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We report a density-matrix renormalization group study of the t-J model with nearest (t1 & J1)
and next-nearest (t2 & J2) interactions on a 4-leg cylinder with concentration δ = 1/8 of doped
holes. We observe an astonishingly complex interplay between uniform d-wave superconductivity
(SC) and strong spin and charge density wave ordering tendencies (SDW and CDW). Depending
on parameters, the CDWs can be commensurate with period 4 or 8. By comparing the charge
ordering vectors with 2kF , we rule out Fermi surface nesting-induced density wave order in our
model. Magnetic frustration (i.e. J2/J1 ∼ 1/2) significantly quenches SDW correlations with little
effect on the CDW. Typically, the SC order is strongly modulated at the CDW ordering vector and
exhibits d-wave symmetry around the cylinder. There is no evidence of a near-degenerate tendency
to pair-density wave (PDW) ordering, charge 4e SC, or orbital current order.

I. INTRODUCTION

Theoretical Context: It has become increasingly
clear that the phase diagrams of highly correlated elec-
tronic systems are inherently complex, with multiple “in-
tertwined” ordering tendencies1 of comparable strength
which sometimes appear to “compete” and sometimes
peacefully coexist. The defining feature of such systems
is that they involve a maximal degree of quantum frus-
tration; neither the effective kinetic nor the interaction
energy is dominant. Unfortunately, there are no con-
trolled theoretical methods for solving generic “interme-
diate coupling” problems involving fermions in more than
one spacial dimension (1D).

A partial solution is, however, possible: density ma-
trix renormalization group (DMRG) methods2–4 permit
one to efficiently compute the ground-state properties of
simple models, such as the t-J and Hubbard models, on
ladder systems with the local geometry of any 2D lat-
tice. Long enough ladders can be treated that confident
extrapolation to the thermodynamic limit in one direc-
tion is possible, although the method is limited to ladders
of at most modest width. To the extent that the proper-
ties we are interested in studying are generic properties
of strongly correlated systems, we may hope that the so-
lution of simple models, even where they do not faithfully
represent the actual solid state chemistry of any partic-
ular material, can teach us something useful.

With this in mind, we have used the DMRG to explore
the behavior of the lightly doped t-J model on the 4-leg
cylinder with first and second neighbor interactions. To
explore the effects of band-structure on the results, we
study a range of values of the ratio of the nearest- and
next-nearest neighbor hopping matrix elements, t1/t2,
while the effect of magnetic frustration is explored by
varying the ratio of exchange constants, J1/J2. Since we
are primarily focussing on density wave order, we report

results at a fixed density of doped holes, δ = 1/8, (i.e.
1 − δ = 7/8 electrons per site) where these effects are
particularly pronounced.

An Empirical Context: Various forms of charge-
density wave (CDW) and spin-density wave (SDW) or-
dering tendencies have been documented in underdoped
cuprate high temperature superconductors (as well as in
many other interesting highly correlated materials).5 In
some cases,6–8 as in LSCO, the CDW and SDW orders
appear locked to each other in that they occur in the
same ranges of “doped hole” concentration, δ (albeit with
different onset temperatures) and with mutually com-
mensurate ordering vectors. In other cases,9–11 as in
YBCO, the CDW and SDW ordering tendencies seem
to compete in that they appear (most strongly) in non-
overlapping ranges of δ and have ordering vectors that are
unrelated to one another. This dichotomy has lead some
to conclude12 that there are two unrelated ordering ten-
dencies in LSCO and YBCO, despite strong similarities
in many other macroscopic signatures of these orders.13

Basic issues of interpretation have also arisen concern-
ing the driving force that gives rise to these density-wave
orders. From a strong coupling perspective, CDW forma-
tion can arise as a consequence of a mesoscale tendency
to phase separation.14–24 Density wave order might also
arise from specific features of the Fermi surface, includ-
ing well nested portions of the Fermi surface25 (although
the validity of this perspective with any plausible band-
structure in more than one dimension has been strongly
challenged26) or with putative “hot-spots” on the Fermi
surface27–30 spanned by the ordering vector associated
with (probably non-existent) near quantum critical anti-
ferromagnetic fluctuations.
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FIG. 1: Phase diagram of the frustrated 4-leg t-J cylinder
with periodic boundary conditions for parameters t1 = 1 and
J1 = 1/3. Solid lines represent schematic phase boundaries
based on our data, and dashed lines indicate crossovers. The
nature of the various phases and regimes is represented in
Table I, where values for measured quantities are given for
representative points in each region - indicated by the yellow
triangles. Values of parameters for which calculations have
been carried out are indicated by the dots. The phase diagram
for −1/6 ≤ t2 < 0 is the same as for t2 = 0.

FIG. 2: Phase diagram of the frustrated 4-leg t-J cylinder
with anti-periodic boundary conditions (half quantum of flux)
for parameters t1 = 1 and J1 = 1/3. Symbols are as in Fig.
1.

II. RESULTS

Our principle results are summarized in the schematic
phase diagrams in Figs. 1 and 2 and Table I, which per-
tain, respectively, to the cases with periodic and anti-
periodic boundary conditions around the cylinder. (An-
tiperiodic boundary conditions are equivalent to a half-
quantum of flux threaded through the cylinder, so these
results are referred to as “flux.”)

1) CDW phases: We find two distinct patterns of com-
mensurate CDW long-range order: those with period 4
(CDW-4) and with period 8 (CDW-8). The correspond-

ing ordering vectors are ~Qcdw = 2π(1/4, 0) for CDW-4

and ~Qcdw = 2π(1/8, 0) for CDW-8. Elsewhere in the
phase diagram, the CDW correlations fall exponentially,
except in the lower parts of the region marked “?” where
there are weak but possibly power-law incommensurate
correlations. We define the Liquid phase as lacking CDW
order.
2) SDW correlations: Everywhere, except possibly
in Liquid I, the SDW correlations fall exponentially
with distance. However, where the magnetic correlation
length, ξsdw, is long compared to Ly/2 = 2 lattice con-
stants, this indicates a strong tendency toward antifer-
romagnetic order which might well correspond to true
long-range-order (LRO) in the 2D limit. (For compar-
ison, note that the spin correlation length of the 4-leg
Heisenberg cylinder31 is ξsdw = 7a, a length that in-
creases exponentially32 with number of legs of cylinder.)

