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In this work we outline a simple and numerically inexpensive approach to describe the spectral
features of the single-impurity Anderson model. The method combines aspects of the density matrix
embedding theory (DMET) approach with a spectral broadening approach inspired by those used in
numerical renormalization group (NRG) methods. At zero temperature for a wide range of U , the
spectral function produced by this approach is found to be in good agreement with general expec-
tations as well as more advanced and complex numerical methods such as DMRG-based schemes.
The theory developed here is simply transferable to more complex impurity problems.

I. INTRODUCTION

Quantum impurity models play a major role in modern
condensed matter physics. As proxies of physical reality,
impurity models encapsulate complex physical behavior
within the simple framework of a small subsystem hy-
bridized with an otherwise noninteracting bath. Such
models have laid the foundation for our understanding
of qualitative phenomena such as quantum dissipation,
namely the generic features of how a bath induces de-
phasing and relaxation in a small subsystem, as well as
detailed specific and quantitative phenomena such as the
description of magnetic impurities in metals and the re-
laxation of tunneling centers in low-temperature dielec-
tric media[1]. Due to central role played by impurity
problems in condensed matter physics, the development
of methods for the the accurate description of their prop-
erties, in particular their real-time or real-frequency be-
havior, remains at the forefront of the field.

One of the most important and well-studied impurity
models is the Anderson model[2]. The Anderson Hamil-
tonian describes an electron-correlated quantum dot hy-
bridized with a non-interacting bath of fermions. The
physics of the Anderson model subsumes that of the
Kondo model, and thus describes the physics of dilute
magnetic impurities in metals, including the appearance
of a resistivity minimum and the eventual formation of a
T = 0 singlet state induced by the complete screening of
the impurity spin by the conduction electrons[3]. In the
context of strongly correlated solids, the Anderson model
has taken on renewed importance with the development
of dynamical mean-field theory (DMFT)[4–6], a quantum
embedding approach where Hubbard-like models[7–9] are
self-consistently mapped to Anderson-like impurity prob-
lems. In this latter regard, the Anderson model and its
variants provide a window into the properties of wide
range of strongly correlated materials.

DMFT is a Green’s function-based approach which, for
many applications, requires the solution of the spectral
function of the Anderson model on the real-frequency
axis. Despite the reduction of complexity afforded
by the mapping from the Hubbard model to the An-
derson model, the determination of real-time or real-
frequency spectral behavior is a difficult task. Sim-

ple quasi-analytical approaches like the non-crossing
approximation[10–12] are often not sufficiently accurate
in the most interesting physical regimes[13]. Analytic
continuation of exact imaginary-time quantum Monte
Carlo data is an ill-conditioned numerical problem which
can often produce artifacts[14–17], while exact diagonal-
ization is restricted to a small number of bath states,
rendering a detailed accurate description of features such
as the high frequency behavior of the spectral function
difficult[17, 18]. Quantum chemistry methods such as
truncated configuration interaction (CI) and complete
active space configuration interaction (CAS-CI) have
been employed as impurity solvers in DMFT[19]. Their
accuracy is comparable to exact diagonalization solvers
at a much lower cost. However, they share similar draw-
backs due to the finite number of orbitals used in the CI
expansion.

Recently great progress has been made in the formula-
tion and use of time dependent density matrix renormal-
ization group (DMRG) and related approaches[20, 21], as
well as sophisticated renormalization group approaches
to study the behavior of the Anderson model on the real
time and frequency axis[22–26]. These matrix product-
based methods have been used as impurity solvers in one
and multi-orbital DMFT calculations to obtain spectral
functions of the one and two-band Hubbard models [27–
29]. Such techniques, while powerful, are also theoreti-
cally and numerically involved.

