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We perform transport measurements on double quantum dots defined in Ge/Si core/shell
nanowires and focus on Pauli spin blockade in the regime where tens of holes occupy each dot.
We identify spin blockade through the magnetic field dependence of the leakage current. We find
both a dip and a peak in the leakage current at zero field. We analyze this behavior in terms of
quantum dot parameters such as coupling to the leads, interdot tunnel coupling as well as spin-orbit
interaction. We estimate a lower bound on the spin-orbit parameter corresponding to an upper
bound of lso = 500 nm for the Rashba spin-orbit length. We also extract effective Landé g-factors
up to 8.0 from field-dependent spin blockade measurements.

I. INTRODUCTION

Studies of spin blockade in quantum dots are largely
motivated by the proposals to build a spin-based quan-
tum computer1, as spin blockade can be used for qubit
initialization and readout2,3. At the same time, spin
blockade and its lifting mechanisms offer a direct insight
into spin relaxation and dephasing processes in semicon-
ductors and provide deeper understanding of interactions
between spin localized in a quantum dot and its environ-
ment, be it the lattice and its vibrations or nuclear spins,
spin-orbit interaction, or coupling to spins in nearby dots
or in the lead reservoirs4–8.

Holes in Ge/Si nanowires offer a relatively unexplored
platform for such studies9. On the one hand, hyperfine
interaction is expected to be greatly reduced owing to
the low abundance of nonzero nuclear spin isotopes in
the group IV materials10. Moreover, holes weakly couple
to nuclear spins due to their p-wave Bloch wave sym-
metry, thus they are expected to come with longer spin
relaxation times11. Heavy/light hole degeneracy may
also influence the spin blockade regime12. On the other
hand, spin-orbit interaction is predicted13 and suggested
by experiments14–17 to be strong in Ge/Si core/shell
nanowires. This offers a path to electrical spin manipula-
tion 18,19, as well as to realizing Majorana fermions20–23.

In this work we perform transport measurements on
electrostatically defined double quantum dots2 made in
Ge/Si core/shell nanowires, and detect Pauli spin block-
ade at several charge degeneracy points. We expand and
adapt a previously developed rate equation model to ana-
lyze the magnetic-field evolution of the leakage current24.
We also extract relatively large effective g-factors, up to
8.0 25–27, which is promising for Majorana fermion and

spin qubit implementations.

II. EXPERIMENTAL METHODS

The devices are fabricated on n-doped Si substrates
covered with 500 nm of thermal silicon oxide and pat-
terned with local gate arrays of Ti/Au stripes with a
center to center distance of 60 nm. The gates are cov-
ered by a 10 nm layer of HfO2 dielectric. Using a mi-
cromanipulator28 the nanowires with a typical length of
3–5 µm, core diameter of 20–30 nm, and shell thickness
of 2 nm are placed on top of these gates as shown in the
inset of Fig. 1. After wet etching with buffered hydroflu-
oric acid, we sputter 15 nm of Al followed by 42 nm of
NbTiN on lithographically defined source and drain elec-
trodes to make ohmic contacts along with the contacts
to the gates. We note that despite the fact that Al and
NbTiN are both superconductors the contact between the
leads and the nanowire has high resistance and low trans-
parency in these devices, therefore no effects of induced
superconductivity are observed on the dots as opposed
to nominally the same devices that showed high contact
transparency29. Furthermore, the applied source-drain
bias exceeds the superconducting gap of NbTiN, which
remains superconducting at all fields applied here. Thus
we do not consider any contribution from the supercon-
ductivity of the leads on the leakage current. The mea-
surements are performed in a dilution refrigerator at a
base temperature of 30 mK.

The double quantum dot is defined by applying posi-
tive voltages to three adjacent gates: G1 and G3 are used
to set the outer barriers, and G2 defines the interdot bar-
rier. Since all three gates are in close proximity they all
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influence the charge occupation of the dots, as well as all
three tunneling barriers.