We have divided the various phases into regimes ac-
cording to the nature of the SDW correlations.

• 2a) In CDW-4a, there is a tendency to SDW order

with ~Qsdw = 2π[3/8, 1/2]; this is the familiar “t-J
stripe” state discovered by White and Scalapino20

in the 4-leg ladder with J2 = t2 = 0 and 8-leg
cylinder,24 which is highly reminiscent of the stripe
order discovered earlier in the 214 family of cuprate
high temperature superconductors.6 The order here
can be visualized as consisting of locally Néel order
with antiphase domain walls coinciding with the
location of lines of enhanced doped hole density.

• 2b) With increasing magnetic frustration (J2 ∼
J1/2), this phase gives way to CDW-4b, in which
the CDW correlations are roughly unchanged, but
the magnetic correlations fall exponentially with a
length scale equal to a lattice constant or less. As
far as we know, this behavior has not been previ-
ously observed in such calculations; it is more rem-
iniscent of the CDW order seen33–35 recently in the
YBCO and BSCCO families of cuprate high tem-
perature superconductors, where there is no low
energy magnetism accompanying the CDW order.

• 2c) For still stronger magnetic frustration (J2 ∼
J1) a new form of short-range “spin-stripe” order

appears in CDW-4c, with ~Qsdw = 2π[0, 1/2].

• 2d) Increasing to t2 ∼ t1/6 with small J2 yields
CDW-4d, a weak period 4 CDW with short-range
~Qsdw = π[1, 1] Néel antiferromagnetic correlations.

• 2e) Similar distinctions exist in CDW-8. CDW-8a
hosts magnetic correlations similar to those found
in early Hartree-Fock studies of the Hubbard

model14,15; here ~Qsdw = 2π[7/16, 1/2] correspond-
ing to antiphase domain walls in a locally Néel or-
der. As far as we know, this behavior has not been
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previously obtained in any non-mean-field calcula-
tions.

• 2f) CDW-8c is a period 8 version of CDW-4c, in
which short-range “spin-stripe” magnetism appears

with ~Qsdw = 2π[0, 1/2].

• 2g) The Liquid phases lack CDW order but
are distinguished by different spin correlations.
Liquid I has quasi-long-range (π, 0) SDW order
while Liquid II has exponentially decaying spin cor-
relations.

3) Superconducting correlations: While the
Mermin-Wagner theorem precludes superconducting
LRO, one might have hoped for power-law supercon-
ducting correlations; this is not seen in any range of
parameters we have studied. However, in most of the
phase diagram, short-range superconducting correlations
are strong, and the corresponding correlation lengths are
longer than ξsdw. As has been observed in previous stud-
ies of the t-J model,21,24,36 the superconducting correla-
tions always have a d-wave character in a sense we make
precise in Sec. VI B and Fig. 9.

The pair-field correlations additionally exhibit pro-
nounced amplitude oscillations along the cylinder as can
be seen, for example, in Fig. 10 (b). These oscillations
have the same period as the CDW order, and reflect a
strong coupling between CDW and SC order. We find no
evidence of distinct finite momentum pair-density wave

(PDW) ordering tendencies, which would be manifest1

as oscillations with twice the period of the CDW.37

4) Other correlations: Following a suggestion of
Affleck40, we looked for evidence of charge 4e super-
conducting correlations. Also, to look for indications of
~Q = ~0 orbital loop order41 and ~Q = π(1, 1) d-density
wave order,43 we computed the current-current correla-
tion function. In all cases, these correlation functions
fall to below our error limit within a couple of lattice
constants. We thus cannot be more quantitative than to
conclude that all of these ordering tendencies appear to
be extremely weak in the present model.

5) Relation to “fermiology:” To explore the rela-
tion between the CDW ordering vector and the structure
of the underlying Fermi surface, we need a prescription

for determining the locations of the Fermi points, ~kF ,
for any bands that cross the Fermi surface. “Bare” val-

ues of ~kF can be computed as a function of t2/t1 by
ignoring all interactions, including the t-J constraint of
no double-occupancy. The physical (renormalized) loca-
tions of Fermi points are identified as values of the crystal
momenta at which the fermion occupation probability,
〈n~kσ〉, has a precipitous drop.42 In Fig. 7, we compare

the values of 2~kF computed either way with the observed

values of ~Qcdw and ~Qsdw; we see that there is no obvi-
ous relation between the fermiology and the density wave
ordering vectors.

CDW-4a CDW-4b CDW-4c CDW-4d CDW-8a CDW-8c Liq. I Liq. II

t2/t1 ; J2/J1 0 ; 0 0 ; 0.46 0 ; 0.80 1/6 ; 0 1/12 ; 0 1/6 ; 0 (fl) 1/6 ; 0.80 (fl) 1/6 ; 0.46 0 ; 0 (fl)

~Qcdw (1/4, 0) (1/4, 0) (1/4, 0) [1/4, 0] (1/8, 0) (1/8, 0) (1/8, 0) − [1/8,0]

ρcdw (10−3) ∼ 20 17(1) 10(2) 7(1) ∼ 40 ∼ 40 14(3) 0.0(6) 0.0(3)

~Qsdw [3/8, 1/2] − [0, 1/2] [1/2, 1/2] [7/16, 1/2] [7/16,1/2] [0,1/2] (1/2, 0) [5/12,1/2]

