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We study the Majorana surface states of higher-spin topological superconductors (TSCs) that
could be realized in ultracold atomic systems or doped semimetals with spin-orbit coupling. As a
paradigmatic example, we consider a model with p-wave pairing of spin-3/2 fermions that generalizes
3He-B. This model has coexisting linear and cubic dispersing Majorana surface bands. We show
that these are unstable to interactions, which can generate a spontaneous surface thermal quantum
Hall effect (TQHE). By contrast, nonmagnetic quenched disorder induces a surface conformal field
theory (CFT) that is stable against weak interactions: topological protection is enhanced by disorder.
Gapless surface states of higher-spin TSCs could therefore be robustly realized in solid state systems,
where disorder is inevitable. The surface CFT is characterized by universal signatures that depend
only on the bulk topological winding number, and include power-law scaling of the density of states,
a universal multifractal spectrum of local density of states fluctuations, and a quantized ratio of
the longitudinal thermal conductivity κxx divided by temperature T . By contrast, κxx/T for the
clean surface without TQHE order would diverge as T → 0. Since disorder stabilizes the conducting
Majorana surface fluid and quantizes thermal transport, our results suggest a close analogy between
bulk TSCs and the integer quantum Hall effect.

I. INTRODUCTION

The precise quantization of the Hall conductance is
the heart of the integer quantum Hall effect (IQHE).
The quantization condition holds irrespective of mate-
rial parameters, quenched disorder, or residual electron-
electron interactions. The robustness of the IQHE is due
to the tight entwining of the bulk topology (most easily
defined for a clean system), Anderson localization (due to
quenched disorder, always required in practice to resolve
the plateaux), and the chiral edge states whose flow can
never be degraded by perturbations such as disorder or
interactions, but only redirected. Topological protection
in the IQHE locks an easily measured observable directly
to a bulk winding number.
In the last decade there has been an explosion of in-

terest in new forms of topological matter, driven by the
discoveries of topological insulators and gapless topologi-
cal phases1–4. Despite this progress, a three-dimensional
analog of the IQHE that ties a robust surface transport
signature directly to a bulk winding number remains
lacking. One potentially promising route is to look for
a generalization of Helium 3B (3He-B), the only known
bulk topological superfluid predicted to host a gapless
surface fluid of unpaired Majorana fermions5,6.
Previous theoretical work6–10 has shown that the Ma-

jorana surface fluid of a model spin-1/2 bulk topological
superconductor (TSC) can be robust to both disorder
and interaction effects, and should exhibit a universal
surface thermal conductivity proportional to the bulk
winding number10. In all of these works, the form of
the 2D surface theory was always assumed to be rela-
tivistic, with |ν| “colors” of linearly-dispersing Majorana
fermions coupled via interactions and/or quenched disor-

der; ν denotes the winding number. A key unanswered
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FIG. 1: Schematic renormalization group (RG, left) and pa-
rameter (right) phase diagram: 2D Majorana fermion surface
fluid of a bulk spin-3/2 topological superconductor with p-
wave pairing and winding number ν = 4. The axes denote sur-
face perturbations: the interaction strength u and quenched
disorder strength λ. In the absence of disorder (λ = 0),
the clean surface (“I”) is marginally unstable to spontaneous
time-reversal symmetry breaking [thermal quantum Hall ef-
fect (TQHE) order, (“III”)] for u > 0. Disorder λ > 0 is a
strong perturbation that drives the surface into a critically de-
localized, time-reversal symmetric state [SO(n)4 CFT, “II”].
The latter is stable against weak interaction effects8. Disor-
der is formally irrelevant to III because it can be viewed as a
gapped, paired Majorana BCS condensate. RG results near I
and II are obtained by analytical and numerical calculations,
while III is confirmed by mean-field theory. The boundary
between II and III on the right likely indicates a first or-
der transition, but neither its nature nor its precise shape
in the λ-u plane is determined here. The surface thermal
conductivity is precisely quantized in both phases II and III:
{κxx, κxy} = {4/π, 0} κ◦ in II6,10 and {κxx, κxy} = {0,±2}κ◦

in III15–20. Here κ◦ ≡ π2k2
BT/6h.
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question is whether the physics (e.g., universal thermal
conductivity) is tied to this simplifying assumption, or
instead represents a robust aspect of generic bulk TSCs.