In this work we propose a different and extremely
simple method for the calculation of the real-frequency
spectral function of the Anderson model. The approach
combines the use a density-matrix embedding theory
(DMET) -like decomposition without self consistency[30–
35] with a simple and physical protocol motivated by
some implementations of the numerical renormalization
group (NRG) for assigning line widths[22, 36]. The re-
sults are comparable to those produced by far more so-
phisticated theoretically and numerically involved ap-
proaches. In principle the method outlined here is ex-
tendable to more complex situations such as those that
arise in cluster DMFT where the embedded impurity-like
system contains multiple sites or orbitals.

The paper is organized as follows: In Sec.II we intro-
duce the single-impurity Anderson model (SIAM) and
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briefly discuss the ground state embedding approach and
the calculation of T = 0 spectral functions. We propose
a way to obtain the peak spectrum and a frequency-
dependent broadening scheme is employed that gener-
ates smooth spectral functions. Sec.III A compares the
ground state and spectral properties of a finite-sized
SIAM to numerically exact results. In Sec.III B we ana-
lyze the spectral properties for the bulk case. Sec.IV is
devoted to our concluding remarks.

II. BACKGROUND AND METHODOLOGY

A. Model and embedding approach

The single-impurity Anderson model (SIAM)[2] de-
scribes a single interacting impurity coupled to a host
conduction band of noninteracting fermionic levels. The
Hamiltonian reads

Ĥ = Ĥcb + Ĥimp + Ĥhyb

=
∑
kσ

εkn̂kσ +
∑
σ

(
εd +

U

2
n̂d−σ

)
n̂dσ

+
∑
kσ

Vk(c†dσckσ + c†kσcdσ) , (1)

where εk denotes the energy levels of the conduction
band, εd the impurity level, U the interaction on the

impurity, n̂dσ = c†dσcdσ is the occupancy of the impu-

rity, n̂kσ = c†kσckσ is the band occupancy and Vk the
hybridization between the impurity and the conduction
band. At this stage we defer the discussion of the choice
of the hybridization parameter until later to keep the
discussion general.

The approach we employ is based on a simplified ver-
sion of the density matrix embedding theory (DMET)
and its spectral extension[30–35]. At the heart of the
embedding procedure lies the Schmidt decomposition of
the wave function. Formally, the Schmidt decomposition
of a state is given by

|Ψ〉 =

mα∑
i,j=1

λij |αi〉 |βj〉 , (2)

where the states |αi〉 represent the states that span the
part of the system of interest, the fragment and the states
|βj〉 represent the states that span the rest of the sys-
tem, the bath. mα is the dimension of the fragment
space assumed smaller than the bath. The Schmidt
decomposition renders the wavefunction expansion in a
compact form. Even for a complex state, the number
of many-body states, |βj〉, required to exactly define
|Ψ〉, depends only on the size of the fragment which is
generally much smaller than the bath. The projector
P̂ =

∑
ijkl |αiβj〉 〈αkβl| projects the full Hamiltonian

onto the basis obtained from the Schmidt decomposition,
Ĥemb = P̂ĤP̂. If |Ψ〉 were the exact ground state of the

system, Ĥemb, a much smaller Hamiltonian, would yield
the exact ground-state energy. However, this procedure
is purely formal as we would need to know the exact
ground-state wavefunction from the outset, which is im-
possible to obtain for large correlated systems.

The mean-field solution for the ground state is the
single Slater determinant |Φ(0)〉. It’s Schmidt decom-
position can be obtained from single-particle linear
algebra[37, 38] at a cost no greater than the diagonal-
ization of the single-particle Hamiltonian. It has the
same form as Eq. 2, where the many-body fragment state
|αi〉 is constructed from the single-particle states corre-
sponding to the fragment sites (fragment orbitals). For
the case of a Slater determinant, the many-body bath
states |βj〉 take a particularly simple form[31]. In par-
ticular, they are constructed from a single-particle bath
state (bath orbital) multiplied by a determinant of core
electrons. These core orbitals have no overlap with the
fragment space. The details of constructing the single-
particle fragment, bath and core orbitals are outlined in
Refs. [30–34].