ξsdw 3.3(2) 0.80(4) 2.7(1) 3.0(2) 3.7(1) 2.4(7) ∼ 4 ∼ 9 2.3(5)

ξsc 5.5 5.7 6.0 6.7 5.5 4.3 6.2 8.5 6.6

Φ
(dw)
y,y /Φ

(sc)
y,y 0.36 0.40 0.48 0.34 0.40 0.49 0.97 0.22 0.31

∆1 0.15 0.28 0.09 0.02 0.11 0.19 − − 0.06

TABLE I: Characterization of the various phases and regimes shown in Figs. 1 and 2 for t1 = 1, J1 = 1/3, and Lx = 48.
For each regime, values of the parameters characterizing all significant order parameters are given for representative values
of t2 and J2; the notation “fl” indicates the case with antiperiodic boundary conditions (flux). ~Qcdw and ~Qsdw (measured in
units of 2π with the lattice constant set to unity) correspond to the location of peaks in the density and magnetic structure
factors respectively; wave vectors indicated by (kx, ky) correspond to (quasi-)long-range order, while those written as [kx, ky]
correspond to short-range order but with a long enough correlation length that a clearly defined peak in the structure factor
can be identified. ρcdw is the amplitude of the CDW long-range order extrapolated to the thermodynamic limit (Lx →∞, see

Supplemental Material). ξsdw is the spin correlation length and ξsc is the superconducting correlation length. Φ
(dw)
y,y /Φ

(sc)
y,y is

the ratio of the oscillating and uniform components of the pair-field correlation function as in Eq. 9. ∆1 is the energy to add
one particle to the ladder (see Eq. 15).

Road Map: In Section III, we present the model and
define the correlation functions of interest. In Section
IV, we present the results from DMRG for the charge

and spin correlations in various regions of the ground
state phase diagram. Section V describes calculations of
single-particle correlation functions, from which we ex-
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tract renormalized values of Fermi vectors, ~kF . Super-
conducting correlations and energy gaps are discussed in
Sections VI and Section VII respectively. A further dis-
cussion of the results is given in Section VIII.

III. THE MODEL

We treat the t-J model Hamiltonian with up to next-
nearest neighbor interactions:

H = T1 + T2 +H1 +H2. (1)

The kinetic energy term Ta is:

Ta = −ta
∑
σ,〈ij〉a

(
eiAijc†iσcjσ + H.C.

)
(2)

where c†iσ creates a fermion with spin polarization σ at
site ~ri = (xi, yi), Aij is the integral of the gauge-field
from site i to j (in appropriate units) and a = 1 & 2 for
nearest & next-nearest neighbor sites respectively. The
exchange term Ha is:

Ha = Ja
∑
〈ij〉a

(
Si · Sj −

1

4
ninj

)
(3)

where ni =
∑
σ ni,σ =

∑
σ c
†
iσciσ is the occupation at site

~ri and Si = (1/2)c†iασαβciβ for Pauli matrices σ.
There are N = Lx × Ly sites on the lattice, and the

number of electrons would be Ne = N at half filling,
i.e. at δ ≡ [N − Ne]/N = 0. We will take an electron
concentration such that δ = 1/8. The lattice geometry
is of 4-leg cylinders (Ly = 4) of lengths up to Lx = 48
with periodic and open boundary conditions along ŷ and
x̂ respectively. In our calculations we set t1 = 1 as energy
unit and J1 = 1/3, and keep up to m = 6561 number of
states in each DMRG block with truncation errors εtr ≤
5× 10−6.

When there is no flux through the cylinder, we work
in a gauge such that Aij = 0. For the “fl” case, the sum
of Aij along any loop that encircles the cylinder once is
equal to π; so as to work with a real Hamiltonian, in this
case we chose a gauge such that Aij = 0 on all bonds
other than those connecting the two sides of one rung of
the cylinder, for which Aij = π.
〈n~kσ〉: In terms of the Fourier transform of the electron

creation operator c†jσ

c†~kσ
=

1√
N

∑
j

ei
~k·~rjc†jσ , (4)

we can calculate the momentum occupation:

〈n~kσ〉 = 〈c†~kσc~kσ〉 =
1

N

∑
i,j

ei
~k·(~ri−~rj)

〈
c†iσcjσ

〉
. (5)

Scdw(~k): The CDW structure factor is the Fourier
transform of the density-density correlation function

Scdw(~k) =
1

N

∑
i,j

ei
~k·(~ri−~rj)

〈
(ni − n)(nj − n)

〉
(6)

where n = 1 − δ is the average particle density. Be-
cause the ends of the cylinders break translation sym-
metry, where there is long-range commensurate charge
order, its amplitude, ρcdw, can be inferred from the am-
plitude of the oscillations of 〈ni〉 near the middle of the
cylinder,44, extrapolated to the Lx →∞ limit; the wave-

vector of these oscillations, ~Qcdw, always corresponds to

a pronounced peak in the structure factor Scdw(~k).

Ssdw(~k): The SDW structure factor is

Ssdw(~k) =
1

N

∑
i,j

ei
~k·(~ri−~rj)

〈
Si · Sj

〉
.

We obtain the correlation length, ξsdw, by fitting the
long-distance fall-off of spin-spin correlation function,〈
Si·Sj

〉
, to an exponential. This approach fails only if the

correlation length is comparable or longer than the sys-
tem size, or if the correlations fall with a power law.45 We
use the somewhat arbitrary criterion, ξsdw > Ly/2 = 2,
as the definition of “significant” SDW correlations.