III. EXPERIMENTAL RESULTS

The main panel of Fig. 1 shows the measured dou-
ble dot charge stability diagram which consists of a grid
of charge degeneracy points connected by co-tunneling
lines at higher charge occupations. Many charge degen-
eracy points are observed before the gate-induced energy
barriers to the source and drain get too high to detect
the current at the positive gate voltage extremes of the
plot. This is in strong contrast with quantum dots de-
fined using similar gates in InAs8 or InSb30 nanowires,
where only a few charge degeneracy points are visible
between complete pinch-off and the open transmission
regime. The current is too low to measure at the charge
degeneracy points corresponding to the last few holes in
both dots, meaning that the tunneling barriers pinch off
completely before the dots are emptied. In the regime
studied here both dots still contain tens of holes. This is
confirmed by asymmetric gate tuning such that as holes
are expelled from one dot, the occupation of the other
dot is increased and the tunneling barrier is lowered to
ensure detectable current. The fact that so many holes
fit in a small volume of a double dot (less than 120 nm
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FIG. 1. Current through the double dot as a function of
voltage on G1 (V1) versus voltage on G3 (V3) at a fixed voltage
on G2. The measurement is taken with a source-drain bias of
4 mV and at zero magnetic field. The inset shows a scanning
electron micrograph of a representative Ge/Si nanowire device
with Al/NbTiN lithographic contacts (labeled “Source” and
“Drain”) and tuning gate electrodes labeled G1 to G3. The
other gates are fixed at zero voltage.

length and 30 nm diameter) is consistent with the large
effective hole masses as compared to those of electrons in
III-V semiconductors, indicating that the hole wavefunc-
tions are predominantly of a heavy-hole character.

In double quantum dots with multiple charges per dot,
spin blockade does not necessarily occur at each (odd,
odd) to (even, even) charge transition as expected for
simple few-electron quantum dots2,8,30–33. In fact, spin
blockade may not occur for multiple transitions in a
row34. This can be either due to the complex spin struc-
ture of the higher orbital states or due to a suppressed
energy splitting between the ground state singlet and a
higher orbital triplet.

When spin blockade does occur we assume that it can
be effectively understood in the same way as the simplest
(1, 1)→ (0, 2) spin blockade: Close to zero detuning, the
n’th hole in the source dot can only enter the drain dot
if it can form a spin-singlet state with the m’th hole on
the drain dot. Entering an (n − 1,m + 1) state in a
triplet configuration requires occupation of a higher or-
bital state which becomes energetically accessible only
when an additionally applied interdot energy level de-
tuning ε exceeds the singlet-triplet energy level splitting
in the drain dot. For small detuning the system is thus
expected to be blocked in one of the three triplet states,
which are in principle degenerate and split in energy un-
der the influence of a magnetic field due to the Zeeman
effect. For clarity we will refer to the (n,m) states as
(1, 1) and to the (n − 1,m + 1) states as (0, 2). Current
through the double dot in the spin blockade regime due
to various spin non-conserving processes is referred to as
the leakage current.

The primary signature of spin blockade in this study
comes from the magnetic field dependence of the leakage
current (Fig. 2), which can be explained in terms of the
simple spin blockade picture described above. We vary
the (1,1) to (0,2) energy level detuning, ε by scanning G1
and G3 perpendicular to the base of bias triangles (as in-
dicated in the inset), while stepping the magnetic field.
The suppressed current observed for 0 < ε <∼ 2 meV is
associated with spin blockade, and we interpret the sud-
den rise in current at ε ≈ 2 meV as the (0, 2) triplet
states becoming energetically accessible from the (1, 1)
triplet states, thus lifting the blockade. The associated
singlet-triplet splitting of ∼ 2 meV is representative of
the several charge degeneracy points studied (see supple-
mental material).

A smaller rise in the leakage current at lower detuning,
marked with the tilted dashed line in Fig. 2, is assigned
to a resonance between the lowest (1, 1) state T+ and the
singlet S(0, 2) state: Below this resonance (for smaller
ε), S(0, 2) is energetically not accessible from the ground
state T+(1, 1) and the system is in Coulomb blockade.
Since the energy of S(0, 2) is not expected to depend
on the magnetic field, the B-dependence of this reso-
nance reflects the B-dependence of the energy of T+(1, 1).
The pattern formed by two current resonances marked by
dashed lines T+(1, 1)→ T (0, 2) and T+(1, 1)→ S(0, 2) is
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FIG. 2. Current through the double quantum dot measured as
a function of the detuning ε and the magnetic field B, with an
applied source-drain voltage of VSD = 6.5 mV. The magnetic
field is applied normal to the substrate plane. The resonances
associated with T+(1, 1) → T+(0, 2) and T+(1, 1) → S(0, 2)
transitions are marked with dashed lines. From the field de-
pendence of the latter we find g = 8.0±0.2. Inset: the charge
degeneracy point at finite bias with the detuning axis used in
the main panel indicated by ε.

the main signature of spin blockade in this study. Note
that a copy resonance follows the T+(1, 1)→ S(0, 2) tran-
sition in field, which is not accounted for in the simple
spin blockade picture used here.