The ground-state embedding approach for SIAM is
summarized as follows:

1. First, a restricted Hartree-Fock (RHF) calculation
which yields a single Slater determinant, |Φ(0)〉, is
used as an approximate ground-state of the SIAM
Hamiltonian.

2. A set of local fragment site(s), which includes the
interacting impurity, is chosen. The Schmidt de-
composition of |Φ(0)〉 is performed. Importantly,
this decomposition yields a single-particle basis
which is used to construct the interacting embed-
ding Hamiltonian, Ĥemb. This can be understood
as a simple basis transformation of the full SIAM
Hamiltonian from the single-particle fermionic site
basis to the single-particle Schmidt basis.

3. Ĥemb is easily diagonalized to obtain an ap-
proximate correlated ground state wavefunction,
|Ψemb〉. All expectation values are calculated us-

ing 〈Ψemb|Ô|Ψemb〉.

It is to be noted that |Ψemb〉 has the same form as the
Schmidt decomposed |Φ(0)〉, the only difference being
that |Ψemb〉 is obtained after including the correlations
on the fragment whereas the latter included them in a
mean-field way.

For the SIAM, there is no self-consistency as the inter-
actions are localized on the impurity and the bath states
made out of the conduction band levels is, by default,
noninteracting. At T = 0, µ = 0 in the SIAM Hamil-
tonian in Eq. 1 maintains half-filling on the impurity.
Since the two-electron Coulomb term appears only on
the impurity in Hemb, µ = 0 still ensures the required
half-filling. In this respect the procedure outlined is a
‘single-shot’ embedding analogous to the u = 0 case dis-
cussed in [34].
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A translationally-invariant system like the Hubbard
model can be divided into identical fragments each of
which is embedded in its own bath. Once the self-
consistency has been achieved, the fragment’s contribu-
tion to the ground state energy is evaluated. The to-
tal ground state energy is a sum of such identical con-
tributions from each of the fragments. For SIAM, a
non-translationally-invariant system, we have only one
fragment which includes the impurity site and its corre-
sponding bath. The contribution of the unentangled core
orbitals to the total ground state energy cannot be ne-
glected in this case. Performing DMET with this unique
partitioning also results in an approximate correlated
wavefunction for the full system which in a ‘single-shot’
gives variational estimates of the ground state energy.

B. Dynamics

The quantum embedding approach has been general-
ized to dynamic properties, particularly for the evalu-
ation of bulk spectral functions[35, 39]. Here, we ap-
ply the method to evaluate the single-particle, local den-
sity of states (LDOS) for the SIAM and provide exten-
sions to the current formulation. The technique builds
on the ground-state formalism where a bath space of
frequency-dependent many-body states is constructed by
the Schmidt decomposition of the linear response vector
given by

|Φ(1)(ω, η1)〉 =
1

ω − (h− ε0) + iη1
V̂ |Φ(0)〉 , (3)

where h is the single-particle Hamiltonian with ε0 it’s

ground-state energy. V̂ = c
(†)
d is used for the evaluation

of the impurity LDOS. |Φ(1)(ω, η1)〉 can be expressed in
a Schmidt decomposed form [35]

|Φ(1)(ω, η1)〉 =
∑
ijm

λijÂ
(m)(ω, η1) |αi〉 B̂(m)(ω, η1) |βj〉 ,

(4)

where Â(m)(ω, η1) and B̂(m)(ω, η1) are operators that act
on the fragment and bath states, respectively. This de-
fines a frequency-dependent basis and the correspond-
ing projector |Kijm(ω, η1)〉 = |αi〉 ⊗ B̂(m)(ω, η1) |βj〉,
P̂ =

∑
ijklmn |Kijm(ω, η1)〉 〈Kkln(ω, η1)|.