Φsc: The singlet superconducting pair-field creation
operator on neighboring pairs of sites is defined as

φ†~a(~ri) =
1√
2

(
c†i↑c

†
i+a↓ − c

†
i↓c
†
i+a↑

)
(7)

where ~a = x̂, ŷ, and x̂+ ŷ corresponds to different singlet
orientations. The primary diagnostic of SC order we have
analyzed is the pair-field correlator,

Φa,a′(~r, ~r
′) =

〈
φ†~a(~r)φ~a′(~r

′)
〉

(8)

which in all cases we have studied, for large separations
along the ladder, 1 � |x| � Lx where ~r − ~r ′ = xx̂ ≡
~X, Φ can be expressed as the sum of a uniform and an
oscillatory piece as

Φa,a′(~r, ~r
′) ∼

{
Φ

(sc)
a,a′ +Φ

(dw)
a,a′ cos[ ~Qcdw · ~X+θ0]

}
e−|

~X|/ξsc ,

(9)

from which we derive the values for Φ
(sc)
y,y /Φ

(dw)
y,y and ξsc

quoted in Table I and elsewhere. If there are supercon-
ducting correlations that oscillate with any other wave-
vectors, i.e. any PDW ordering tendencies, they are ei-
ther too weak or too short-ranged to be observable in
our calculations. We have looked for SC correlations in
a complimentary fashion by applying an external field

D~a(~ri) ∼
(
φ†~a(~ri) + φ~a(~ri)

)
to the boundary of the lad-

der, and then measured the induced pair-field expecta-
tion values 〈D~a(~ri)〉, as a function of distance from this
rung. Results obtained in this manner are broadly con-
sistent with those obtained from the analysis of Φ.
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Other Orders: To search for charge 4e superconducting
correlations, we have computed the correlation functions
of the two singlet “quartet” creation operators

φ†4e,+ =
1

2

(
c†1↑c

†
2↓c
†
3↓c
†
4↑ − c

†
1↓c
†
2↑c
†
3↑c
†
4↓

−c†1↑c
†
2↑c
†
3↓c
†
4↓ − c

†
1↓c
†
2↓c
†
3↑c
†
4↑

) (10)

φ†4e,− =
1√
12

(
2c†1↑c

†
2↓c
†
3↑c
†
4↓ + 2c†1↓c

†
2↑c
†
3↓c
†
4↑

−c†1↑c
†
2↓c
†
3↓c
†
4↑ − c

†
1↓c
†
2↑c
†
3↑c
†
4↓

−c†1↑c
†
2↑c
†
3↓c
†
4↓ − c

†
1↓c
†
2↓c
†
3↑c
†
4↑

) (11)

which are defined on each plaquette around which we
label the sites 1-2-3-4 starting in the bottom left corner
and moving counter-clockwise.

To check for possible loop current or d-density wave
order, we measured the current-current correlation func-
tion for current operator Jσpq = −i(c†p,σcq,σ − c†q,σcp,σ)
with sites p and q along x̂ and ŷ bonds and found expo-
nentially decaying correlations with ξloop < 2 across the
phase diagram indicating loop current order is unlikely
in our model within the range of parameters explored.46

IV. PHASE DIAGRAM

In the limit δ = 0, the present model reduces to an in-
sulating spin-1/2 Heisenberg quantum antiferromagnet,
so it is reasonable to view the present system as being
a doped antiferromagnet. The ground-state of the spin
1/2 Heisenberg antiferromagnet on the 2D square lattice

with J2/J1 small is known to have Neel ( ~Qsdw = [π, π])
order, while for large enough J2/J1 it has “stripe an-

tiferromagnetic” ( ~Qsdw = [π, 0] or [0, π]) order. For
J2/J1 ∼ 1/2, previous studies47–50 have established the
existence of a quantum paramagnetic phase with a spin-
gap and tentatively concluded48 that there is a spin liq-
uid for J2/J1 = 0.41 − 0.5 and a valence bond solid
for J2/J1 = 0.5 − 0.62. Thus, the doped ladder with
J2/J1 ∼ 1/2 can be viewed as a doped quantum param-
agnet.

The ground-state phase diagrams for δ = 1/8 extracted
from our DMRG results are shown in Fig. 1 and 2, and
reported in Table I. In this section we give a taste of the
explicit analysis that leads to the conclusions summarized
there.

Analysis for J2 ≈ 0: The density profile 〈n(x)〉 =
(1/Ly)

∑
y〈n(x, y)〉 for J2 = 0 and different values of

t2 are shown in Fig. 3 (a) for the central 32 sites of
the 48 × 4 system. The commensurate period 4 CDW-

4a with ordering vector ~Qcdw = 2π(2δ, 0) is stable at
least for −1/6 ≤ t2 <∼ 0.02. Expressed in terms of
a picture of charge-stripes, there are 2 holes per stripe
or ρ = 1/2 holes per domain wall unit cell (“half-filled

kx / :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S(
k x,k

y=:
)

0

1

2

3

4
t2 = -1/6
t2 = -1/12
t2 = 0
t2 = 1/12
t2 = 1/6

x
10 15 20 25 30 35 40

< 
n(

x)
 >

0.05

0.1

0.15

0.2
(a)

(b)

FIG. 3: (a) Density profile and (b) spin structure factor at
ky = π for J2 = 0 and t2 = 0,±1/12,±1/6 for the t-J model
without flux.

stripes”). The largest CDW amplitude occurs for the

period 8 ( ~Qcdw = 2π(δ, 0), i.e. ρ = 1) in a range of
t2 ∼ 1/12 identified as CDW-8a. For larger t2, the pe-
riod 4 CDW order is weakened; we refer to this phase as
CDW-4d.

The J2 = 0 spin structure factor as a function of kx
is shown for different t2 in Fig. 3 (b) for ky = π. In
CDW-4a (for small t2 > 0) the magnetic structure factor

has a pronounced peak ~Qsdw = ~QAF ±∆ ~Q where QAF =
π(1, 1) and the antiferromagnetic incommensurability is

∆ ~Q = π(2δ, 0). CDW-8a (t2 ∼ 1/12) has local magnetic
correlations corresponding to a SDW with antiferromag-

netic incommensurability ∆ ~Q = π(δ, 0). The antifer-
romagnetic incommensurability disappears for t2 = 1/2
(CDW-4d) where the system exhibits short-ranged Néel
ordered with spin-spin correlation length ξsdw ∼ 3.0.

