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The quasi-skutterudite superconductors A3T4Sn13 (A=Sr, Ca; T=Ir, Rh, Co) are highly tunable
featuring a structural quantum critical point. We construct a temperature-lattice constant phase
diagram for these isovalent compounds, establishing Ca3Rh4Sn13 and Ca3Co4Sn13 as members close
to and far away from the structural quantum critical point, respectively. Deconvolution of the lattice
specific heat and the electrical resistivity provide an approximate phonon density of states F (ω)
and the electron-phonon transport coupling function α2

trF (ω) for Ca3Rh4Sn13 and Ca3Co4Sn13,
enabling us to investigate the influence of the structural quantum critical point. Our results support
the scenario of phonon softening close to the structural quantum critical point, and explain the
enhancement of the coupling strength on approaching the structural instability.

INTRODUCTION

The investigation of the interplay between structural
instability and superconductivity has a long history.
Early example includes A-15 compounds Nb3Sn and V3Si
in which an enhancement of the superconducting critical
temperature (Tc) was reported with the suppression of
structural transition temperature [1, 2]. More recently,
the material base has been expanded to include transition
metal dichalcogenides derived from IrTe2 [3–7] as well as
Ni- and Fe-based superconductors [8–12], in which super-
conductivity emerges at the first-order structural transi-
tion boundary. These studies explicitly highlight the role
of structural instability on the stabilization of the super-
conductivitiy.

The stannide superconductors with chemical compo-
sition A3T4Sn13 (A=Ca, Sr, La; T=Ir, Rh, Co) have
recently been studied with a wide range of probes [13–
42]. The superconducting gap symmetry has been es-
tablished to be of conventional s-wave type [26–32]. In
certain compositions, a structural phase transition occurs
upon cooling. For instance, Sr3Ir4Sn13 and Sr3Rh4Sn13

with a space group of Pm3̄n at room temperature (I
phase) [13, 29] undergo a structural phase transition at
T ∗= 147 K and 138 K respectively, below which super-
lattice reflections were observed at the M point, which
corresponds to q = (0.5, 0.5, 0) and the symmetry equiv-
alents (I ′ phase) [14, 41]. The structural transition has
been shown to be second-order by the shape of the spe-
cific heat jump [15], absence of hysteresis in resistivity
[13, 14] and continuous growth of superlattice reflection
[41] around T ∗. Crucially, the structural transition tem-
perature T ∗ is highly controllable: T ∗ can be suppressed
to 0 K at a structural quantum critical point (QCP) via
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a suitable combination of hydrostatic pressure and chem-
ical substitution [13, 14], giving rise to phase diagrams in
which the role of the structural quantum criticality and
its influence on the superconductivity can be explored in
a systematic manner.

(CaxSr1−x)3Ir4Sn13 [13], (CaxSr1−x)3Rh4Sn13 [14,
15], and Ca3(Ir1−yCoy)4Sn13 [16] are several substitu-
tion series that have been investigated recently. In
(CaxSr1−x)3Rh4Sn13, it has been shown that T ∗ can
be driven to 0 K solely by calcium substitution. In
the vicinity of the structural QCP, i.e. xcrit ≈ 0.9 in
(CaxSr1−x)3Rh4Sn13[14, 15], the resistivity is linear in
temperature, the Debye temperature is a minimum, Tc
takes the maximum value, and the superconducting state
is of strong coupling nature, as benchmarked by a sub-
stantially enhanced gap-to-Tc ratio 2∆(0)/kBTc and nor-
malized specific heat jump ∆C/γTc [15, 43]. These ob-
servations can all be explained by considering the soften-
ing of the relevant phonon mode due to the second-order
structural transition. Indeed, calculations have found the
softening of phonon modes at the M point [14, 38], which
was subsequently confirmed by inelastic neutron scatter-
ing in Ca3Ir4Sn13 [25]. For Sr3Ir4Sn13, phonon softening
was observed on approaching T ∗ from below by ultrafast
spectroscopy [42].