Defining Ĥ ′(ω, η1) = P̂
(
Ĥ − Egs1̂

)
P̂, where Egs is

the energy corresponding to the frequency-independent
ground state |Ψemb〉 discussed in the previous section.
The approximate embedding Green’s function is given
by

G(ω, η1, η2) = 〈Ψemb| X̂ ′
1

ω − Ĥ ′(ω, η1) + iη2
V̂ ′ |Ψemb〉 ,

(5)

where X = V †, X̂ ′ = P̂X̂P̂ and V̂ ′ = P̂V̂ P̂ gives the
single-particle impurity Green’s function with it’s imagi-

nary part as the single-particle density of states, namely

A(ω, η1, η2) = − 1

π
=[G(ω, η1, η2)] . (6)

This generates a Lorentzian broadened spectral function
dependent on the parameters η1 and η2. A common
choice is to set η1 = η2[22, 35]. This choice might not
always be desirable, especially for a discretized SIAM,
where appropriate broadening of the peak spectrum leads
to better resolution of the spectral function at both high
and low energies[36, 40, 41]. This emphasizes the need for
a more detailed construction of spectral broadening, as
discussed below. It should be noted that the formulation
can be extended to more complex two-particle Green’s
functions with an appropriate choice for V̂ . For example,

V̂ =
∑
σ = c†iσciσ is used to evaluate the local density-

density response function[35].

C. Peak spectrum and broadening

The size of the frequency-dependent Schmidt basis
generally makes it manageable to perform full exact diag-
onalization (ED) on Ĥ ′(ω, η1) giving access to its entire
eigenspectrum. This allows one to express Eq. 5 in an
explicit Lehmann representation. Since the functional
form of the eigenvectors, |Ψ′n(ω, η1)〉 and the eigenval-

ues E′n(ω, η1) of Ĥ ′(ω, η1) are not known, η1 is chosen to
be very small to obtain results independent of it. The
value of η1 determines the number of delta peaks ob-
served when calculating the peak spectrum under the
following guideline. Hence, for all the results in Sec.III B,
we have used η1 = 10−8 which ensured the convergence
of the number of delta peaks. For a more detailed discus-
sion on the behavior of E′n(ω, η1) for different values of n
and η1, see Appendix VI A. The single-particle Green’s
function is given by

G(ω, η2) =
∑
n

| 〈Ψ′n(ω)|c†d|Ψemb〉 |2

ω − E′n(ω) + iη2
, (7)

where we have used

Ĥ ′(ω) =
∑
n

E′n(ω) |Ψ′n(ω)〉 〈Ψ′n(ω)| . (8)

If ω − E′n(ω) = 0 has m solutions given by ω
(n)
m , the

denominator of the imaginary part of G(ω, η2) in Eq.7

can be approximated using a Taylor series around ω
(n)
m

up to second order in ω. Integrating over all frequencies
gives the spectral function in terms of delta functions at
the peak positions and it’s corresponding weights,

A(ω) =
∑
mn

Amnδ(ω − ω(n)
m ) , (9)

and the spectral weight is given by

Amn =
|Cn(ω

(n)
m )|2∣∣∣∣1− dE′
n

(
ω

(n)
m

)
dω

∣∣∣∣ , (10)
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where |Cn(ω)|2 = | 〈Ψ′n(ω)|c†d|Ψemb〉 |2. The peak spec-
trum is convoluted with a Gaussian kernel[22, 40, 41]

K(ω, ω′) =
1

b
√
π

exp
[
−(ω − ω′)2/b2

]
. (11)

The width, b is chosen to be frequency dependent [22, 36]
and of the form

b = c1ωmin + c2|ω′| , (12)

where ωmin is the position of the lowest lying peak above
the fermi energy, and c1 and c2 are positive constants. We
delay our discussion on how to appropriately choose these
constants until Sec.III B. The smooth spectral function
is then given by

A(ω) =

∞∫
−∞

K(ω, ω′)A(ω′) (13)

∑
mn

Amn
b
√
π

exp
[
−(ω − ω(n)

m )2/b2(ω(n)
m )

]
, (14)

with Amn obtained from Eq.10.