Recent theoretical work has turned to higher-spin
TSCs, with potential applications to alkaline and
alkaline-earth ultracold atoms11 or doped semimetals
with spin-orbit coupling12–14. In this paper, we con-
sider the surface states of a spin-3/2 generalization of
3He-B with isotropic p-wave pairing11. A novel feature
is that the surface Majorana fluid exhibits coexisting lin-
ear and cubic bands. Cubic surface bands were also pre-
dicted in a closely related model12 that may be relevant
for superconducting half-Heusler alloys. Due to the van
Hove singularity, one might expect that any residual in-
teractions between surface Majorana particles would pro-
duce a strong instability. Surprisingly, we show that in-
teractions are only marginally relevant : only attractive
interactions induce spontaneous time-reversal symmetry
breaking and lead to a surface thermal quantum Hall
effect (TQHE)6,7. This weak instability is tied to the
strong constraints imparted by Pauli exclusion to a Ma-
jorana gas, despite the density of states divergence. Re-
pulsive interactions are marginally irrelevant; their main
effect would be to generate a finite longitudinal surface
thermal conductivity κxx at temperature T > 0 due to
inelastic scattering. In the absence of impurity scattering
the ratio κxx/T would diverge as T → 0.

By contrast, nonmagnetic quenched disorder proves to
be a strong perturbation. Using exact diagonalization
to study the noninteracting dirty surface, we show that
disorder induces scaling consistent with a critical, exactly
solvable conformal field theory (CFT) SO(n)4

8. (Here
n→ 0 denotes the number of replicas.) The CFT governs
the divergence of the global density of states and the
statistics of the single-particle wave functions. The level
of the current algebra (=4) is also the modulus of the
bulk winding number |ν| for our p-wave model. This
is the same result that obtains for spin-1/2 models of
TSC surface states studied previously8,10. In the spin-
1/2 case with winding number ν, the clean surface fluid
is a free fermion (level one) CFT due to the relativistic
dispersion. The emergence of another CFT with level |ν|
in the presence of disorder follows from certain rules in
these theories (conformal embeddings8,10).

Here the situation is very different. The clean Majo-
rana fluid of the spin-3/2 model is not a CFT, as evi-
denced by the cubic dispersion. Moreover, a standard
derivation of the effective surface theory with disorder
would incorrectly predict a thermal metal with weak
antilocalization8,21. Properties of this metal would de-
pend on the bare disorder strength and would vary slowly
with system size. Our numerics instead show univer-
sal scaling that is independent of the disorder strength.
In conjunction with the conformal embedding argument
for the spin-1/2 case, the results obtained here empiri-
cally suggest a deep relation between the topology of the
bulk and the CFT describing the disordered surface of
a TSC, despite the fact that the clean surface theories

can fundamentally differ. Technically, it means that the
topology precisely tunes the surface field theory to the
conformal fixed point made possible by a Wess-Zumino-
Novikov-Witten term8. Without this fine-tuning, this
fixed point is unstable to the thermal metal phase (de-
spite the WZNW term)10.
The SO(n)4 CFT that describes the disordered Majo-

rana surface fluid is known to be protected against weak
interaction effects8. We conclude that disorder stabilizes
the surface Majorana fluid for this spin-3/2 model, and
this implies that higher-spin TSCs could be robustly pro-
tected. The thermal Hall conductivity κxy divided by
temperature T of the surface TQHE is quantized and
universal15–20: κxy = W κ◦, where W ∈ Z is the surface

winding number and

κ◦/T = π2k2B/6h. (1.1)

