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Understanding magnetic focusing in graphene p-n junctions through quantum
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Samuel W LaGasse∗ and Ji Ung Lee†

Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York, 12203

We present a quantum model which provides enhanced understanding of recent transverse mag-
netic focusing experiments on graphene p-n junctions. Spatially resolved flow maps of local particle
current density show quantum interference and p-n junction filtering effects which are crucial to
explaining the device operation. The Landauer-Büttiker formula is used alongside dephasing edge
contacts to give exceptional agreement between simulated non-local resistance and the recent ex-
periment by Chen et al (Science, 2016). The origin of positive and negative focusing resonances
and off resonance characteristics are explained in terms of quantum transmission functions. Our
model also captures subtle features from experiment, such as the previously unexplained p-p− to
p-p+ transition and the second p-n focusing resonance.

I. INTRODUCTION

Traditionally, transverse magnetic focusing (TMF) ex-
periments have been restricted to unipolar conduction,
in mediums such as metals1 and two-dimensional elec-
tron gasses (2DEG)2. The discovery of graphene3, in
which electrons behave as massless Dirac fermions4, has
provided an exciting new platform for studying TMF.
Graphene’s gapless band structure, allowing ambipo-
lar conduction, has enabled several recent TMF exper-
iments. TMF in graphene has been studied as a func-
tion of carrier density5 and imaged with scanning gate
microscopy6. In addition, a large number of TMF peaks
have been observed in graphene/hexagonal boron nitride
superlattices7. Recently, p-n junctions in graphene have
been used in TMF experiments to steer the focused
beam8, opening the door to new electron optics. The
p-n junction is a fundamental device and has received a
significant amount of attention from the graphene com-
munity. Graphene p-n junctions have rich physical prop-
erties, exhibiting chiral tunneling9,10, angle dependent
transmission11–13, quantized conductance in high mag-
netic fields14–16, and ballistic interference17.

In this paper, we use quantum transport methods
to model the graphene p-n junction TMF experiment
of Chen et al8. Our calculations, implemented in the
KWANT package18, intrinsically capture quantum inter-
ference, tunneling, and angle dependent transmission19,
which enables us to explain the results of Chen et al8 in a
completely quantum mechanical framework, without any
fitting parameters. Previously, we have used the same ba-
sic model to understand quantum Hall measurements in
graphene p-n junctions20. By including large dephasing
edge contacts and performing multi-terminal Landauer-
Büttiker analysis21, we are able to capture both the in-
resonance and off-resonance characteristics of the device.
We achieve exceptionally strong agreement between our
simulation and experiment8, as shown in Fig. 7.

When a magnetic field is applied perpendicular to a
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FIG. 1. (a) Model of the graphene device depicting the
first TMF resonance for p-p’ and p-n junctions. While the
graphene devices we compare with in this paper were encap-
sulated by hexagonal boron nitride, however, since we do
not consider that crystal in our model, we only depict the
graphene lattice. (b) Schematic of device with four terminal
measurement configuration. The device simulated has dimen-
sions DC = W = 200 nm, DW = 50 nm, and LC = 60 nm.
The red rectangles indicate dephasing contacts used in the
simulation. (c) Real space energy band diagram of the de-
vice.

graphene p-n junction, electrons transporting across the
junction will form snake states, arcing between the p and
n sides of the junction22. In graphene, the arcs are char-
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FIG. 2. Maps of local particle current density (5) for a p-p’ (p-n) junction in (a) ((b)) the first TMF resonance and (c) ((d))
the second TMF resonance. Darker colors indicate higher magnitude of local particle current density. The p-p’ junctions in (a)
and (c) are configured as E1 = 50 meV and E2 = 75 meV. For the first p-n TMF resonance in (b) the junction is configured
as E1 = −E2 = 50 meV. The second p-n TMF resonance in (d) is configured as E1 = 50 meV and E2 = −100 meV. The scale
bars of all figures in this paper are 60 nm.

acterized by the cyclotron radius, given by rc = ~
√
πn

e|B|
with ~ the reduced Planck’s constant, n the carrier den-
sity, e the electron charge, and B the applied magnetic
field. Snake states have been observed along graphene
p-n junctions in several experiments23–25. Additionally,
transport of electrons in snake states has been modeled
using quantum mechanical24,26–28 and semi-classical29–34

methods.
The TMF experiment performed on graphene p-n junc-

tions by Chen et al8 probes a special case of snake state
transport, in a device similar to that depicted in Figures
1a and 1b. The device studied by Chen et al8 is special
because the distance between contacts on each side of
the junction, DC , is approximately equal to the width of
the device, W . When 2rc ≈ DC , the applied magnetic
field focuses electrons directly between the contacts. In
a unipolar system the carriers are directed back to the
side from which they originate. Conversely, in a p − n
junction, the carriers will be steered towards the oppo-
site side of the device. These two paths are depicted in
Fig 1a.