D. Comparison to numerical
renormalization-group methods

Since the first applications to the SIAM[42],
non-perturbative approaches like the numerical
renormalization-group method(NRG)[43] have been
successful in describing both static thermodynamic
properties and dynamical response and spectral
functions[3, 40]. These approaches have seen the intro-
duction of a variety of techniques aimed at improving
accuracy and resolution in both the high and low
frequency regions [36, 40]. NRG relies on a logarithmic
discretization of the conduction band which maps the
Hamiltonian of Eq. 1 onto a chain geometry. The
mapping is analytically performed with the energy
levels of the conduction band arranged according to
εn = ±DΛ−n, where D is the conduction band edge and
Λ > 1 is the discretization parameter. The mapping is
exact in the limit Λ → 1. For a conduction band with
constant hybridization Vk = V and a flat density of
states ρ(ω) =

∑
k δ(ω − εk) = 1/2D for ω ∈ [D,D], the

mapping leads to the chain Hamiltonian[43]

H =
∑
σ

(
εd +

U

2
n̂d−σ

)
n̂dσ + V

∑
σ

(
c†dσc1σ + H.c

)
+

∞∑
σ,n=1

tn
(
c†nσcn+1σ + H.c

)
, (15)

with Γ = πV 2ρ(0) and

tn =
DΛ−n/2

(
1 + Λ−1

) (
1− Λ−n−1

)(
2
√

(1− Λ−2n−1) (1− Λ−2n−3)
) . (16)

In NRG, the Hamiltonian in Eq.15 is iteratively diago-
nalized increasing the number of sites from the impurity
at each iteration and truncating the high-energy states if
the number of states in the Fock space exceeds a certain
chosen limit.

More recent methods such as DMRG and related
approaches[21, 44] use a variational optimization to ob-
tain the ground state, allowing for feedback from lower to
higher energies, which are absent in the NRG approach.
DMRG-like methods allow for an arbitrary discretiza-
tion of the conduction band. This has the advantage
of improving the spectral resolution at high energies by
incorporating a linear discretization instead of a loga-
rithmic one which has fewer states at high energies. In
NRG calculations, the discretization parameter ranges
from Λ = 1.5 to 2.5[40]. Lower values of Λ imply that
more states are retained in each NRG iteration, making
it computationally challenging with increasing number
of iterations. This is not the case for DMRG or MPS-
based methods where values as low as Λ = 1.05 have been
used[25]. These advantages of DMRG, however, come at
the cost of the loss of direct access to the full spectrum
of excited states.

The embedding scheme proposed here is similar to
DMRG or MPS-like methods in terms of the advantages
it bears, but is far simpler. If a logarithmic discretization
is employed, although not necessary, the infinite chain in
Eq.15 may cut-off at a finite N . The process of obtain-
ing the spectral functions starts with the evaluation of
the embedded ground-state. In this work, we have used
N ∼ 300. Such large values can be handled easily be-
cause the embedded system that ultimately needs to be
fully diagonalized is independent of N , and only depends
on the size of the fragment embedded.

III. RESULTS

A. Finite-sized SIAM

In order to assess the performance of the prescribed
embedding method for the SIAM, we first investigate a
small-sized system and the results are compared against
mean-field approaches like RHF and UHF and exact re-
sults obtained from Exact Diagonalization (ED). For this
case, the SIAM is represented by an interacting impurity
coupled to seven noninteracting conduction band levels
(L=8) at half-filling. We consider the symmetric case
with εd = −U/2. The seven conduction band levels are
evenly spaced on [−1, 1]. The hybridization energy from
the impurity to the conduction band is taken to be same
for all the conduction band levels with Vk = V = 0.1.
Fig.1 shows the ground-state energy per-site Egs/L as a
function of U . The various levels of embedding depend
on the number of sites included in the fragment. Emb(n)
refers to a fragment with n sites which is coupled to a
bath of the same size. The cost amounts to solving a 2n
sized system which is achieved via ED for small n. For