Turning now to the cylinder threaded with a half-flux
quantum (i.e. the results in Fig. 2) for t2 ≈ 0, charge
order vanishes in the Lx → ∞ limit. The magnetic

structure factor exhibits a peak away from ~QAF with an-

tiferromagnetic incommensurability ∆ ~Q = π(1/6, 0); as
these correlations are exponentially decaying, we identify
this phase as Liquid II to draw a distinction with Liquid
I which may possess power-law correlations. Upon in-
creasing t2, the CDW-8a phase is stabilized with a large
amplitude that increases with t2.
Analysis for J2 ∼ J1/2: Next, we treat J2 = 0.46J1,

corresponding to the quantum paramagnet phase in the
undoped 2D system. We find a nearly identical period
4 CDW for −1/6 ≤ t2 <∼ 1/12 in Fig. 4 (a), but a
vanishing of SDW order as seen in Fig. 4 (b) with ξsdw <
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kx / :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S(
k x,k

y=0
)

0

1

2

3

4
t2 = -1/6
t2 = -1/12
t2 = 0
t2 = 1/12
t2 = 1/6

x
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n(

x)
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(b)

FIG. 4: (a) Density profile and (b) spin structure factor at
ky = 0 for J2 = 0.46J1 and t2 = 0,±1/12,±1/6 for the t-J
model without flux. The apparent oscillation of the density
profile for t2 = 1/6 vanishes in the Lx → ∞ limit (see Sup-
plemental Material).

1; this corresponds to CDW-4b in Fig. 1. The period
8 CDW is absent for J2 = 0.46J1 at t2 ∼ 1/12, and
for 1/12 < t2 ≤ 1/6 we find quasi-long-ranged (π, 0)
anti-ferromagnetism and vanishing CDW order; we refer
to this phase as Liquid I. Similar features were seen for
J2 = 0.56J1 where in the undoped 2D case there may be
a valence bond solid state.

Turning again to the flux case, we find the Liquid II
phase for 0 ≤ t2 ≤ 1/6 which lacks pronounced peaks in
both density and magnetic structure factors.

Analysis for J2 ∼ J1: In the 2D undoped system,
J2 = 0.80J1 lies in the phase exhibiting stripe anti-
ferromagnetism. Here we find a weaker period 4 CDW
for −1/6 ≤ t2 <∼ 1/12 and a short-ranged [0, π] SDW (la-
belled as CDW-4c in Table I). Increasing t2 > 1/12 re-
sults in quasi-long-ranged (π, 0) SDW which again shows
no apparent CDW order (Liquid I phase) as seen in Fig.
5.

Turning to the flux case, we find a period 8 CDW for
t2 >∼ 1/30 accompanied by a short-ranged [0, π] SDW
labelled as CDW-8c phase.

It is apparent that the phase diagrams with periodic
and antiperiodic boundary conditions (Figs. 1 and 2, re-
spectively) differ significantly suggesting finite Ly effects
are still substantial on the 4-leg cylinder; this observation
precludes a reliable extrapolation of these results to the
2D thermodynamic limit. The 1D thermodynamic limit
Lx →∞ can be studied, and details on this extrapolation
can be found in the Supplemental Material.
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FIG. 5: (a) Density profile and spin structure factor at
(b) ky = 0 and (c) ky = π for J2 = 0.80J1 and t2 =
0,±1/12,±1/6 for the t-J model without flux.

V. BAND STRUCTURE

To understand the role of band structure on the results,
we have studied the ground state properties for different
values of the ratio of nearest- and next-nearest neigh-
bor hopping matrix elements t2/t1. The non-interacting
band structure is

E(~k) = −2t1

[
cos(kx) + cos(ky)

]
−4t2

[
cos(kx)cos(ky)

]
− µ

(12)

where µ is the chemical potential. For the 4-leg cylinder
in the Lx →∞ limit, the (1D) Bloch wave-vector k ≡ kx
takes on all values between −π and π, while the discrete
allowed values of ky serve as band-indices; in the flux-
free cylinder (periodic BCs), the allowed values of ky are
ky = {0,±π/2, π} while for antiperiodic BCs (fl) ky =
{±π/4,±3π/4}. The corresponding band structures for
periodic and antiperiodic BCs at t2 = 1/12 are shown
in Fig. 6, (a) and (b) respectively, where the horizontal
red line indicates the Fermi energy for δ = 1/8. The
center band is doubly degenerate for periodic BC, and



7

ky = 0

ky = ± π /2

ky = π

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

2

kx / π

E
(k
x)

E(ky ,ky ) t2 = 1/12

ky = ± π /4

ky = ± 3π /4

-1.0 -0.5 0.0 0.5 1.0
-6

-4

-2

0

2

kx / π

E
(k
x)

E(ky ,ky ) t2 = 1/12

(a)

(b)

(a)

(b)

(a)

(b)

FIG. 6: Band structure of non-interacting model (see Eq. 12)
at t1 = 1, t2 = 1/12, δ = 1/8 with (a) periodic and (b)
antiperiodic boundary conditions.

both bands are doubly degenerate for antiperiodic BC.
In the interacting problem, as well, Bloch’s theorem

allows us to identify bands labeled by a band index, cor-
responding to the above values of ky, and a 1D Bloch
wave-vector, k, corresponding to kx. Although Fermi liq-
uid theory does not apply in 1D, in some cases a Fermi
surface can be identified from a calculation of the single-
electron occupation probability, 〈n~k,σ〉, if it has a non-

analyticity at ~k = kF (ky)x̂+ky ŷ. However, in practice it
is difficult to distinguish a non-analyticity from a rapid
analytic change. Thus, as an operational definition of
the Fermi momenta of the interacting system, we iden-
tify Fermi surface crossings with cases in which 〈n~k,σ〉
drops sharply and the corresponding value of kF is asso-
ciated with points of maximal slope, i.e. points at which
d2〈n~kσ〉/dk