What is more important here is that6,10

lim
T→0

κxx
T

=
|ν|
π

κ◦
T
, κxy = 0, (1.2)

for the disorder-induced surface CFT (which preserves
time-reversal symmetry). Here the winding number ν =
4. Eq. (1.2) implies that the low-temperature thermal
conductivity is quantized by the bulk winding number,
independent of both disorder and interactions. Since dis-
order stabilizes the surface and induces a quantized ther-
mal conductivity, bulk TSCs appear to be closely anal-
ogous to the integer quantum Hall effect in two dimen-
sions. Our results are summarized by the phase diagram
in Fig. 1.
This paper is organized as follows. In Sec. II, we de-

fine the bulk model and describe the form of the sur-
face states. We then summarize our results regarding
the marginal instability of the clean surface, and the uni-
versal quantum criticality of the disordered one. The rest
of the paper explains key technical details. Sec. III shows
the derivation of the surface state Hamiltonian and the
calculation of the surface winding number in the presence
of explicit time-reversal symmetry breaking. The effects
of interactions on the clean surface are treated using one-
loop renormalization and mean field theory. Sec. IV de-
scribes the incorporation of disorder, and provides details
of the numerical diagonalization scheme.

II. MODEL AND RESULTS

A. Bulk and surface models

We consider a system of spin-3/2 fermions. In the ab-
sence of pairing, we assume a bulk Hamiltonian of the
form

H0 =

∫

d3k

(2π)3
c†(k)

[

k2 − γ
(

Ŝ · k
)2

]

c(k), (2.1)
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where k = {kx,y,z}. The 4-component fermion field

c(k) → cms
(k) has Ŝz-label ms ∈ { 3

2 ,
1
2 ,− 1

2 ,− 3
2}; Ŝ =

{Ŝx,y,z} are spin-3/2 operators. Eq. (2.1) is an isotropic
version of the Luttinger Hamiltonian22 used to model
heavy and light hole bands in zinc-blende semiconduc-
tors; the parameter γ measures the strength of effective
spin-orbit coupling (SOC) amongst the states of the 3/2
multiplet. Here we have set 2m = 1 in the first term (m
is the band mass in the absence of SOC). We assume that
γ < 4/9, so that both bands “bend up.” The situation
where bands bend oppositely is relevant for half-Heusler
alloys; in that case similar Majorana surface states can
arise with bulk p-wave pairing12, but the winding num-
bers differ23.
We assume isotropic p-wave pairing of spin-3/2

fermions11:

H =
1

2

∫

d3k

(2π)3
χ†(k) ĥ(k)χ(k), (2.2)

where the 8× 8 Bogoliubov-de Gennes Hamiltonian is

ĥ(k) =

[

k2 − µ− γ
(

Ŝ · k
)2

]

σ̂3 +∆p

(

Ŝ · k
)

σ̂2. (2.3)

Here µ is the chemical potential and ∆p the BCS gap
parameter. The 8-component field in Eq. (2.2) has the
particle-hole space decomposition

χ(k) ≡
[

c(k)

(−iR̂)
[

c†(−k)
]T

]

, (2.4)

where T denotes the transpose in spin-3/2 space. The
Pauli matrices σ̂1,2,3 in Eq. (2.3) act on particle-hole

space. In Eq. (2.4), R̂ is an antisymmetric 4×4 matrix
satisfying

R̂ (Ŝ)T R̂−1 = −Ŝ, R̂2 = −1̂. (2.5)

The field χ satisfies the “Majorana” condition
χ†(k) = i χT(−k) M̂P, where M̂P = −iσ̂2 R̂ =

M̂T

P
. This implies the automatic particle-hole sym-

metry −M̂−1
P

ĥT(−k) M̂P = ĥ(k). Time-reversal invari-

ance is encoded as M̂−1
T

ĥT(−k) M̂T = ĥ(k), where

M̂T = −M̂T

T
= σ̂3 R̂. Combining particle-hole

and time-reversal6,11 gives the effective chiral condition

−σ̂1 ĥ(k) σ̂1 = ĥ(k). With all of these symmetries the
model belongs to class DIII6. The bulk winding number
is ν = 411 so long as µ > 0 and γ < 4/9.
The effective surface Hamiltonian obtains by termi-

nating the system in the z-direction and diagonalizing

ĥ(kx, ky,−i∂z). The momentum k = {kx,y} labels prop-
agation parallel to the surface. For k = 0 and hard wall
boundary conditions, there are four zero energy bound
states {|ψ0,ms