5

0 2 4 6 8 10

U/V

−0.59

−0.57

−0.55

−0.53
E

gs
/L

ED
UHF
RHF
Emb(1)
Emb(2)
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FIG. 1. Ground-state energy per-site Egs/L (L = 8) as a
function of U for the symmetric SIAM from single-site and
cluster embedding. Vk = V = 0.1 and Emb(n) refers to the
number of sites included in the fragment.

n = 1, only the impurity is part of the fragment. For
higher values of n, the fragment consists of the impurity
and the n− 1 conduction band levels closest to the fermi
energy.

The embedding approach performs better than mean-
field methods like RHF and UHF for the entire range of
U . This is expected as the embedding improves over RHF
by taking into account the interactions on the impurity
explicitly. Even Emb(1) which is equivalent to solving
a two-site system is significantly better than standard
mean-field methods. Higher levels of embedding system-
atically improve the energies becoming numerically exact
when n = L/2. This can be seen in Emb(4) which re-
produces the ED result at the same cost as doing the ED
calculation.

Fig.2 shows the double occupancy of the impurity
〈nd↑nd↓〉 as a function of U . Emb(1) does not capture the
correct curvature due to the lack of short-range pairing in
the small embedded system. However, cluster embedding
generates systematic improvements over the single-site
case. Emb(2) is visibly indistinguishable from the exact
answer while Emb(4) is numerically exact, as expected.
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U/V
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0.26

〈n
d↑

n d
↓〉

ED
Emb(1)
Emb(2)
Emb(4)

FIG. 2. Double occupancy of the impurity 〈nd↑nd↓〉 for the
symmetric SIAM with the same parameters as used in Fig. 1.
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FIG. 3. T = 0 single-particle impurity spectral function A(ω)
obtained from one and two-site embedding for the symmetric
SIAM with L = 8, Vk = V = 0.1 and η1 = η2 = 0.005 for
different interaction strengths.

Fig.3 compares the spectral functions obtained from
different levels of embedding approximations with ex-
act results from ED for varying strength of interaction,
U . The Lorentzian broadened spectral functions are ob-
tained from Eq. 6 with η1 = η2 = 0.005. The embed-
ding results are exact in the noninteracting case, as ex-
pected, for both single-site and cluster embedding as seen
in the top left panel of Fig.3. Both Emb(1) and Emb(2)
correctly predict the positions of the low energy excita-
tions. As U increases, the weight of excitations around
the Fermi energy decreases and peaks at higher energies
are observed. Emb(2) displays this general trend whereas
Emb(1) shows some oscillating behavior for the weight
of these low energy excitations. Emb(2), as expected, is
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FIG. 4. Magnified view of Fig. 3 showing details of the high-
energy spectral features.
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FIG. 5. T = 0 impurity spectral function obtained from
two-site embedding (Emb(2)) and Chebyshev-MPS for the
symmetric SIAM with logarithmically discretized conduction
band[25]. The total number of sites in the chain, includ-
ing the impurity, is 300. Λ = 1.05, Γ = 0.05 and D = 1.
c1 ≈ 0.3 − 0.4 and c2 ≈ 6.8 − 18.8. The different panels cor-
respond to different values of interaction. Bottom right panel
also includes the spectral function obtained from three-site
embedding (Emb(3)).

able to resolve features in the range 0 ≤ ω ≤ 0.4 better
than Emb(1) as seen in Fig. 4. The accuracy of Emb(2)
is high at low values of U . At high values of U , par-
ticularly at U/V = 7.5, Emb(2) is able to resolve the
positions of some of the peaks in this range but does not
quantitatively capture the weights of these excitations.

The systematic improvement with cluster embedding
and its promising performance on small systems moti-
vates the application of the technique to systems in the
thermodynamic limit.