2 = 0.42

A so-called “generalized Luttinger’s Theorem51,”
which is really a generalized form of the Leib-Schulz-
Mattis Theorem52, requires that in the absence of sym-
metry breaking, there must be a gapless neutral mode of
the system with wave-vector QLutt ≡ 4π(1 − δ), which
can be thought of as the almost Goldstone mode of an
incommensurate CDW. In contrast with Luttinger’s the-
orem for Fermi liquids in more than 1D, this construction
makes no direct reference to the single-particle spectrum
at all. However, if this could be interpreted in terms of

t2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

k x / 
:

0
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1
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2kF (non-int) ky = 0
2kF (non-int) ky = ': /2
2kF (non-int) ky = :

FIG. 7: Charge ordering vectors and 2kFi for the t-J model
with J2 = 0, Lx = 48, and periodic boundary conditions
at t2 = 0,±1/12,±1/6. Open triangles and filled diamonds
represent non-interacting and interacting 2kFi respectively.

fermiology, it would correspond to the “total” value

keffF =
∑
ky

kF (ky)→ QLutt
2

= 2π(1− δ) (13)

To study the possible origin of density wave order
through Fermi surface nesting, we compare the charge
ordering vector Qcdw to the non-interacting and inter-
acting 2kF (ky) for each band. The values of Qcdw are
compared with the values of 2kF in Fig. 7. The non-
interacting 2kF ’s are represented by open triangles and
the interacting 2kF ’s by filled diamonds. We see that the
ordering wave vectors do not coincide with 2kFi

for each
band which rules out CDW induced by Fermi surface
nesting in our system. Similar results are found across
the t2−J2 phase diagram suggesting another mechanism
is responsible for the observed phases. Additionally the
non-interacting kF do not agree with the interacting kF
showing a weak coupling perspective is not applicable to
our results.

We had hoped to identify cases in which this inference

is violated in such a way that keffF = (4π/2)δ; this, in
turn, might have been suggestive of a tendency toward
an exotic topologically order Fermi liquid phase (known
as FL*), such as can occur53–55 in certain versions of the
quantum dimer model.56 However, wherever well-defined
Fermi surface crossings can be identified in our data, we
find that they are suggestive of the Luttinger relation in
Eq. 13.



8

d-wave d-wave-like

(a) (b)

FIG. 8: Superconducting correlations may have (a) d-wave
symmetry characterized by a change in sign (color) of the
order parameter around the cylinder or (b) d-wave-like which
has s-wave symmetry around the cylinder, but changes sign
about plaquettes along the cylinder.

VI. SUPERCONDUCTING CORRELATIONS

A. Charge 2e

We study charge 2e superconducting order by mea-
suring the pair-field correlation function Φa,a′(~r, ~r

′) as
defined in Eq. (8). We find that Φx,x, Φy,y, Φx,y, and
Φx+y,x+y all decay exponentially although we focus on
Φy,y as it tends to have the largest amplitude. We do
not find quasi-long-range superconducting order in our
study; however, we can still make qualitative statements
about the relation between competing orders. As noted
earlier, increasing t2 results in a weakening of charge or-
der while maintaining Néel or stripe antiferromagnetic
order depending on J2. The J2 = 0 superconducting cor-
relations increase slightly from ξsc ≈ 5.5 to ξsc ≈ 6.7 as
t2 increases from 0 to 1/6. This enhancement of super-
conducting correlations with increasing t2 (accompanied
with weakening of CDW) suggests a competition between
superconductivity and charge order. We find pronounced
amplitude oscillations in the superconducting correlation
functions with the same period as the CDW which will
be discussed below.

Compared with the periodic boundary condition, there
is a clear enhancement of charge 2e superconducting cor-
relations for the case with antiperiodic boundary condi-
tions (flux). We find the largest correlation lengths for
J2/J1 = 0.3 & 0.46 corresponding to the quantum para-
magnet with no spin and charge order (Liquid II phase).
For these values of J2, the superconducting correlations
appear more uniform with a correlation length of ξsc ∼ 10
for J2/J1 = 0.3 and t2 = 1/6 shown in Fig. 10 (a). This
enhancement of uniform superconducting correlations co-
inciding with the destabilization of stripes (by flux and
magnetic frustration) serves as additional evidence for a
competition between these orders.

B. Pair Symmetry

Although the locally d-wave character of the super-
conducting correlations has long been noted in DMRG
studies of t-J ladders,21,36 in the cylinder geometry a
precise d-wave symmetry can be defined with respect to
the C4 rotational symmetry about the axis of the cylin-
der. Indeed, looking at the long-distance behavior of the
pair-field correlation function, we distinguish two cases,
as shown schematically in Fig. 8: correlations can be said
to be “d-wave” if they are odd under this C4 rotation,
and “d-wave-like” if they are even under rotation, but
have opposite signs on the x and y directed bonds. The
long-distance behavior of the correlation function corre-
sponds to true d-wave symmetry everywhere in the phase
diagram except in the CDW-4d, Liquid I, and Liquid II.
Of these, the first two show clear d-wave-like symmetry,
while Liquid II cannot be easily classified by symmetry
at all. Note that these are the phases which have weak
or vanishing charge order.

The Φy,y (Φy,x) correlation function is shown in Fig.
9 along the y (x) bonds for (a) the CDW-4a phase
(t2 = J2 = 0) and (b) the CDW-4d phase (t2 = 1/6
and J2 = 0) of the t-J model with respect to the vertical
black bond at the bottom left corner. The long-distance
sign pattern of the superconducting correlations demon-
strates d-wave and d-wave-like symmetries matching Fig.
8. We have confirmed this pattern by applying an exter-
nal pair field D~a(~ri) along one rung at the edge of the
cylinder and measuring the response in the system bulk
(see Supplemental Material).