Using the slope of the resonance labeled T+(1, 1) →
S(0, 2), we obtain g = 8.0 ± 0.2 for Fig. 2. While
full g-tensor measurements were not performed, we find
lower g-factors for fields deviating from normal to the
substrate, in agreement with other studies (see sup-
plemental material)26,27. The highest g-factors ex-
tracted here are larger than previously reported for Ge/Si
nanowires15,26,27. One possible reason for this is larger
wire diameters used here: indeed, a relevant theory pre-
dicts diameter-dependent g-factors13.

In Fig. 3a,b (left panels) we plot the measured leakage
current in the spin blockade regime of two representative
charge degeneracy points which show a qualitatively dif-
ferent field-dependent behavior. The current in Fig. 3(a)
shows a single peak centered at zero field, whereas in Fig.
3(b) we observe a double-peak structure with a dip at
zero magnetic field. We note that beyond the difference
in charge numbers, we cannot independently quantify dif-
ferences in other double dot parameters across the two
regimes of Fig. 3. We speculate that the interdot tunnel
coupling as well as the couplings to the leads are not the
same in the two regimes.

A zero-field dip in the leakage current is known to occur
in double dots hosted in materials with strong spin-orbit
interaction6,8,35–37. The dip is usually explained in terms
of a competition between different types of spin-mixing
processes: The combination of spin-orbit interaction and
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FIG. 3. Magnetic field evolution of the leakage current in two
different spin blockaded transport configurations. In both
cases the field is applied in the plane of the nanowire and
gates, perpendicular to the gates but making an angle of
∼ 30◦ with the wire. In the left panels we show the depen-
dence of the leakage current on magnetic field and detuning,
and on the right side we show the corresponding charge degen-
eracy points (top) and a line cut of the data at zero detuning
(bottom). The zero-detuning cuts include fits to the theory
presented in the main text. (a) In this configuration, where
a bias voltage VSD = 6.5 mV is applied, the leakage current
has a single-peak structure both as function of the detun-
ing and magnetic field. The corresponding charge stability
diagram is taken at B = 5 T. In the figure we plot two dif-
ferent theory curves on top of the data, both with ξ = 0.03,
g = 4.4, and an added constant current of 0.8 pA to account
for the background signal observed in the data. We further
used Γ = 300 MHz, t = 50 µeV, γ = 0.0075, and α = 0.4
(solid red curve) and Γ = 25 MHz, t = 150 µeV, γ = 0.66,
and α = 0.4 (dashed green curve). (b) Leakage current at
a different charge degeneracy point, with VSD = 4 mV. The
corresponding bias triangle is taken at B = 0 T. Here the
current shows a double-peak structure in the magnetic field,
which can also be seen in the zero-detuning cut. The theory
curve (red solid line) uses ξ = 0.03, g = 4, Γ = 256 MHz,
t = 150 µeV, γ = 0.061, and α = 0.37.

Zeeman splitting due to the applied field enables tran-
sitions between triplet and singlet configurations. This
mechanism becomes more efficient at higher magnetic
field and thus it produces a dip in the leakage current
around zero field24. Other processes that mix spin states,
such as the hyperfine interaction between the electrons
or holes and the nuclear spins in the host material38 or
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spin-flip cotunneling processes with the leads39, can be
independent of the magnetic field or even become less effi-
cient with increasing B. If one of such processes provides
the dominant spin-mixing mechanism, then there will ap-
pear no dip in the current around zero field. Since the
spin-orbit-mediated mechanism scales with the interdot
tunnel coupling, one can expect to observe a transition
from having a zero-field dip to no zero-field dip when
changing the tuning of the double dot.