Recently, Hou et al. investigated Ca3(Ir1−yCoy)4Sn13

[16] for low Co concentrations (y ≤ 0.12). For this series,
Ca3(Ir0.91Co0.09)4Sn13 appears to be at the part of the
phase diagram where T ∗ extrapolates to 0 K. Following
a well-established method of analyzing specific heat and
electrical resistivity [16, 44–48], the approximate phonon
density of states F (ω) and the electron-phonon transport
coupling function α2

trF (ω) of Ca3(Ir0.91Co0.09)4Sn13 were
obtained, leading to the conclusion of phonon-mediated
strong-coupling superconductivity, consistent with the
observation of Yu et al. and Biswas et al. in relevant
series [15, 33]. To gain further insights into the role of
structural instability, it is desirable to extend the work of
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Hou et al. to study a composition which is far away from
the structural QCP, and this composition should not un-
dergo a structural transition. As we will establish in this
manuscript, Ca3Co4Sn13 (Tc = 6.0 K from resistivity,
space group Pm3̄n) is a good candidate. In this work,
we report F (ω) and α2

trF (ω) of Ca3Co4Sn13, and for a
comparative study, of Ca3Rh4Sn13 which is very close to
the structural QCP. Both Ca3Co4Sn13 and Ca3Rh4Sn13

are in the I phase with no structural transition observed
down to the lowest attainable temperature.

METHOD

Single crystals of Ca3Rh4Sn13 and Ca3Co4Sn13 were
synthesized by a tin flux method following similar steps as
described elsewhere [19]. Heat capacity was measured us-
ing a standard pulse relaxation method. The mass of the
Ca3Rh4Sn13 and Ca3Co4Sn13 are 24.72 mg and 1.08 mg,
respectively. Electrical resistivity was measured using
the four-contact method. The low temperature and high
magnetic field environment were provided by a Physical
Property Measurement System (Quantum Design).

RESULTS AND DISCUSSION

The temperature-pressure phase diagrams constructed
for (CaxSr1−x)3Rh4Sn13 [14] and (CaxSr1−x)3Ir4Sn13

[13] have established the role of Ca as a provider of
chemical pressure in both isovalent substitution series.
Furthermore, the two phase diagrams bear close re-
semblance, hinting at a more universal tuning parame-
ters. Inspired by these observations, we plot in Fig. 1
the Tc and T ∗ of the two series against their room-
temperature lattice constants. Since Co, Rh and Ir are
from the same group in the periodic table, the chem-
ical substitution of the T site in A3T4Sn13 with these
elements is also isovalent. Therefore, it is natural to
include Ca3(Ir0.91Co0.09)4Sn13 and Ca3Co4Sn13 in the
phase diagram. From Fig. 1, it is immediately clear that
Ca3Co4Sn13 is far away from the structural QCP. More-
over, Tc decreases under pressure with an initial slope
dTc/dp ∼ −0.4 K/GPa [49], which follows the trend
of Tc on this part of the phase diagram. Therefore,
Ca3Co4Sn13 is an ideal composition to investigate the
right hand part of the phase diagram. Aliovalent stan-
nides such as La3Co4Sn13 are excluded from this analysis.

The normal state specific heat of
(Ca0.9Sr0.1)3Rh4Sn13, Ca3Rh4Sn13, and Ca3Co4Sn13

were measured from 2 K to 300 K. The Sommerfeld
coefficient γ was first extracted from the specific heat
at low temperature following the standard proce-
dure (e.g. as described in detail in Ref. [15] for both
(Ca0.9Sr0.1)3Rh4Sn13 and Ca3Rh4Sn13). This allows
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FIG. 1. (Color online) Universal phase diagram with Tc