〉}. The most important feature is that the
particle-hole “spin” locks to the physical spin at the sur-
face:

|ψ0,ms
〉 = |σ1 = sgn(ms)〉 ⊗ |ms〉 ⊗ |fms

〉. (2.6)

The particle-hole spin points along the +σ1 (−σ1) direc-
tion for positive (negative) ms. In Eq. (2.6), 〈z |fms

〉 =
fms

(z) denotes the bound state envelope function.
Since time-reversal gives the effective chiral condition

−σ̂1 ĥ(k) σ̂1 = ĥ(k) in the bulk, the locking condition

implies that the effective surface Hamiltonian ĥS satisfies

−τ̂3 ĥS(k) τ̂
3 = ĥS(k), (2.7)

where τ̂3 = +1 (−1) for ms > 0 (ms < 0). We in-
troduce two mutually commuting species of Pauli matri-
ces: {τ̂1,2} anticommute with τ̂3 and act on the sgn(ms)
space, while {κ̂1,2,3} mix the 3/2 and 1/2 states with
the same sign. E.g., τ̂3 = diag(1, 1,−1,−1), κ̂3 =

diag(1,−1, 1,−1). The matrix R̂ = iτ̂1κ̂2. Then the lock-
ing condition implies the automatic surface particle-hole
symmetry

−M̂ (S)

P
ĥT

S
(−k) M̂ (S)

P
= ĥS(k), M̂ (S)

P
= τ̂2κ̂2. (2.8)

The form of ĥS(k) is constrained by Eqs. (2.7) and
(2.8), as well as rotational invariance in the plane. An
explicit k·p calculation gives the low-energy form11

ĥS(k) =
i
4

(

τ̂+κ̂− k− τ̂−κ̂+ k̄
)

+ c
2

(

τ̂+ k
2 + τ̂−k̄2

)

=









0 0 c k2 0
0 0 i k c k2

c k̄2 −i k̄ 0 0
0 c k̄2 0 0









. (2.9)

Here, {k, k̄} = kx ∓ iky, τ̂
± = τ̂1 ± iτ̂2, κ̂± = κ̂1 ± iκ̂2,

the coefficient for the linear dispersion is normalized to
one, and c is a real constant with units of length. For
weak SOC (0 < γ ≪ 1), it is easy to see that c ∝ γ/∆p.
Without SOC, second-order k·p theory gives c = 0 so
that the ms = ±3/2 bands remain flat. Nonzero c is
symmetry-allowed and thus expected in the generic situ-
ation; an alternative route incorporates additional small
s-wave pairing. In Eq. (2.9), we neglect terms cubic in
kx,y because these do not modify the low-energy disper-
sion relations.
In the limit k → 0, Eq. (2.9) exhibits linear and cubic

bands11:

ε1(k) =
k

2

(

√

1 + 4c2k2 + 1
)

≃ k +O (k)
3
,

ε3(k) =
k

2

(

√

1 + 4c2k2 − 1
)

≃ c2k3 +O (k)
5
.

(2.10)

Both bands become quadratic at large k. Due to the
cubic band, the system has a van Hove singularity in the
density of states ν(ε→ 0) ∼ ε−1/3.

B. Surface perturbations

The Hamiltonian for the surface fermion fluid is given
by

H (S)

0 =
1

2

∫

d2r ηT M̂ (S)

P
ĥS η, (2.11)
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where η → ηms
is a four-component Majorana spinor

and r is the position vector. Local bilinear (“potential”)
perturbations must obey surface particle-hole symmetry.
There are 6 Hermitian terms without derivatives of the
form 1

2

∫

d2r ηT M̂ (S)

P
Λ̂ η, where Λ ∈ {τ̂1,2,3} or {κ̂1,2,3}

satisfies Eq. (2.8). These are classified by symmetry.
Under planar rotations, τ̂3 and κ̂3 are scalars, κ̂1,2

transform like a vector, and τ̂1,2 transform like second-
rank tensor components. Only τ̂1,2 are time-reversal even
[Eq. (2.7)]; the rest are odd.