IV. THEORETICAL MODEL

Ignoring the potentially more complicated nature of
spin blockade in the valence band, we assume that in the
present case we can describe the leakage current with
a model based on the following ingredients: (i) S(1, 1),
has the same singlet configuration as S(0, 2) and is thus
strongly coupled to that state, with a coupling energy t.
(ii) The state S(0, 2) decays to the drain lead with a rate
Γ. Immediately after such a transition a new hole en-
ters the system from the source, bringing it in one of the
(1, 1) states again. (iii) T±(1, 1) split off in energy when
a magnetic field is applied. (iv) Spin-orbit interaction re-
sults in a coherent non-spin-conserving coupling between
the (1, 1) triplet states and S(0, 2). The energy scale
characterizing spin-orbit coupling tso is proportional to t.
(v) There can be other spin-mixing and spin-relaxation
processes causing transitions between the different (1, 1)
states.

In our data both the dip and the peak are relatively
wide: they appear on a field scale of B ∼ 1 T which
is of the order of 3 K. First of all, this rules out hyper-
fine interaction as the dominant spin-mixing mechanism
in the single-peak data of Fig. 3a. Hyperfine interaction
is known to lift spin blockade around zero field produc-
ing a peak in current, but the width of the hyperfine
peak is comparable to the typical magnitude of the effec-
tive nuclear fields in the dots. We estimate the effective
nuclear fields in the present system to be less than 10
mT, which is orders of magnitude smaller than the peak
width observed here40. Secondly, the analytic theory of
Ref. 24, which is often used to extract model parame-
ters such as the magnitude of spin-relaxation rates and
α = tso/t, is valid for t, tso, B � Γ and also assumes
the spin-relaxation rates to be isotropic, based on the
assumption B � T , where T is the temperature. From
here on we will use h̄ = kB = gµB = e = 1. In the
present case, however, we have B � T for most fields of
interest, and spin relaxation will thus mostly be directed
towards the (1, 1) ground state instead. Furthermore, the
suppression of current at the highest fields could indicate
that B exceeds at these fields the effective level width
of S(0, 2) by such an amount that the system is pushed
into a Coulomb blockade in the lowest-lying (1, 1) triplet
state.

We thus cannot straightforwardly apply the theory of
Ref. 24 to model the data shown in Fig. 3. Instead we

present a modified version of the theory, where we include
only spin relaxation to the ground state and do not ex-
pand in large Γ. We start from the five-level Hamiltonian

H =


0 iB 0 0 iαt
−iB 0 0 0 iαt

0 0 0 0 iαt
0 0 0 0 t
−iαt −iαt −iαt t 0

 , (1)

written in the basis {|Tx〉, |Ty〉, |Tz〉, |S〉, |S02〉}, where

|Tx,y〉 = i1/2∓1/2{|T−〉 ∓ |T+〉}/
√

2 and |Tz〉 = |T0〉 are
the three (1, 1) triplet levels and |S〉 and |S02〉 the (1, 1)
and (0, 2) singlets, respectively. The interdot detuning
was set to zero and α parametrizes the strength of the
effective spin-orbit interaction in the dots, where α ∼ 1
corresponds to the strong limit. In principle, the three
α’s coupling |Tx,y,z〉 to |S02〉 can be different, constitut-
ing a vector α = (αx, αy, αz) (see Ref. 24). The length of
this vector corresponds to the strength of the spin-orbit
interaction and its direction is related to the direction
of the effective spin-orbit field. In a physical nanowire,
the precise orientation of α depends on many details and
is hard to predict. We therefore make the simplifying
assumption that all three components are of the same
magnitude. We diagonalize the Hamiltonian and use its
eigenbasis to write a time-evolution equation for the den-
sity matrix24,

dρ̂

dt
= −i[Hdiag, ρ̂] + Γρ̂+ Γrelρ̂. (2)

The operator Γ describes (i) decay of all states |n〉 (with
n = 0 . . . 4) to the drain lead with the rates Γ|〈n|S02〉|2
and (ii) immediate reload into one of the eigenstates with
the probabilities {1 − |〈n|S02〉|2}/4. For the relaxation
operator Γrel we take a simple form: We assume that all
four excited states relax with the same rate Γrel to the
ground state. At B = 0 this ground state is an equal
superposition of |S02〉 and the optimally coupled (1, 1)

state |m〉 = {|S〉 − iα1 · |~T 〉}/
√

1 + 3α2, and for B →∞
it develops into a pure |T+〉-state.