(solid symbols) and T ∗ (open symbols) against the room
temperature lattice constant. The (CaxSr1−x)3Rh4Sn13 se-
ries contains x = 0, 0.25, 0.5, 0.75, 0.9, 1 and Ca3Rh4Sn13

at 20.6 kbar, (CaxSr1−x)3Ir4Sn13 series contains x =
0, 0.5, 0.75, 1, where a larger x of a given series corresponds
to a smaller lattice constant. The end compounds are in-
dicated by arrows. The solid square and solid pentagon
denote Tc of Ca3(Ir0.91Co0.09)4Sn13and Ca3Co4Sn13 respec-
tively. All transition temperatures are determined from re-
sistivity measurements [13, 14, 16]. The lattice constants of
Ca3Rh4Sn13 at 20.6 kbar and the intermediate compounds
(CaxSr1−x)3Ir4Sn13 and Ca3(Ir0.91Co0.09)4Sn13 are extrap-
olated using the lattice constant of respective end com-
pounds according to Vegard’s law. The lattice constants of
(CaxSr1−x)3Rh4Sn13 are available from Ref. [14]. The dashed
‘T ∗-line’ is a guide to the eyes. Inset: (C/T − γ) against
T for Ca3Co4Sn13, Ca3Rh4Sn13, (Ca0.9Sr0.1)3Rh4Sn13, and
Ca3(Ir0.91Co0.09)4Sn13. The data for Ca3(Ir0.91Co0.09)4Sn13

were digitized from Ref. [16].

us to subtract the electronic contribution from the
total heat capacity. In the inset of Fig. 1, the phonon
contribution to the specific heat divided by temper-
ature, (C/T − γ), is plotted. Additionally, the data
for Ca3(Ir0.91Co0.09)4Sn13 were digitized from Ref. [16]
for comparison. It is clear that Ca3Co4Sn13 behaves
differently from the others at low temperature. Note
that we have avoided the compositions with structural
transition, so that no Fermi surface reconstruction occurs
and γ can be regarded as temperature independent.

For quantitative comparison, we represent the phonon
density of states F (ω) using a basis of Einstein modes:
F (ω) =

∑
i Fiδ(ω − ωi) with ~ωi = kBΘi, where Θi and
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FIG. 2. (Color online) The temperature dependence of
the lattice specific heat divided by temperature for (a)
Ca3Co4Sn13 and (b) Ca3Rh4Sn13, with insets showing the
low temperature part. The solid curve is the fit using Eq. (1)
and the dashed curves are the constituent Einstein compo-
nents, labelled by the appropriate Einstein temperatures Θi.
For reference, γ is 60.9 mJK−2mol−1 and 57.2 mJK−2mol−1

for Ca3Co4Sn13 and Ca3Rh4Sn13, respectively.

Fi are the Einstein temperature and the weight of the
ith Einstein component, respectively. The corresponding
specific heat is [16, 44–48]

Cph(T ) = NAkB
∑
i

Fi
x2i e

xi

(exi − 1)2
(1)

where xi = Θi/T , NA is the Avogadro’s number, and
kB is the Boltzmann constant. Fig. 2 presents the re-
sults for Ca3Co4Sn13 and Ca3Rh4Sn13, and the insets
display a close-up at low temperature. With seven Ein-
stein modes, equally spaced in the logarithmic ω scale
such that ωi+1/ωi = Θi+1/Θi =1.75, where the first term
Θ1 = 10.3 K, we successfully describe the lattice specific
heat of both Ca3Co4Sn13 and Ca3Rh4Sn13 over the entire
temperature range, with a sufficient resolution to identify
the key difference between the two compounds.