A generic combination Λ̂ = m1 τ̂
3+m2 κ̂

3 breaks time-
reversal and induces a gapped surface thermal quantum
Hall (TQH) state3,16. We compute the surface wind-

ing number W using the Green’s function5; the result is
shown in Fig. 2. The lines m1 = ±m2 are gapless sur-
face plateau transitions. The maximum winding num-
ber and surface gap for fixed

√

m2
1 +m2

2 is achieved for
|m1| > |m2|, i.e. τ̂3 order. Finally, we note that the spin

operator Ŝz corresponds to m1 = 2m2, so that an exter-
nal Zeeman field would induce the W = ±2 plateaux.

C. Marginal instability of the clean surface

Although we treat the gapped bulk as an effectively
non-interacting mean field Hamiltonian, we must con-
sider the effects of residual interactions on the surface
Majorana fluid carefully. This is because the latter is
gapless and exhibits a diverging density of states. In a
superconductor, interactions at the surface are expected
to be short-ranged due to screening by the bulk. These
residual interactions can be mediated by virtual fluctu-
ations of the “massive” electromagnetic field. Here we
posit the form of the interactions based on symmetry
and Pauli exclusion.
Because η is a four-component Majorana field, there

is only a single interaction term without derivatives that
we can write; others with derivatives are less relevant.

m
1

m
2

2

1

-1

-2

FIG. 2: Phase diagram of the clean spin-3/2 Majorana surface
fluid in the presence of time-reversal symmetry-breaking mass
terms m1 and m2. All states are TQHE plateaux with wind-
ing number as indicated, computed via the surface Green’s
function5. The combination m2 = m1/2 corresponds to

the spin-3/2 operator Ŝz, as could be introduced via Zee-
man coupling to an external magnetic field. The conditions
m1 = ±m2 are gapless plateau transitions.

Labeling the components as η → η1,2,3,4,

H (S)

I ≡ u

∫

d2r η1η2η3η4

= ∓ u

8

∫

d2r (ηT M̂ (S)

P
Λ̂ η)2, (2.12)

where the minus (plus) sign corresponds to Λ̂ = τ̂3 (κ̂3).
Thus u > 0 is an attractive (repulsive) interaction in the
τ̂3 (κ̂3) channel. The coupling u has units of length. The
sign of u could be determined by integrating out the bulk
superfluid and the electromagnetic field, but we will not
do so here.
Given that the noninteracting surface fluid has coex-

isting linear and cubic bands, it is not a priori obvious
how to assess the relevance of u from a renormalization
group (RG) perspective. Moreover, the van Hove singu-
larity suggests that nonzero u will induce bad infrared
behavior. In fact one-loop perturbation theory gives the
simple vertex correction,

Γ(4) = −
[

u+
(

u2/4πc
)

ln(4cΛ)
]

, (2.13)

where Λ is the ultraviolet momentum cutoff. The cor-
rection is only logarithmic, and is cut in the infrared by
the length scale c. This immediately implies the beta
function,

dũ

dl
=
ũ2

4π
+O

(

ũ3
)

, (2.14)

where ũ = u/c is the dimensionless coupling.
The absence of bad infrared behavior in Eq. (2.13) and

the weakness of the ultraviolet singularity is due to Pauli
exclusion, i.e. the fact that both linear and cubic com-
ponents of the Majorana Green’s function must appear
simultaneously in the loop. Eq. (2.14) implies that u > 0
is a marginally relevant perturbation. Eq. (2.12) suggests
a natural interpretation in terms of TQH order with sur-
face winding number W = ±2.
We can confirm this picture with a mean-field calcu-

lation. We decouple the interaction in Eq. (2.12) with

the order parameter M ≡ (u/2) 〈ηT M̂ (S)

P
τ̂3 η〉. Zero-

temperature mean-field theory gives

M ≃ 1

c

(

4.4

2π

)3
1

[(2π/ũ)− ln(cΛ)]
3 , ũ≪ 1. (2.15)