II. TRANSPORT MODEL

In this paper, we study a tight-binding Hamiltonian
describing low energy electrons in graphene, given by

Ĥ =

N∑
i

εiĉ
†
i ĉi +

N∑
i,j

ti,j ĉ
†
i ĉj , (1)

where the second summation only takes place for atoms

which are first nearest-neighbors. ĉ†i/ĉj are Fermionic
creation/annihilation operators, εi is the on-site energy
at site i, and ti,j is the hopping energy between sites i
and j. The effect of an applied magnetic field is included

using Peierl’s substitution, ti,j = ts exp
[
i e~

∫ rj
ri

A · dr
]
,

where we adopt Landau gauge inside the channel, A =
〈−By, 0〉, and a circular gauge for the vector potential in
the leads A(x, y) = −B(r ·e2)e1

35. Keeping with the no-
tation in35, e1 = 〈cos θ, sin θ〉T and e2 = 〈− sin θ, cos θ〉T
where θ is the angle of a particular lead measured rela-
tive to the x-axis. We use a scaled tight-binding model36

where a = sfa0 and ts = t0/sf . The term sf = 10 scales
the lattice constant, a0, and the atomistic hopping energy
, t0 ≈ 2.7 eV37, to yield more efficient simulations.

We simulate a six terminal Hall bar, as depicted in Fig
1b, with four small contacts (labeled one, two, four, and
five) and two large contacts (labeled zero and three). The
spacing between the inner edges of the small contacts is
set equal to the width of the Hall bar, DC = W , which is
the critical element of device design to observe the first
p-n focusing peak. The graphene lattice is oriented such
that the device has zigzag edges along the x−direction
and armchair edges along the y−direction.

To form p-n junctions, the on-site energy on each side
of the device may be tuned independently to E1 and E2.
We set the on-site energy to change linearly between E1

and E2 over a junction width, DW , as shown in the en-
ergy band diagram in Fig 1c. The on-site energies of the
contacts on the left side (right side) of the device are set
to E1 (E2), matching the on-site energy where they are
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connected to the channel.
The two large contacts, zero and three, are included as

dephasing contacts. These contacts are transparent, al-
lowing electrons to enter without reflection. While these
contacts may appear to be absorbing, they do not draw
current. In fact, the electrons are re-injected into the de-
vice, but with a different phase. The voltages of these
contacts are allowed to float in the simulation. This pro-
cess of is governed by the Landauer-Büttiker equation21,
explained in the next paragraph. This type of virtual
dephasing contact has been used in quantum transport
calculations in the past38–40 and is critical for tying our
results to experiment. Additionally, dephasing has been
included in a mathematically identical way to handle
graphene p-n junctions in the quantum Hall regime41.

Since most TMF measurements are performed at cryo-
genic temperatures under very small biases, we adopt
a zero-bias, zero-temperature approximation. In this
regime, we utilize the Landauer-Büttiker equation21 to
express the current in each lead p42,

Ip =
2e2

h

∑
q

[TqpVp − TpqVq] , (2)

where the summation takes place over all leads in the
system, including the dephasing contacts. For our simu-
lation, (2) generates a system of six linear equations with
six unknowns. The term Tqp is the quantum mechanical
transmission function from lead p to q, defined as

Tqp(E) =
∑

n∈p,m∈q
| Snm(E) |2, (3)

where Snm is the scattering matrix element between the
nth and mth transverse modes in leads p and q, respec-
tively. The summation in (3) takes place over the avail-
able modes in each lead at energy E.