In an analogous manner, we can study the spectral
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FIG. 3. (Color online) Resistivity data of the entire temper-
ature range and the decomposition of the normal state part
for (a) Ca3Co4Sn13 and (b) Ca3Rh4Sn13. The Einstein modes
Θi+1 = 1.75Θi are the same as the ones used for the specific
heat analysis, and their values are indicated next to the cor-
responding dashed curves.

electron-phonon transport coupling function α2
trF (ω) =

1
2

∑
i λiωiδ(ω − ωi), where λi is dimensionless, from the

decomposition of the total electrical resistivity into dis-
crete components which can be described by the Bloch-
Grüneisen formula [16, 44–48]:

ρBG(T ) = ρ(0) +
2π

ε0Ω2
p

∑
i

λiωi
xie

xi

(exi − 1)2
(2)

where xi = Θi/T , Ωp is the plasma frequency, and ε0 is
the dielectric constant. The same set of Einstein modes
used in specific heat analysis are employed for the analy-
sis of the resistivity. Above ∼50 K, the resistivity starts
to exhibit a negative curvature, suggesting a saturation
behaviour at higher temperature. Following the em-
pirical parallel-resistor model [50], which was developed
when the system approaches the Mott limit [51, 52], our
measured resistivity ρ(T ) is analyzed with the following
equation,

1

ρ(T )
=

1

ρBG(T )
+

1

ρsat
, (3)
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FIG. 4. (Color online) Phonon density of states per formula
unit F (ω) and the electron-phonon transport coupling func-
tion α2

trF (ω) for (a) Ca3Co4Sn13 and (b) Ca3Rh4Sn13. The
width of the histogram is ∆ωi = 1.750.5ωi − ωi/1.750.5 =
0.567ωi. Therefore, Fi/∆ωi ∼ Fi/ωi and α2

trFi/∆ωi ∼ λi.
In (b) the open circles and triangles denote α2

trF (ω) for
Ca3Rh4Sn13 at 20.6 kbar and (Ca0.9Sr0.1)3Rh4Sn13, respec-
tively. For clarity, the data for Ca3Rh4Sn13 at 20.6 kbar and
(Ca0.9Sr0.1)3Rh4Sn13 have been rescaled.

where ρsat is the fitted saturation resistivity. The value
of ρsat is 368 µΩcm and 169 µΩcm for Ca3Co4Sn13

and Ca3Rh4Sn13, respectively. The results are shown
in Fig. 3.

For both Ca3Co4Sn13 and Ca3Rh4Sn13, there are pri-
marily three Bloch-Grüneisen components contributing
to the resistivity. With the plasma frequency unknown,
only the relative weight of λi can be obtained from the
fitting. However, the electron-phonon coupling constant,
λep, can be written as λep =

∑
i λi. From Ref. [30],

λep = 1.17 and 1.62 for Ca3Co4Sn13 and Ca3Rh4Sn13,
respectively. Hence, the absolute value of λi, and conse-
quently α2

trF (ω) can be obtained.

The extracted α2
trF (ω) and F (ω) are plotted in Fig. 4,

which provides key insight to the understanding of this
material system. Comparing first F (ω) obtained for both
compounds whose weight distribution is represented as

Θi ωi Ca3Co4Sn13 Ca3Rh4Sn13

(K) (meV) Fi/ωi λi Fi/ωi λi

10.3 0.89 0.03 0 0.03 0

18.0 1.55 0 0 0.11 0

31.5 2.72 0.14 0.20 0.40 0.19

55.2 4.76 0.85 0.21 0.97 1.35

96.6 8.32 1.83 0.75 1.43 0.08

169 14.6 1.58 0.01 1.51 0

296 25.5 0.79 0 0.77 0∑
α2
trFi 3.96 3.80

λep [30] 1.17 1.62∑
Fi 62.63 59.54

TABLE I. The result of the deconvolution of specific heat
and resistivity. The phonon energy series is given by ωi+1 =
1.75ωi. The contribution to λep from each mode is λi =
2α2

trFi/ωi, which is determined by using the resultant fitting
parameters together with electron-phonon coupling constant
λep from Ref [30]. The total number of phonon modes per
formula unit is given by

∑
Fi.