Physically we can associate nonzero M with sur-

face “i s” (imaginary s-wave) pairing of the Majorana
particles7,8,24. This can be understood via the following
argument. In the bulk, one can write a local spin singlet,
time-reversal odd pairing operator

[−ic†R̂
(

c†
)T

+H.c.] = χ†σ̂1χ. (2.16)

Eq. (2.6) implies that this bilinear projects to

ηTM̂ (S)

P
τ̂3η ∝ M at the surface. On the other

hand, Eq. (2.12) can also be written as proportional



5

to −u
∫

d2r (Ŝz)2, implying surface magnetic order for
u > 0. Indeed, these disparate orders are unified in
the surface fluid, due to the strong spin-orbit coupling
in the bulk and the locking condition [Eq. (2.6)]. We
might anticipate a generic order parameter of the form
Λ̂ = m1 τ̂

3 + m2 κ̂
3 [c.f. Fig. 2] with |m1| > |m2|. Al-

though we are confident that the surface resides in the
W = +2 or −2 plateau for u > 0, there are hints that
mean-field theory fails to correctly predict the admixture
of m1 and m2. For details, see Sec. III D, below.

D. Quenched disorder and universal surface
quantum criticality

In a solid state realization, quenched disorder due to
impurities and other defects is inevitable at the sample

surface. Now we consider the effects of disorder on the
non-interacting surface states.

We add real disorder potentials that couple to the
time-reversal symmetric bilinear perturbations τ̂1,2 to
Eq. (2.9):

ĥS → ĥS + P1(r) τ̂
1 + P2(r) τ̂

2 =









0 0 c(−i∂)2 + P(r) 0
0 0 ∂ c(−i∂)2 + P(r)

c(−i∂̄)2 + P̄(r) −∂̄ 0 0
0 c(−i∂̄)2 + P̄(r) 0 0









, (2.17)

where {∂, ∂̄} = ∂x ∓ i∂y and {P, P̄} = P1 ∓ iP2. We con-
sider only time-reversal invariant disorder; equivalently,
we require that there are no magnetic fields or magnetic
impurities at the surface. We assume Gaussian white
noise disorder potentials P1,2(r) with common variance
given by a dimensionless parameter λ. Due to the cu-
bic dispersion, even weak disorder is expected to pro-
duce a strong effect. Indeed, perturbative renormaliza-
tion of λ produces a quadratic infrared divergence, and
implies that λ/c2 is the effective disorder strength. This
has dimension 2 and thus corresponds to a strongly rel-
evant perturbation of the clean surface band structure.
To treat the disorder nonperturbatively, we diagonalize
Eq. (2.17) numerically. The calculation is performed in
momentum space to avoid fermion doubling issues9. De-
tails are described in Sec. IVB, below.

In spin-1/2 bulk TSCs with relativistic surface fluids,
conformal embedding rules establish certain 2+0-D con-
formal field theories (CFTs) as governing the properties
of disordered, noninteracting surface states8. For a class
DIII bulk with winding number 4, that theory would pre-
dict the surface CFT SO(n)4, where n→ 0 counts repli-
cas. We will demonstrate that this theory also governs
the dirty surface states of the spin-3/2 TSC.

The SO(n)4 theory predicts8 a diverging low-energy
global density of states (DoS) ν(ε) ∼ ε−1/5. Note that
this is a weaker power law than the 1/3 van Hove singu-
larity in the clean system. In Fig. 3, we compare numeri-
cal results for different disorder strengths to the CFT pre-
diction for the integrated DoS N(ε) ≡

∫ ε

0
dε′ ν(ε′). We

find good agreement irrespective of the disorder strength.