To connect with the multi-terminal measurement of
Chen et al8, we simulate driving a current between con-
tacts one and five and calculate the voltage acquired by
contacts two and four. Practically, this requires setting
I1 = −I5, I0 = I2 = I3 = I4 = 0, and choosing a con-
tact to be grounded, in this case V1 = 0. The non-local
resistance for this configuration is defined as

R15,24 =
V2 − V4
I1 − I5

. (4)

The components of (4) are attained by solving the lin-

ear system, I = 2e2

h TV, defined by (2), where I and
V are column vectors of lead currents and voltages, re-
spectively, and T is a matrix of transmission functions.
Making the substitutions above, (4) may be reduced to
R15,24 = h

2e2
1
2 (R45 −R25). R45 and R25 are elements

of the R−matrix, defined as R = T−1, and are en-
tirely comprised of transmission functions between dif-
ferent leads, thus, the problem is reduced to calculating
the permutations of (3).

To understand the terminal characteristics of our sim-
ulation, we generate spatially resolved particle current

density maps using

Jri,rj (E) = −2
∑
n∈p

Im
[
ψn(ri, E)†Ĥi,jψn(rj , E)

]
(5)

where ri is the position of the ith lattice site, ψn(ri, E) is
the wave function of the nth conducting mode in lead p.
The summation takes place over all conductive modes in
lead p available at energy E. By solving the scattering
problem for each transverse mode separately, we are able
to extract the contribution of each mode to the total cur-
rent density43–45. Spatially resolved particle current den-
sity maps have been useful in the past for understanding
transport in graphene subjected to a magnetic field46.

III. RESULTS AND DISCUSSION

In Fig. 2 we plot vector flow maps of the local particle
current density (5) injected by contact one for p-p’ and p-
n junctions. All of the scale bars presented in this paper
are 60 nm and darker colors indicate higher magnitudes
of local particle current density. When current is focused
into contact two/four we observe positive/negative peaks
in the non-local resistance, respectively.

When the p-p’ junction is in the first TMF resonance,
in Fig. 2a, carriers injected by contact one are focused di-
rectly into contact two. The carriers are injected and take
on a broad spread of angles in the channel, but are pri-
marily focused into a bright caustic which enters contact
two. The junction redirects the carriers slightly, elongat-
ing the orbit. Due to the small size of the contacts, not
all carriers which are injected by contact one are collected
at contact two. Some carriers reflect off the bottom edge
of the device, resulting in the interference fringes seen on
the caustic, and then skip into contact three.

For the first resonance of the p-n junction, in Fig. 2b,
current injected from contact one is focused directly into
contact four. The 50 nm junction width acts as a low
pass filter, allowing only current flowing close to normal
to the junction to transmit. On the left side of the junc-
tion, wave interference patterns indicate the current den-
sity reflected off the junction, which then exits out the
contacts on the left side of the device. The transmitted
current predominately focuses into a caustic which enters
contact four.

At low magnetic fields, a significant portion of the cur-
rent injected from contact one hits the top edge of the de-
vice before crossing the junction, as seen for p-n junction
in Fig. 2b. This is a consequence of the device geometry
studied by Chen et al8 and increasing the device width
to avoid hitting the top edge prohibits one from probing
the first p-n TMF resonance. Interestingly, a compo-
nent of the current hitting the top edge is redirected and
transmits across the junction. This subtle detail, cap-
tured by our model, contributes to the device’s terminal
characteristics and is important in many of the different
junction configurations.

When the magnetic field is increased to the second
TMF resonance, in Fig. 2c and d, the current density
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FIG. 3. Table of mode resolved particle current density for each panel of Fig. 2. The modes of each column are summed to
give the final result in Fig. 2. By looking at each mode individually, the interplay between the semi-classical and quantum
mechanical nature of the system is visible.

will skip along the edge of the junction (p-n case) or the
edge of the device (p-p’ case). p-n junctions do not ex-
hibit the second resonance until the n-doping is stronger
than the p-doping, thus we configure the junction in Fig.
2d as E1 = 50 meV and E2 = −100 meV. In the p-n
configuration, on the p-side, the current forms a circular
orbit which reflects near the bottom of the junction and
again almost half way up. At each of these points there is
a significant portion of current which is incoming normal
to the junction and transmits to the other side, focus-
ing on contact 4. Due to the filtering effect of a smooth
p-n junction, the second TMF resonance is significantly
weaker.

To further understand the local particle current den-
sity of the devices in Fig. 2, in Fig. 3 we resolve the
characteristic by each propagating mode. By resolving
each mode which contributes to the results in Fig. 2, we
observe a combination of features reminiscent of semi-
classical skipping orbits and quantum mechanical inter-
ference patterns.

