
processes are responsible for half of the total frictional
force; see the inset of Fig. 1). The inclusion of spa-
tial dispersion does not alter the functional dependence
of the interaction on the atomic velocity, which is pro-
portional to v3x, but it deeply modifies its behavior as a
function of the distance. Physically, this difference can be
understood by recalling that the velocity dependence is
related to the low frequency behavior of the electromag-
netic density of states [14, 16], Ohmic for both the spatial
dispersive and local materials (a sub-ohmic or a super-
ohmic material will also affect the functional dependency
on the velocity). Instead, the behavior as a function of
the atom-surface separation is more related to the de-
tail of the medium’s optical response and to the differ-
ent length scales associated with the physical processes
occurring in the material. For atom-surface separations
λTF � za < `, quantum friction is no longer described by
a simple power law but, due to Landau damping, it ac-
quires a more complex structure involving a logarithmic
contribution and the combination of length scales ` and
λTF (see Eqs.(20) and (22)). In addition, unlike the lo-
cal case, the contribution to the force resulting from the
LTE approximation and its correction have a different
distance dependence, showing again the relevance of the
interplay of nonequilibrium effects and spatial dispersion
for quantum frictional processes.

Quantum friction is a very weak effect and experimen-
tal investigations are therefore challenging [16]. Rela-
tively simple time-of-flight experiments, where atoms are
sent parallel to a surface and decelerations or stopping
distances are measured, are possible but they may not
provide the required sensitivity. Consequently, rather
sophisticated atom-interferometric techniques would be
better suited [59, 64]. In view of the desired atom-surface
separations, such experimental designs come with their
own challenges. For instance, at least one arm of the
interferometer must be aligned parallel to the surface at
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comparatively short distances of some tens of nanome-
ters to the surface. The frictional force will produce a
different phase accumulation in this arm with respect to
a second arm being placed at much larger separations to
the surface. The resulting phase shift, encoding the infor-
mation on the drag force, will appear in the interference
pattern. In order to exploit the enhancement effects asso-
ciated with spatial nonlocality, the atom-surface separa-
tion should be of the order of or shorter than the electron
mean free path ` in the material composing the surface
(large ` values correspond to clean materials). While
this clearly is challenging, it is not entirely out of reach.
Inspecting Eqs. (19) and (20), we note that in the nonlo-
cal region the frictional force scales in absolute value as
ω−2p . According to our results, preferable characteristics
of the surface material are therefore a reasonably small
dissipation rate as well as plasma frequency. The latter
conditions point, for example, to doped semiconductors
like ZnO:Ga for which Γ ∼ 50 meV and ωp ∼ 1 eV have
already been measured [60]. The dielectric response of
highly-doped semiconductors is, however, more involved
than the simple model used here and the corresponding
behavior of quantum friction will be investigated in detail
in future work.
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Appendix A: Low-velocity expansion

In this appendix we provide the main steps of the pro-
cedure that allows to obtain the low-velocity asymptotic
expressions given in Eq. (9). First of all, it is convenient
to define the tensor

G(|px| , za, ω) =

∫ ∞
−∞

dpy
2π

G(p, za, ω) , (A1)

which has the same symmetry properties as G(p, za, ω)
with respect to the variable ω, namely an even real part
and an odd imaginary part under the change ω → −ω.
Inserting Eq. (4) in Eq. (1) we can define

FLTE = −4~
∫ ∞
0

dpx
2π

px

∫ pxvx

0

dω

2π

× Tr
[
αI(pxvx − ω, vx) · GI(|px| , za, ω)

]
, (A2a)

F J = −2~
∫ ∞
−∞

dpx
2π

px

∫ ∞
−∞

dω

2π

× Tr
[
J(pxvx − ω, vx) · GI(|px| , za, ω)

]
. (A2b)

Further manipulations of the previous expressions
are possible. First, using the parity properties of
G(|px| , za, ω) and treating the cases ω > 0 and ω < 0
separately, one can show that the expression for J(ω, vx)
in Eq. (5) can be rewritten as (see also the Supplemen-
tary Material of Ref. [16])