The disorder-induced spatial fluctuations of the criti-

N(ε)/N(ε∗)

ε/ε∗

λ = π

λ = 4π/5

λ = 3π/5

λ = 2π/5

λ = π/5

FIG. 3: Numerical evidence for critical surface delocalization
in the presence of quenched disorder I: Integrated local den-
sity of states (IDoS)N(ε). The exact prediction of the SO(n)4
theory gives N(ε) ∼ ε4/5 (blue solid lines). The clean theory

has N(ε) ∼ ε2/3 due to the van Hove singularity. Data (red
dotted lines) is obtained from momentum-space exact diag-
onalization of the dirty surface Hamiltonian, without inter-
actions. Results are presented for typical realizations of the
disorder (i.e., there is no disorder-averaging). Curves with dif-
ferent disorder strengths λ are labeled and shifted vertically
for clarity. The system size consists of an 81 × 81 grid of
momenta. Irrespective of the nonzero disorder strength, the
same critical scaling exponent is observed and is consistent
with the SO(n)4 theory.
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q

τ(q)
(i)

(v)

(ii)

(iii)

(iv)

(i) λ = π

(ii) λ = 4π/5

(iii) λ = 3π/5

(iv) λ = 2π/5

(v) λ = π/5

FIG. 4: Numerical evidence for critical surface delocaliza-
tion in the presence of quenched disorder II: Multifractal
spectrum. The exact prediction of the SO(n)4 theory gives
Eq. (2.18) (blue). The clean theory would have τ (q) =
2(q − 1). Data [red, labeled (i)–(v)] is obtained as in Fig. 3.
The disorder strengths λ are indicated for the numerical
curves. Curves with different disorder strengths are shifted
vertically for clarity. The largest deviation occurs for |q| > qc,
where qc = 2 is the multifractal termination threshold27–29.
This is a finite resolution effect, since the slopes beyond qc
are governed by the peaks and valleys of the wave function.

cal surface wave functions are encoded in the multifrac-
tal spectrum τ(q). (For a recent review on multifrac-
tality at Anderson metal-insulator transitions, see e.g.
Ref.27.) The SO(n)4 theory predicts an exactly quadratic
spectrum8 for the low-energy wavefunctions,

τ(q) = (q − 1) (2− q/2) , |q| ≤ 2. (2.18)

Fig. 4 compares Eq. (2.18) to the numerical results.
Figs. 3 and 4 provide strong evidence that the dis-

ordered, noninteracting spin-3/2 Majorana fluid is gov-
erned by the SO(n)4 theory. This is surprising because
a standard derivation21 of the disorder-induced effective
field theory would predict a thermal metal phase ex-
hibiting weak antilocalization. Although the theory in21

should be augmented by a Wess-Zumino-Novikov-Witten
term (see Sec. IVA for details), this term does not al-
ter the tendency towards antilocalization in the metal-
lic phase8. Because the clean density of states diverges
for the surface Majorana fluid studied here, a diffusive
metallic state would be generically expected. Yet this
is inconsistent with our numerical results [which instead
match the SO(n)4 CFT]. An important technical point is
that the CFT is unstable to the thermal metal phase [see
Eq. (4.1)]. It means that the CFT can only be realized if
the system is tuned to the SO(n)4 fixed point. Our nu-
merical results imply that this is exactly what happens.
The same “fine-tuning” is required for the spin-1/2

TSCs. In that case, however, there is a nonperturbative
argument for it using conformal embedding theory8. Ad-
ditional evidence in the spin-1/2 case obtains by compar-
ing interaction (Altshuler-Aronov) corrections to trans-
port via two methodologies: (1) order-by-order in the
interaction strength, in a fixed realization of disorder,

and (2) within a disorder-averaged large winding num-
ber expansion. These give the same result only if the
disorder-averaged system is tuned to the CFT (in which
case Altshuler-Aronov corrections vanish)10. We do not
have the conformal embedding dictionary8 utilized for
spin-1/2 TSCs, but our numerical results empirically sug-
gest that there is an equivalence between the bulk topol-
ogy and the CFT describing the disordered surface of a
TSC8–10, despite the fact that the clean surface theories
can fundamentally differ.