B. Thermodynamic limit

For a single impurity coupled to a continuous conduc-
tion band, we take a conduction band with D = 1 and use
a logarithmic discretization with 299 conduction band
states distributed in the interval [−D,D]. The discretiza-
tion parameter is taken as Λ = 1.05 and the hybridization
as Γ = 0.05. Fig. 5 shows the T = 0 impurity spectral
function using two-site embedding in the wide-band limit
D � Γ, where in each panel we have considered differ-
ent values of the interaction strength from the weak to
strong-coupling regime. Our results are compared to cal-
culations using the Chebyshev-MPS method in the wide-
band limit where the computed Chebyshev moments are
post-processed with linear prediction[25]. These results
achieve similar precision as the dynamical density matrix
renormalization group method(DDMRG)[45] at a lower
cost, and serves as a good benchmark for low-cost em-
bedding methods.
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U/Γ = 10 U/Γ = 14

FIG. 6. T = 0 impurity spectral function obtained from
single-site embedding (Emb(1)) for the symmetric SIAM with
a linearly discretized conduction band. 299 conduction band
levels are evenly spaced in ω ∈ [−1, 1]. Γ = 0.05 and the
range of interactions considered is the same as in Fig. 5.
c1 ≈ 0.3− 0.35 and c2 ≈ 6.1− 12.0.

The delta peaks and their corresponding weights are
obtained from Eq. 9 and Eq. 10 respectively. As dis-
cussed in Sec. II C, the frequency-dependent Gaussian
broadening kernel has two parameters, c1 and c2 (see
Eq. 12). At high values of U , the resolution of the Hub-
bard satellites is almost entirely governed by c2 as c1 pri-
marily affects the low energy resolution. As a result, c2 is
chosen such that for strong interactions the high-energy
Hubbard satellites have a width of order 2Γ as predicted
from strong-coupling results[3]. c2 ≈ 0.3 to 0.4 is suffi-
cient to ensure this. With c2 fixed for all interactions,
c1 is chosen such that the spectral functions essentially
recover the Friedel sum rule, namely A(0) ' 1/πΓ. In
a simple Anderson model the Friedel sum rule and the
parameter Γ which governs the width of the Hubbard
bands for strong interactions are both readily available.
For more complex Anderson-like models information via
a Hartree-Fock calculation in the limit of large U for the
Hubbard bandwidth and generalizations of the Friedel
sum rule should still be obtainable. This implies a gen-
eral applicability of the proposed broadening scheme.

Fig. 5 shows the transfer of spectral weight from low
to high-energies at intermediate to strong interactions
which marks the canonical distinct features of the SIAM
at strong coupling and T = 0, namely the upper and
lower Hubbard satellites, and a zero-frequency peak, the
Abrikosov-Suhl or Kondo resonance. A close examina-
tion of Fig. 5 shows that at weak interactions, the two-site
embedding method (Emb(2)) overestimates the trans-
fer of spectral weight from the Kondo resonance to the
Hubbard bands. However, this is mostly a broadening
artifact as the parameter c2, which was optimized to
resolve the Hubbard bands accurately, now affects the
low energy resonance. A larger value of c2 would rem-
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right) and the half-width at half-maximum, dHWHM , for the
different interactions showing the exponential narrowing of
the Kondo resonance with increasing U (bottom).

edy this defect. However, this would make the proposed
broadening scheme inconsistent. For strong interactions
(U/Γ = 14), the peaks of the Hubbard bands are located
at ω ≈ ±U/2 which would appear to produce an improve-
ment over the Chebyshev-MPS results. The bottom right
panel of Fig. 5 shows the spectral function obtained with
a three-site fragment, Emb(3), using the impurity, the
site adjacent to the impurity and the terminal site of the
Wilson chain as part of the fragment. The results show
that the position of the Hubbard band peaks converge to
ω = ±U/2 for high values of U with increasing fragment
size, n.