J(ω, vx) =

∫ ∞
|ω|
vx

dpx
2π

× α(ω, vx) · GI(|px| , za, pxvx − |ω|) · α
∗(ω, vx) . (A3)

The integration in Eq. (A2b) can be simplified by rearranging the integration domain as follows∫ ∞
−∞

dω

2π

∫ ∞
|pxvx−ω|

vx

dp̃x
2π

(. . .) =

∫ ∞
0

dp̃x
2π

∫ (px+p̃x)vx

pxvx

dω

2π
(. . .) +

∫ ∞
0

dp̃x
2π

∫ pxvx

(px−p̃x)vx

dω

2π
(. . .) . (A4)

Combining all the previous expressions, using the parity properties of G(|px| , za, ω) and the definition of γ(ω, vx) in
Eq. (7b) we have

FLTE = −4~
∫ ∞
0

dpx
2π

px

∫ ∞
−∞

dp̃x
2π

∫ pxvx

0

dω

2π
|A(pxvx − ω, vx)|2

× Tr
[
α0 · GI(|p̃x| , za, [px + p̃x]vx − ω)

]
Tr
[
α0 · GI(|px| , za, ω)

]
, (A5a)

F J = −2~
∫ ∞
−∞

dpx
2π

px

∫ ∞
−∞

dp̃x
2π

∫ [px+p̃x]vx

pxvx

dω

2π
|A(pxvx − ω, vx)|2

× Tr
[
α0 · GI(|p̃x| , za, [px + p̃x]vx − ω) · α0 · GI(|px| , za, ω)

]
, (A5b)

where we also rewrote Eq. (6) as α(ω, vx) = A(ω, vx)α0.
Due to the exponential function in the Green tensor in

Eq. (2), the dominant wavevectors contributing to the
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above integrals are px . 1/za. The previous expres-
sions show that quantum friction is dominated by fre-
quencies ω . vx/za. Under the assumption that for
these frequencies a Taylor expansion in ω of the func-

tion G(|px| , za, ω) is possible and that G(|px| , za, ω) ≈
GR(|px| , za, 0) + iωG′I(|px| , za, 0) describes the relevant
physics, we have

FLTE = −2
v3x
π
~ |A(0, 0)|2 1

3

∫ ∞
0

dpx
2π

p4xTr
[
α0 · G

′
I(|px| , za, 0)

] ∫ ∞
0

dp̃x
2π

Tr
[
α0 · G

′
I(|p̃x| , za, 0)

]
, (A6a)

F J = −2
v3x
π
~ |A(0, 0)|2

∫ ∞
0

dpx
2π

p2xTr
[
α0 · G

′
I(|px| , za, 0)

] ∫ ∞
0

dp̃x
2π

p̃2xTr
[
α0 · G

′
I(|p̃x| , za, 0)

]
, (A6b)

where we also used that α0 = 2dd/~ωa. The previous
expressions are quite similar and they involve products
of the integral

In(za) =

∫ ∞
0

dpx
2π

p2nx Tr
[
α0 · G

′
I(|px| , za, 0)

]
, (A7)

where n = 0, 1, 2. Using the expression for the Green
tensor given in Eq. (2), after going to polar coordinates
one can show that the previous function can be written
as In(za) = ΦnDn(za), where Φn and Dn(za) are given
by

Φn =

(
2n

n

) 2n+1
2(n+1)αxx + 1

2(n+1)αyy + αzz

22n+3πε0
, (A8)

and

Dn(za) =

∫ ∞
0

dp p2(n+1)e−2zapr′I(0, p). (A9)

Appendix B: The nonlocal impedance

In this appendix we discuss the equations reported in
Sec. III. For this purpose it is convenient to define the
following quantities: ` = vF /γ, λTF = vF /(ωp

√
3) and

κF = (ω + iγ)/vF = ω/vF + i/`. Using these definitions
we rewrite the dielectric function in Eq. (14) as