We first discuss this model on a qualitative level, and
investigate how it differs from the model of Ref. 24. For
small fields, B � Γ, the different spin relaxation model
used here only yields different numerical factors in some
of the results. At B = 0 we have three blocked states at
zero energy that can relax to the hybridized (1, 1)–(0, 2)
ground state which quickly decays to the drain lead; this
results on average in four holes being transported through
the system in a time 3Γ−1rel , thus yielding a leakage current
of I(0) = 4

3Γrel. Adding a finite magnetic field induces
a coupling of ∼ αB between two of the blocked states
and |m〉, which provides an alternative escape route and
leads to an increase of the current.

This increase becomes significant only when the rate
of this escape ∼ (αB)2Γ/t2 becomes comparable to Γrel,

which happens at B ∼ (t/α)
√

Γrel/Γ. For larger fields
the current tends to its maximum value Imax = 4Γrel,
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reached when only one truly blocked state is left and on
average four holes are transported in a time Γ−1rel . We see
that this picture predicts a zero-field dip in the current of
width Bdip ∼ (t/α)

√
Γrel/Γ and a maximal suppression

of the current, by a factor 3, at B = 0. This is, apart from
numerical factors, the same result as found in Ref. 24.

Qualitative differences appear when we investigate
what happens at even higher fields. Since Γ is finite in the
present model and all relaxation is directed toward the
ground state, we can enter a situation of Coulomb block-
ade in the (1, 1) ground state |T+〉. When we increase B,
the current will thus eventually be suppressed to zero,
producing in general a double-peak structure in I(B). A
näıve guess for the field scale where this suppression sets
in would be ∼ Γ: The level width of |S02〉 is set by Γ,
and for B >∼ Γ the escape rate from |T+〉 drops gradually
to zero. However, the actual field scale of current decay
is rather set by the competition of this escape rate with
Γrel: Only when the B-induced suppression becomes so
strong that escape from |T+〉 is the main bottleneck for
the leakage current, the decrease in current becomes sig-
nificant. We thus compare this escape rate ∼ (αt)2Γ/B2

with Γrel and find an estimate for the width of the overall
double-peak structure Bc ∼ αt

√
Γ/Γrel.

We can also understand how our model could result
in an apparent single-peak I(B). Indeed, Bdip and Bc
show a different dependence on the model parameters,
and their ratio Bdip/Bc ∼ Γrel/α

2Γ (which determines
the relative visibility of the zero-field dip) could be large
or small, depending on the detailed tuning of all param-
eters. For Bdip/Bc � 1 one could be in the situation
where the central dip around zero field is too narrow to
be observed.

We will now support these arguments with a more
quantitative investigation of the model. We can solve
Eq. 2 in steady state, dρ̂/dt = 0, and find the current
from the resulting equilibrium occupation probabilities
pn = ρ̂nn as I =

∑
n pnΓ|〈n|S02〉|2, yielding

I(B) = Γrel
[w −B2 + τ2][w(1 + 4γ) +B2 − τ2]

6γw2 + 2B2α2t2
, (3)

where we use the notation w =
√

(B2 − τ2)2 + 8B2α2t2,

the small parameter γ = Γrel/Γ, and τ = t
√

1 + 3α2

(which is the total tunnel coupling energy). To obtain
Eq. 3 we assumed γ � 1, which we will also do below.

The current given by Eq. 3 indeed shows in general a
double-peak structure. At zero field we find I(0) = 4

3Γrel,
and the current has two maxima at B = ±τ where I =
4Γrel. The half-width of the resulting zero-field dip fol-

lows as Bdip = t(
√
β2 + 2−β)/

√
2, where β = α/

√
6γ. In

the limit of large β (small
√
γ/α) we find Bdip ≈ t

√
3γ/α.

At high fields, the current drops to zero, and from Eq. 3
we find the half-width-half-maximum of the full double-
peak structure to be Bc = t(

√
β2 + 2 + β)/

√
2 which

reduces to Bc ≈ αt/
√

3γ for large β. We see that in the
limit of small γ these results agree with the conclusions
of our qualitative discussion above.