C. Pair-field Oscillation

The superconducting pair-field correlations show vary-
ing degrees of oscillation across the phase diagrams with
and without flux. The pair-field component φ~Q at non-

zero wave vector ~Q can couple to the CDW order param-
eter ρ~Q through terms in the energy of the form1,57:

ρ~Qφ
∗
~0
φ−~Q + c.c. & ρ2~Qφ

∗
−~Qφ−~Q + c.c. (14)

such that when two of the factors in the first term are
present, the third one is also expected to be present on
general grounds of Landau theory. Since the second term
is quadratic in φ~Q, a pair-density wave (PDW) compo-

nent will be accompanied by charge ordering with twice
the wave vector, but the converse is not true. This in-
dicates that the PDW is a bona fide phase which can
exist independently of other orders. Observation of a su-
perconducting component with half the CDW wave vec-
tor would have suggested an intrinsic tendency towards
PDW order. However, we only find a density wave com-
ponent in the correlation function Φ(dw) with the same
period as the CDW.

The pair-field correlations are enhanced when flux is
threaded through the cylinder and exhibit oscillations in
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FIG. 9: Superconducting correlation functions on Lx = 48
cylinder for (a) CDW-4a phase with t2 = J2 = 0 and (b)
CDW-4d phase with t2 = 1/6 and J2 = 0. The black line
denotes the reference y bond and vertical (horizontal) colored
lines denote log[1 + |Φy,y|/|Φ0|] (log[1 + |Φy,x|/|Φ0|]) where
Φ0 is the minimum of the correlation function. Red (blue)
is used where the correlation function is positive (negative).
The change in color around the cylinder shows the sign change
of the long-distance superconducting correlations which sug-
gests d-wave symmetry in the CDW-4a phase and d-wave-like
symmetry in the CDW-4d phase.

the amplitude of the superconducting correlation func-
tions, for instance, for J2 = 0 and t2 = 1/12 as well as
J2/J1 = 0.56 & 0.80. The period is again the same as the
charge order suggesting a strong coupling between CDW
and uniform SC fluctuations with correlations that can be
fit to Eq. (9). We find values of Φ

(dw)
y,y /Φ

(sc)
y,y ∼ 0.11−0.97

with the largest values occurring for larger J2/J1, e.g.
J2/J1 = 0.56 & 0.80 (see Fig. 10 (b) and Fig. S5 in
Supplemental Material) corresponding to (weak) period
8 charge order and short-ranged [0, π] spin order, while
the pair-field oscillations are smaller for other parameters
(see Fig. 10 (a)). While we do not find a finite PDW com-
ponent at Qcdw/2, the observation of an induced density
wave Φ(dw) comparable to the uniform superconducting
component Φ(sc) allows us to conclude that the coupling
of the first term in Eq. (14) is significant in our model.
We find Φ(dw)/Φ(sc) tends to increase with larger t2 when
flux is threading the cylinder, which is an expected con-
sequence of Eq. (14).

D. Charge 4e

We have also checked the correlations of the two singlet
“quartet” charge 4e operators φ4e,± as defined in Eq.
(10) and (11). The correlation function is found to decay
rapidly and fall to below numerical error within a couple
lattice constants across the entire phase diagram with

d
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FIG. 10: Superconducting correlations for the t-J model with
flux on Lx = 48 cylinder as a function of separation d along
x̂ for (a) J2 = 0.3J1 and t2 = 1/6 showing strong uniform

component Φ
(sc)
y,y and (b) J2 = 0.56J1 and t2 = 1/6 showing

a significant induced density wave component Φ
(dw)
y,y .

and without flux (as can be seen, for example, in Fig.
10). Charge 4e superconductivity seems unlikely in the
present model.

VII. ENERGY GAPS

Energy gaps can be determined by adding particles to
the system and comparing the ground state energies. We
define the energy gap ∆m as the energy (per particle):

∆m =
1

m

[
E0(N +m) + E0(N −m)− 2E0(N)

]
, (15)

where E0(N) is the ground state energy of the system
with N particles. For a charge 2e superconductor, there
is a gap to add one particle, but no gap to add two or four
particles, i.e. ∆1 6= 0 and ∆2 = ∆4 = 0. We compute
these gaps for Lx × 4 cylinders with Lx = 8, 16, 24 and
extrapolate to Lx → ∞ with a second-order polynomial
fit.58 The gaps ∆2 and ∆4 computed from the DMRG
simulations are plotted in Fig. 11 for J2 = 0 and t2 =
{0, 1/12, 1/6} (a) without and (b) with flux. The single
particle gap ∆1 for J2 = 0 (not shown) is largest for
t2 = 0 while close to zero for t2 = 1/6 where the CDW
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FIG. 11: Energy gap ∆m defined in Eq. (15) of the t-J model
under (a) periodic and (b) antiperiodic boundary conditions
at J2 = 0 and t2 = 0, 1/12, 1/6.

order is weaker for larger t2. The opposite is true for
the case with flux: the CDW order and single particle
gap ∆1 are largest for t2 ∼ 1/6. Therefore, our results
suggest the presence of Cooper pairing corresponding to
the finite energy gap ∆1.

However, we find ∆2 and ∆4 appear to vanish upon ex-
trapolation. This seemingly is at odds with the observed
finite superconducting correlation lengths ξsc <∼ 10.