εl(κF , u) =

[
1 +

u2

κ2Fλ
2
TF

] [
1 +

u2

κ2Fλ
2
TF + u2

fl (u)− 1

1 + i fl(u)κF `−i

]
,

(B1)

where u = κF /k. In the first factor we recognize
the Thomas-Fermi dielectric function εTF(k) = 1 +
(k2λ2TF)−1 describing charge screening in the metal [52].
The additional factor is the correction introduced by the
semi-classical Lindhard dielectric function [43]. As ex-
plained in the main text (see the beginning of Sec. III)
the nonlocal region is characterized by |u| � 1 (low fre-
quencies and/or large wavevectors) and therefore

fl(u) = 1 +
iπu

2
− u2 +O(u4). (B2)

The accuracy of the previous approximation also explains
why the asymptotic behaviors presented in Eqs. (20)
provide a good description also for za . `. In this regime
the correction to the Thomas-Fermi model is small [61–
63] and with the changes of variable q → u = xκF /p, we
can write Eq. (13) as

Z(p, ω)

Z0(p, ω)
≈ 2

π

∫ 1

0

dx
1√

1− x2
1

εl

(
κF , x

κF
p

) . (B3)

In the nonlocal region κF /p is small and expanding the
integrand in this variable leads to

1

εl

(
κF , x

κF
p

) ≈ 1

1 + x2

p2λ2
TF

− i

π
2

ω
ωp
√
3
pλTFx

3

(p2λ2TF + x2)2

[
1 + x

π2 − 4

2πp`

]
. (B4)

In the above expression we have neglected a contribu-
tion ∝ ω2 since for quantum friction we are interested
in the low-frequency (Ohmic) region. The above expres-
sion allows for an analytical evaluation of Eq. (B3). The
relevant integrals are

2

π

∫ 1

0

dx
1√

1− x2
1

1 + x2

a2

=
a√

1 + a2
(B5)

and the integral given in Eq. (17), defining the function
Q(a, b). Although it results in a mathematically more
involved function, this last integral can also be evaluated
analytically and gives

Q(a, b) =
a2

2
√

3

[
a2 + 2√
a2 + 1

ln

(√
a2 + 1 + 1

a

)
− 1

+

(
a2 + 1− a

a2 + 3
2√

a2 + 1

)
πb

]
≈ 2√

3

{
−a

2

2

[
ln
(
a
2

)
+ 1−πb

2

]
a� 1

1
3 −

1
5a2 + 3

32

(
1− 2

3a2

)
πb a� 1

.

(B6)
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These results lead to Eq. (18) and allow the evaluation
of the asymptotic expressions of the function Dn(za). In
the nonlocal region we distinguish the cases n = 0 and
n = 1, 2:

D0(za) ≈


4
√
3λTF

(2za)4

ln
(
B0za
λTF

)
+
C0za
`

ωp
za � λTF

− 1
3
√
3λ3

TF

ln
(
B̃0za
λTF

)
−
πza√

2
λTF

ωp
za � λTF

,

(B7a)

Dn(za) ≈

 2λTF√
3

(2n+3)!
(2za)2n+4

ln
(
Bnza
λTF

)
+Cnza

`

ωp
za � λTF

(2n−1)!
3
√
3λ3

TF(2za)
2n

1
ωp

za � λTF

,

(B7b)

which lead to the the expression reported in Eq. (20).
We defined the constants Bn = 4 exp(ΓEu − fn), with
fn = 7/3, 167/60, 433/140, and Cn = (π2 − 4)/hn, with
hn = 6, 10, 14, where ΓEu ≈ 0.58 is the Euler constant.
These are the numerical values that are reported after
Eq. (20) in the main text. In addition we defined B̃0 =√

2 exp [ΓEu] ≈ 2.52.

In the local region (za � `), we obtain

Dn(za)
za�`≈ 2

Γ

ω2
p


2!

(2za)3
n = 0

4!
(2za)5

n = 1
6!

(2za)7
n = 2

, (B8)

which lead to the expressions in Eq. (19).
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