Fig. 6 shows single-site embedding results for the sym-
metric SIAM with a linearly discretized conduction band
where 299 conduction band levels are uniformly dis-
tributed in ω ∈ [−D,D]. We have considered the wide-
band limit analogous to previous two-site embedding cal-
culations shown in Fig.5 with Γ = 0.05 and D = 1.
With increasing interactions, the narrowing of the Kondo
resonance and the appearance of the Hubbard bands is
observed. We have used the same broadening scheme
to convolute the delta peaks in Fig. 5 and Fig. 6. For
strong interactions (U/Γ = 14), the Hubbard band peak
is located at slightly higher energies than ±U/2. For
the intermediate coupling regime (U/Γ = 6), the Hub-
bard bands seem to be slightly overdeveloped compared
to Emb(1) in Fig. 5 and MPS results. For weak interac-
tions (U/Γ = 2), however, the Emb(1) spectra appears
to be more accurate than Emb(2).

The width of the Kondo resonance decreases exponen-
tially with increasing interaction. This trend is captured
by both Emb(1) and Emb(2) as seen in Fig. 7 where

the region near ω = 0 is combined for all four panels of
Fig. 5 and Fig. 6 and the half-width at half-maximum,
dHWHM is plotted on a log scale for the values of inter-
action considered in Fig. 5 and Fig. 6. For Emb(2), the
width of the Kondo peak is somewhat overestimated in
the intermediate-coupling regime. For Emb(1), the nar-
rowing of the Kondo resonance is not as sharp as the
two-site case but still follows the correct trend. For all
the spectral functions, the Friedel sum rule is nearly triv-
ially obeyed with deviations below 1% with an appropri-
ate choice of c1. This condition, being imposed, does
not automatically reflect the accuracy of the low-energy
features obtained from the embedding method.

IV. CONCLUSION

In this work we outline and investigate a very simple
embedding approach for calculating the spectral proper-
ties of the single impurity Anderson model. The method
essentially combines features from density matrix embed-
ding theory (DMET) with discretization and broadening
schemes adopted from numerical renormalization group
(NRG) approaches. We advocate a ‘single-shot’ embed-
ding scheme whereby no self-consistency is required, even
for cases where multiple bath sites are included in the
embedding. The approach provides results compatible
with much more advanced DMRG-based algorithms at a
fraction of the numerical complexity and expense.

The approach discussed in this work should find useful
application as an impurity solver for DMFT, as a prior
for analytical continuation of imaginary-time quantum
Monte Carlo, and for investigation of the spectral fea-
tures of more complex impurity problems in their own
right. With respect to the latter, it should be noted
here that much more complex impurity problems, such
as those with multiple orbitals and coupled sites are
amenable to the method discussed here with limited ad-
ditional expense. Future work will be devoted to study
of both more complex impurity problems such as multi-
orbital cases that emerge in DMFT as well as testing our
approach on the more subtle and intricate two-impurity
Anderson model.

While this paper was being written we became aware of
a related work by Kretchmer and Chan[46]. This works
investigates non-equilibrium transport in the Anderson
impurity model while we focus, with a slightly different
methodology, on the equilibrium spectral properties.
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VI. APPENDIX

A. Choice of η1 to ensure convergence of delta
peaks

In this short appendix we provide more details con-
cerning the determination of broadening parameters and
the sensitivity of the spectra to these parameters. The
value of η1 determines the number of delta peaks in the
peak spectrum obtained from the Lehmann representa-
tion of the single-particle Green’s function, see Eq. 5 and
Eq. 7. Fig. 8 shows the behavior of En=4,5,6(ω, η1) for dif-
ferent values of η1. For Emb(1), En(ω, η1) is not sensitive
below η1 = 10−8 while, for Emb(2), η1 = 10−6 ensures
convergence for En(ω, η1). The choice of η1 is primarily
determined by examining the peak spectrum in Fig. 9.
The structure and the number of peaks in Fig. 9 con-
verges for η1 = 10−8 which is the value used throughout
this work.
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