The lowest mode is injected straight into the device,
perpendicular to the semi-infinite contact. In the first
resonance of the p-p’ and p-n junction, shown in columns
one and three of Fig. 3, respectively, the lowest mode
is bent so that the wave is propagating approximately
normal to the junction when it crosses it. Thus, the
lowest mode is nearly perfectly transmitted, with very

few reflections (indicated by interference fringes) visible.
Transport similar to what the lowest mode displays in our
simulations has been demonstrated recently in a proposal
for a parabolic p-n junction surrounding a contact, which
filters carriers such that the only current injected to the
device is traveling parallel to the contact40.

Higher modes are injected into the device with non-
zero angles and arrive at the junction traveling at oblique
angles. For the first resonance of the p-p’, the beam is
noticeably refracted as it crosses the junction. In the p-n
junction, the higher order modes have significant com-
ponents which are reflected off the junction, due to the
angle dependent transmission across the junction.

For the second resonance of the p-p’ and p-n’ configu-
rations, the local particle current density patterns in Fig.
2 are more complex than the first resonance. By resolv-
ing each mode, we are able to develop a better picture
of the important transport mechanisms. The higher or-
der modes for the p-p’ junction have a component which
transports nearly parallel to the lower edge of the device.
This is particularly evident in the fourth and fifth modes.
Most of the carriers which transport in this manner will
miss contact two and transmit out contact three, result-
ing in a weaker signal for the second focusing resonance.

The second focusing resonance of the p-n’ displays the
most complex characteristics of the device, with predom-
inant quantum characteristics not present in the other
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(a)

(b)

1

1

FIG. 4. Comparison of particle current density for the device
configured as in Fig. 2b both (a) with and (b) without de-
phasing edge contacts. When the dephasing edge contacts are
removed, in (b), carrier density which is not focused into con-
tact four will skip around the edge of the device until it exits
out one of the small contacts. The carrier density, which is not
dephased, will interfere with the incoming waves and destroy
the resonance condition. This results in the extremely chaotic
pattern seen in (b), with no observable focusing resonances.

configurations. At the higher magnetic field, the first
and second modes appear to begin to form Landau levels
when they collide with the junction, similar to what we
have studied in our previous work20. The higher order
modes, however, show a more complex, swirling pattern.
The carriers transport in skipping orbits which partially
reflect of the junction, interfering with themselves. A
portion of each orbit transmits across the junction, con-
tributing to the second p-n’ resonance.

As mentioned previously, the dephasing edge contacts
(labeled contact zero and three) are critical to attaining
the results presented in this paper. To demonstrate this
importance, in Fig. 4 we plot the local particle current
density for the device configured as in Fig. 2b both with
and without the dephasing contacts. When the dephas-
ing contacts are removed, in Fig. 4b, the portions of the
wave which normally exit contacts zero and three, instead
scatters around the edge of the device. The wave will con-
tinue to scatter around the device, interfering with itself,
until exiting out one of the small contacts. This process
occurs until the device reaches steady state, resulting in
the extremely chaotic pattern shown and the destruction
of any resonance characteristics.

Fig. 5 shows the non-local resistance (4) and selected
transmission coefficients (3) as a function of applied mag-
netic field for an asymmetric p-p’ junction and a sym-
metric p-n junction. The two junction configurations are
doped the same as in Fig. 2a and b, respectively. For the

(a)

(b)

FIG. 5. Non-local resistance as a function of magnetic field in
an (a) p-p’ and (b) p-n junction. The junctions are configured
as in Fig 2. To compare to the carrier densities shown in Fig
7, the left side of (a) is set to −0.18 × 1012 cm−2 and the
right side is set to −0.41 × 1012 cm−2. The left side of (b)
is configured the same as (a) but the right side is now set to
+0.18×1012 cm−2. Important transmission (3) functions are
plotted for each configuration, as explained in the text.

relatively small magnetic fields considered in this paper
the orientation of the edges has been shown to have a
minimal effect on the TMF characteristics39; switching
the edge types in our simulation yields nearly identical
results to what we present here.

It is non-trivial to extract specific terms from (4), in
terms of transmission functions, which result in the final
form of the non-local resistance. The final magnitude and
shape of the curve consists of permutations of transmis-
sion functions between every contact combined together.
However, we are able to target specific transmission func-
tions which are important in understanding the problem.