B [meV]

I [     ]

FIG. 4. The current resulting from Eq. 3 for two different sets
of parameters: t = 120 µeV, α = 0.1, and γ = 2× 10−3 (solid
blue curve) and t = 3.5 µeV, α = 0.5, and γ = 10−4 (dashed
green curve).

In Fig. 4 we plot I(B) for two different sets of pa-
rameters, illustrating how the model can produce curves
that appear to have double-peak as well as single-peak
structures. The solid curve shows a clear double-peak
structure, which is indeed expected since the “visibil-
ity parameter” Bdip/Bc ≈ 0.30 predicts a clearly dis-
tinguishable zero-field dip. In contrast, for the dashed
curve Bdip/Bc ≈ 0.001. In this case, the current still has
a dip around zero field; its width, however, is ∼ 1000
times smaller than the overall width of the structure and
therefore invisible in the plot. Depending on all other
parameters, this situation could thus correspond to an
experiment where the leakage current appears to have a
single-peak structure.

In order to connect our model to the experimental data
in Fig. 3 and facilitate fitting of the model parameters
(see below), we include the likely scenario that g-factors
in the two dots are different. The effective g-factor for a
localized hole depends on many microscopic characteris-
tics, among which the details of the confining potential13,
and is thus expected to differ from dot to dot. Recent
studies on similar materials found g-factors differing by
2–5% between two dots in a double dot37,41. Such dif-
ferences are smaller than the error bars in our g-factor
measurement, thus they cannot be verified in our devices
but they need to be conisdered due to their strong influ-
ence on the leakage current. The effect of having different
g-factors on the left and right dots (gL and gR) is a coher-
ent mixing of |Tz〉 and |S〉. As a result, the single blocked

state left at finite field {|Tz〉+iα|S〉}/
√

1 + α2 couples to

the decaying state {|S〉 − iα|Tz〉}/
√

1 + α2, thus lifting
the blockade. The rate of this decay of the last blocked
state is Γξ ∼ (ξB)2Γ/t2, where ξ = 1

2 (gL−gR)/(gL+gR).
This decay competes with Γrel for being the bottleneck
for the leakage current: If Γξ >∼ Γrel then the overall scale
of the current will be set by Γξ.

To include the effect of a finite g-factor gradient into
our model, we add a term Hξ = ξB{|Tz〉〈S|+ |S〉〈Tz|} to
the Hamiltonian (1). We can again solve Eq. 2 in steady
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state dρ̂/dt = 0 and arrive at an analytic expression for
the current I(B) which we can fit to the data (at this
point we do not assume γ � 1). Fixing ξ = 0.03, we can
obtain reasonable fits to the double-peak data of Fig. 3b
(See the supplemental material for an explicit expression
for I(B) including a finite ξ). Based on these results,
we conclude that spin-orbit parameter α is in the range
∼ 0.1–0.4. The single-peak data of Fig. 3a are harder
to fit due to lack of features, thus we cannot reasonably
narrow down all the fit parameters. However, theory
curves with α in the same range as for the double-peak
regime can show reasonable agreement, see Fig. 3b.

V. CONCLUSIONS

To conclude, assuming linear Rashba spin-orbit inter-
action as the dominant relaxation term13 in these gate-
defined double quantum dots with α = 0.1–0.4, and a
dot-to-dot distance of order 50 nm, we find a spin-orbit
length of lso = 100–500 nm. While this corresponds to
a substantial spin-orbit interaction, it does not greatly
exceed that measured in InAs or InSb nanowires. One

possibility for this could be that α is not maximal for the
field orientation at which data is obtained here as a conse-
quence of spin-orbit anisotropy30, although the magnetic
field was not oriented in the direction expected for the
spin-orbit field. Another factor for lower-than-expected
spin-orbit interaction is the low strain between the thin
Si shell and relatively thick Ge core. Thus, it is conceiv-
able that spin-orbit interaction can be enhanced by tai-
loring the nanowire morphology. A more detailed insight
into spin-orbit coupling and other double dot parameters
could be obtained from electric dipole spin resonance.
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28 K. Flöhr, M. Liebmann, K. Sladek, H.Y. Günel, R. Friel-
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