a histogram, it is clear that there are more low-energy
phonon modes in Ca3Rh4Sn13 than in Ca3Co4Sn13. For
example, while the contribution of the ω2 = 1.55 meV
(Θ2 = 18.0 K) mode is negligible in Ca3Co4Sn13, it
is finite in Ca3Rh4Sn13. Note that

∑
Fi for both

Ca3Co4Sn13 and Ca3Rh4Sn13 is close to 60 (Table I),
which is the expected total number of phonon modes
per formula unit since there are 20 atoms in each for-
mula unit. This verifies the reliability of our data and
the accuracy of our analysis. By inspecting (C/T − γ)
for (Ca0.9Sr0.1)3Rh4Sn13 and Ca3(Ir0.91Co0.09)4Sn13 (in-
set of Fig. 1), we can expect very similar F (ω) to that of
Ca3Rh4Sn13. These results reveal that part of the spec-
tra weight of higher energy modes intrinsically transfer
to lower energy as one tunes towards the structural QCP.

Turning to α2
trF (ω), it can be seen that the electri-

cal resistivity of Ca3Rh4Sn13 is dominated by a mode
at 4.76 meV (55 K). This is in contrast to the situ-
ation in Ca3Co4Sn13 where modes at higher energies
play a more significant role in its electrical transport.
In Table I, we tabulate the numerical value of key pa-
rameters extracted from our analysis. Comparing with
Ca3Co4Sn13, Ca3Rh4Sn13 has a smaller

∑
α2
trFi but

larger λep, which is
∑
α2
trFi/ωi. This demonstrates how

the coupling strength can be enhanced through coupling
to soft phonon modes. In fact, linear resistivity has been
reported below 50 K for (Ca0.9Sr0.1)3Rh4Sn13, which was
established to be at the QCP, due to the coupling of the
electron and the soft modes [14]. Similar behaviour was
observed in Ca3Ir4Sn13 at 18 kbar [13]. Interestingly,
Ca3(Ir0.91Co0.09)4Sn13 does not show linear resistivity at
low temperature even though it is located near the struc-
tural QCP. There, a large contribution from a mode at
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12 meV was detected, together with a weaker contribu-
tion of a mode at ∼ 4 meV [16]. To find out if other
modes are softened on approaching structural instabil-
ity in Ca3(Ir1−yCoy)4Sn13, it is important to investigate
more members of the series, e.g. y = 0.12.

To further strengthen the claim that enhance-
ment in coupling strength for Ca3Rh4Sn13 is due
to the coupling to the soft mode, we investigate
the scaled α2

trF (ω) of Ca3Rh4Sn13 at 20.6 kbar and
(Ca0.9Sr0.1)3Rh4Sn13 for comparison. As shown in
Fig. 4(b), (Ca0.9Sr0.1)3Rh4Sn13, which is the closest to
the QCP, exhibits an overall softening of α2

trF (ω) (open
triangles) when compared with the case of Ca3Rh4Sn13.
Conversely, Ca3Rh4Sn13 at 20.6 kbar, which locates away
from the QCP, shows an overall hardening of α2

trF (ω).
The systematic change in α2

trF (ω) highlights the impor-
tance of coupling to the phonon modes that are become
softer as the system is tuned closer to the structural QCP.

In summary, we have established the universal phase
diagram of the isovalent substitution series A3T4Sn13

(A=Sr, Ca; T=Ir, Rh, Co), and probed the influence
of the structural QCP. Through our specific heat and
electrical resistivity data, we extracted the phonon den-
sity of states and the electron-phonon transport cou-
pling function, and directly compare these parameters
in Ca3Rh4Sn13 and Ca3Co4Sn13, where the former com-
pound is close to whilst the latter is far from the struc-
tural QCP. Near the QCP, an enhanced coupling to the
low-lying phonon modes is clearly observed. Our work
provides key support to models based on soft phonon
modes that have been proposed for explaining the novel
properties observed in these systems thus far.
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