In the unipolar p-p’ configuration, we observe three
well defined TMF resonances. We are able to match the
first two TMF resonances to a peak in the transmission
from contact one into two, T21. When the junction is
switched to the p-n configuration, when in resonance,
carriers are now focused from contact one into contact
four. This results in a negative peak in resistance at B =
0.128 T, shown in Fig. 5b. The important transmission
function for understanding the resonance condition of the
p-n junction is T41, which is peaked while the device is
in resonance.

The resistance at each subsequent TMF resonance of
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(a)

(b)

FIG. 6. Off-resonance condition particle current density for
the symmetric p-n junction studied in Fig. 2b. The junction
is configured as E1 = −E2 = 50 meV. In (a) B = 0.11 T
and in (b) B = 0.16 T. When the magnetic field is not strong
enough to focus the carriers into contact four, the transmitted
wave collides with the top of the device, to the right of contact
four, and skips into contact three. When the magnetic field is
too strong, as in (b), the transmitted wave is focused to the
left of contact four and again skips into contact three.

the unipolar junction configuration decreases in magni-
tude. For the first two TMF resonances, there are local
minima in T31. The second resonance exhibits a higher
minimum in T31, relative to the first resonance, which
indicates that the focusing effect is diminished. This is
due to interference caused by the increased number of
scattering events off the edges of the device. As the mag-
netic field is increased past the second resonance, carriers
injected by contact one are more strongly bent towards
the bottom edge of the device. This results in the overall
increase (decrease) in T21 (T31) seen in Fig. 5a, as the
device begins to enter the quantum Hall regime.

When either configuration of junction is not in reso-
nance, there is an increase in the transmission from con-
tact one into contact three, T31. In the off-resonance
state of the p-p’ junction, carriers which are not focused
from contact one into two will hit the bottom edge of the
device and skip into contact three. To maintain current
conservation, the carriers will be re-injected by the float-
ing contact three and the magnetic field will direct the
carriers towards contact four, resulting in the negative
off-resonance resistance in Fig. 5a. Conversely, in the
p-n junction, carriers which miss contact four will skip
along the top edge of the device. Again, they will be de-
phased by contact three, except this time the re-injected
carriers will be directed towards contact two, which re-
sults in the positive off-resonance resistance in Fig. 5b.
In Fig. 6 we illustrate the off-resonance particle current

density for a symmetric p-n junction.

(a)

(b) Chen et al (2016) 

2A

2D

2B

2C

FIG. 7. (a) Non-local resistance map for a fixed p-type dop-
ing as a function of the carrier density of the right side of
the junction and magnetic field. Scatter points mark config-
urations where we have demonstrated spatially resolved par-
ticle current density in Fig. 2. Our results show exceptional
agreement with (b) experimental measurements of Chen et
al8, reproduced with copyright permission.

The junction filtering effect, seen in Fig. 2, results
in significantly weaker and fewer TMF resonances when
the device is in the p-n configuration. For the symmetric
p-n junction, in Fig. 5, only a single well defined reso-
nance is observed. At higher magnetic fields the beam of
carriers skips along the edge of the junction; each time
the beam hits the junction only a very small amount will
leak through. Since, in our model, no dephasing happens
along the junction, the reflected wave of carriers will in-
terfere with itself, further disrupting any resonance from
setting up.

In addition, the non-local resistance tends towards zero
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for each configuration at around B = 0.65 T. This is
due to the carriers being forced into edge states as the
device enters the quantum Hall regime. This effect is
also the reason why we do not see a well defined peak
in T21 for the third TMF resonance of the p-p’ junc-
tion configuration. Capturing this feature highlights the
power of quantum transport modeling, where our sim-
ulations smoothly transition between carriers occupying
semi-classical skipping orbits and edge states.

Finally, in Fig. 7, we compare our model with the
recent experimental data of Chen et al8, reproduced with
copyright permission. In Fig. 7a, we fix the doping of
the left side of the junction to E1 = 50 meV (p-type)
and vary the doping of the right side of the junction and
applied magnetic field simultaneously. The fixed doping
on the left side of the device mimics the experiment of
Chen et al, where the carrier density of one side of their
device was fixed by a buried graphite gate8. For each
configuration we calculate the non-local resistance (4) as
before. We report the doping of the right side in terms
of carrier density n, which has a similar functional form
to the gate voltage applied in experiment. For a clearer
comparison with the experimental data, in Fig. 7a we
have switched to reporting resistance in terms of Ohms.