VIII. DISCUSSION

A. Intertwined Orders

Despite the simplicity of the model we have studied,
we have unveiled a remarkably complex intertwining be-
tween at least 9 forms of order (CDW-4, CDW-8, SDW-
8, SDW-16, SDW 0 − π, SDW π − 0, SDW π − π, d-
wave and d-wave-like SC). There is a general tendency
for terms which depress CDW order to enhance the SC
correlations, showing that there is some form of “compe-
tition” between these two orders. Where the supercon-
ducting correlations show oscillatory spatial structures,
the period is always the same as that of the CDW, and
hence can also be understood in terms of a competition
between CDW and uniform SC orders. CDW induced os-
cillations of the SC order parameter similar to what we
have observed have recently been imaged on the surface
of Bi2212 directly by Josephson tunneling microscopy59,
and were inferred previously from features of the quasi-
particle spectrum in scanning tunneling microscopy.60

The relation between SDW and CDW order, by con-
trast, is less obvious. For small t2 and no flux, we see ro-
bust period 4 CDW order. For small J2/J1, there are cor-
responding period 8 SDW correlations, but upon increas-

ing J2/J1 to ∼ 1/2, the magnetic correlations essentially
disappear. The interplay between spin and charge or-
der can produce diverse macroscopic realizations.61 This
observation offers a possible connection between the in-
tertwined order in LSCO, lack of substantial static spin
correlations in BSCCO, and apparently unrelated charge
and spin ordering in YBCO. The relative insensitivity of
the charge ordering to the degree of spin ordering appar-
ent in our study supports the perspective that the charge
density waves which have been observed across different
families of underdoped cuprates have a common origin.

B. Origin of the Density Wave Orders

We have studied the role of Fermi surface nesting in
density wave formation on the 4-leg cylinder. Since nest-
ing is perfect in 1D and problematic in higher dimensions,
the cylinder geometry we have studied represents the
strongest candidate for observing nesting-induced CDW.
The fact that we do not find a clear relationship between
Qcdw and the values of 2kF suggests Fermi surface nest-
ing does not generally play a role in CDW formation.

From the strong coupling perspective, we can view the
CDW-4a (half-filled stripe) ground state as a Wigner
crystal of singlet pairs which delocalize around the cylin-
der. The finite spin correlation length, ξsdw, can perhaps
be thought of as the size of a Cooper pair, and the energy
to break a pair can be associated with the single particle
gap ∆1 to add a hole to the system.

C. Doped Spin Liquid

Given that the spin-1/2 antiferromagnetic square J1−
J2 Heisenberg model exhibits48–50 an intermediate quan-
tum paramagnetic phase, and possibly contains a spin
liquid sub-regime, we had initially hoped to see an inter-
esting remnant of this when we doped the system, form-
ing a “doped spin liquid.” Arguments were presented by
Anderson62, and one of us56,63 that a spin-liquid can be
viewed as a paired state with zero superfluid stiffness, so
that upon doping it would inevitably form a strongly su-
perconducting state. More recently, it has been proposed
that a doped spin liquid might form an FL* phase, which
in turn has been proposed as a candidate explanation of
the physics of the pseudo-gap regime of the hole-doped
cuprates.53,54,64 Unfortunately, CDW order seems to be
the dominant ordering tendency, even in the doped spin
liquid range of parameters, and no evidence of either of
these conjectured behaviors has yet been seen in our stud-
ies.

D. Superconducting Symmetry

It is an interesting feature of the cylinder geometry
that a true symmetry distinction between d-wave and
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s-wave superconducting states is possible. The super-
conducting correlations in our model were shown to have
d-wave symmetry across the phase diagram where charge
order is present, and d-wave-like symmetry - although
this is technically s-wave symmetry with respect to rota-
tion about the axis of the cylinder - where charge order
is absent or weak (preliminary results on wider Ly = 8
cylinders for t2 = J2 = 0 show the d-wave-like symme-
try pattern suggesting the d-wave pattern observed for
Ly = 4 is unique to the cylinder geometry).

For moderate J , particles on a single plaquette tend to
pair; we can therefore imagine a stack of plaquettes, each
favoring one or two pairs where the 2-electron ground
state has s-wave symmetry and the 4-electron ground
state has d-wave symmetry.65 Turning on a coupling be-
tween plaquettes, pair hopping then corresponds to a
bosonic operator with d-wave symmetry which manifests
in a sign change of the superconducting correlation func-
tion upon rotating the cylinder by π/2.

Away from δ = 1/8, and especially for δ ∼ 0.15, where
the CDW ordering tendencies are weaker, in agreement
with other studies of t-J ladders,36 we observe substan-
tially enhanced SC correlations, as we will report in a
separate communication.
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10 M. Hücker, N. B. Christensen, A. T. Holmes, E. Black-
burn, E. M. Forgan, R. Liang, D. A. Bonn, W. N. Hardy,
O. Gutowski, M. v. Zimmermann, S. M. Hayden, and J.
Chang, Phys. Rev. B 90, 054514 (2014).

11 S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T.
Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer,
and M. Le Tacon, Phys. Rev. B 90, 054513 (2014).

12 Y. Y. Peng, M. Salluzzo, X. Sun, A. Ponti, D. Betto, A.
M. Ferretti, F. Fumagalli, K. Kummer, M. Le Tacon, X. J.
Zhou, N. B. Brookes, L. Braicovich, and G. Ghiringhelli,
“Direct observation of charge order in underdoped and op-
timally doped Bi2(Sr,La)2CuO6+δ by resonant inelastic x-
ray scattering” arXiv:1610.01823.

13 V. Thampy, S. Blanco-Canosa, M. Garcia-Fernandez, M.
P. M. Dean, G. D. Gu, M. Forst, T. Loew, B. Keimer, M.
Le Tacon, S. B. Wilkins, and J. P. Hill, Phys. Rev. B 88,
024505 (2013).

14 J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391
(1989).

15 H. J. Schulz, Phys. Rev. Lett. 64, 1445 (1990).
16 K. Machida, Physica C 158, 192 (1989).

17 V. J. Emery and S. A. Kivelson, Physica C 209, 597 (1993).
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