Our simulation results show a striking similarity to
the experimental data, capturing all of the major fea-
tures. These include the four unipolar junction TMF
resonances, the first ambipolar TMF resonance, and the
negative/positive peaks in resistance when the unipo-
lar/ambipolar configurations are not in resonance, re-
spectively.

We also are able to explain a number of subtle features
seen experimentally which are due to the transitions be-
tween different types of junctions. The second negative
peak in the unipolar junction configuration begins to dis-
appear as the right side of the device is more strongly
doped p-type. As the p-type doping of the right side
of the junction is increased, this transition occurs as the
device goes from a p-p− junction, to uniformly doped
p-type, to a p-p+ junction. In the experimental data
of Chen et al in Fig. 7b, this transition occurs around
VSi = −20 V8.

The second ambipolar junction TMF resonance in Fig.
7 is extremely weak until the n-type doping of the right
side of the junction exceeds the fixed p-type doping. This
effect is enabled by the increased number of modes avail-
able to conduct on the right side of the junction as the
doping is increased. The filtering effect due to the large
junction width present in our model and in experiment8

prohibits the traditional picture of the carrier density
snaking across the junction several times in the second
TMF resonance. Instead, the resonance has the charac-
teristic of the flow map shown in Fig. 2d.

In Fig. 7b, there is a slight discontinuity observed in
the second positive magnetic field TMF resonance of the
p-p’, near VSi = −10 V. Additionally, in the negative
magnetic field half of the map, the p-p’ resonances tend
to begin at higher values of VSi than for positive magnetic
fields. These effects are likely due to asymmetry in the

potential profile of the p-p’ junction formed by the silicon
back-gate/graphite buried gate structure used by Chen et
al8. When VSi is very small compared to the buried gate,
the asymmetry of the junction potential will be the most
pronounced. In our model, we have always assumed a
symmetrically formed junction, and thus do not capture
this effect.

Here, we will address the effect of scaling down the de-
vice measured by Chen et al for our simulations8. In or-
der to keep the lattice scaling factor in the tight-binding
model down to a reasonable value, it necessary to scale
the size of the simulated device down. Our simulated de-
vice is about a factor of ten smaller than the micrometer
scale device measured experimentally8. This scaling still
allows us to qualitatively match our simulation to the
experimental data, but not quantitatively.

Two quantitative differences between our simulation
and experiment are introduced by scaling down the sim-
ulated device. First, in our simulation a larger magnetic
field must be used. The cyclotron radius in graphene
is proportional 1/|B|, therefore the reduced distance be-
tween measurement probes in our simulations necessi-
tates a higher magnetic field than used in experiment.

Additionally, the difference in device size and con-
tact dimensions results in a simulated resistance of
about twenty times larger than what was observed
experimentally8. The reduced contact dimension limits
the number of conductive modes available in the con-
tacts, resulting in the large value in our simulated resis-
tance. Scaling up the simulated device would result in
a lower resistance, however the size used in this work is
sufficient for understanding the physics in play. Qualita-
tively matching the experimental results, as in Fig. 7a, is
enough for the concepts we have discussed to be applied
to understand the experimental measurements of Chen
et al8.

IV. CONCLUSION

In conclusion, we demonstrate a quantum transport
model for a TMF experiment on graphene p-n by Chen et
al8. Spatially resolved particle current density flow maps
reveal the behavior of carriers in the first and second res-
onances of p-p’ and p-n junctions. Our results demon-
strate the importance of wave interference and junction
filtering effect for understanding TMF experiments. A
combination of dephasing edge contacts and use of the
Landauer-Büttiker formula supplementing the standard
tight-binding model yield extremely close agreement with
experiment. Our non-local resistance simulations show
well defined positive and negative peaks, which are due
to enhanced transmission into contacts three or four, re-
spectively. Many of the features seen by Chen et al8 have
been explained, including the transition into the quan-
tum Hall regime for high magnetic fields and the transi-
tions between different p-p’ and p-n doping regimes.
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R. Maurand, K. Richter, and C. Schönenberger, Nature
Communications 6, 6470 (2015).

25 T. Taychatanapat, J. Y. Tan, Y. Yeo, K. Watanabe,
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