E. Stability, phase diagram, and quantized thermal
conductivity

We have seen that the clean surface is marginally un-
stable to TQH order. We have also shown that quenched
disorder is a strong perturbation that drives the non-
interacting surface to a phase described by the SO(n)4
CFT. It is known8 that interactions are strongly irrele-
vant to this CFT,

dũ

dl
= − ũ

2
+O

(

ũ2
)

, (2.19)

where ũ is the dimensionless coupling strength. Although
multifractality can sometimes enhance interactions7,25,26,
that does not occur here. The reason is again Pauli exclu-
sion: the interaction and second multifractal moment op-
erators are distinct due to the complete antisymmetriza-
tion of the former8. We therefore conclude that disor-
der stabilizes the surface Majorana fluid of this spin-3/2
TSC. This is our most important result.

We note that Eq. (2.19) technically obtains from the
dynamical version of the SO(n)4 theory. This is a 2+1-
D theory of Majorana fermions propagating in space and
time, whose disorder-averaged spatial correlations and
dynamical scaling exponent are governed by the 2+0-
D replicated CFT, see8 for details. Thus in Fig. 1,
“SO(n)4” really refers to this dynamical hybrid theory,
which can also be expressed as a Wess-Zumino-Novikov-
Witten Finkel’stein nonlinear sigma model (WZNW-
FNLsM)8,10.

The thermal conductivity of the WZNW-FNLsM
receives no quantum interference corrections due to
disorder6,10 at the conformal fixed point. Interaction-
mediated Altshuler-Aronov corrections also vanish to at
least order 1/|ν|, where ν is the bulk winding number.
The absence of Friedel oscillations in any Majorana sur-
face “density” implies that these should be absent to all
orders10. Since the spin-3/2 Majorana surface fluid stud-
ied here realizes the SO(n)4 theory in the presence of
disorder, we conclude that the ratio of the longitudinal
thermal conductivity and temperature is precisely quan-
tized as T → 0 [Eq. (1.2)].
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F. Summary

In summary, we have derived surface states and sur-
face effective Hamiltonian for a spin-3/2 time-reversal
invariant topological superconductor that hosts a cubic
dispersion coexisting with the conventional linear Majo-
rana cone. We have shown that in the clean limit, un-
like the spin-1/2 case30, interactions are marginally rel-
evant and lead to a BCS-type instability that gaps out

the surface and induces a thermal quantum Hall effect
(TQHE) plateau. By contrast, quenched disorder gives
the SO(n)4 theory previously predicted for a spin-1/2
TSC with winding number 4; this theory is stable to in-
teraction effects. We conclude that disorder enhances
topological protection. In the low-temperature limit, the
ratio of the longitudinal thermal conductivity to temper-
ature is predicted to be quantized and proportional to
the bulk winding number, as shown in Eq. (1.2).

III. IDEAL (CLEAN) SURFACE STATES AND INTERACTIONS

A. Derivation of the surface Hamiltonian Eq. (2.9)

1. Luttinger Hamiltonian bulk

To obtain the surface Hamiltonian, we consider a bulk superconductor in the half space z ≥ 0 with hard wall
boundary conditions. We divide Eq. (2.3) into two parts:

ĥ = ĥ0(−i∂z) + ĥ1(k,−i∂z),
ĥ0 = σ̂3

(

−∂2z − µ
)

+ σ̂2
[

∆pŜ
z (−i∂z) + ∆s

]

, (3.1a)

ĥ1 = σ̂3

{

k2 − γ

[

1

2

(

Ŝ+
k+ Ŝ−

k̄

)

+ Ŝz(−i∂z)
]2
}

+ σ̂2∆p

2

(

Ŝ+
k+ Ŝ−

k̄

)

, (3.1b)

where k = {kx,y} is the momentum parallel to the surface, {k, k̄} = kx ∓ iky, and Ŝ
± = Ŝx ± iŜy are spin-3/2 raising

and lowering operators. In Eq. (3.1a), we have added a time-reversal symmetric s-wave pairing term proportional to
∆s. We will utilize this below in the case of vanishing bulk spin-orbit coupling (SOC). Energies like ∆s and µ have
units of 1/(length)2, while ∆p has units of 1/length.
In this subsection we will ignore s-wave pairing (∆s = 0) and we will treat the SOC term proportional to γ as a

small perturbation (although this is not necessary). The surface eigenstates of ĥ0 with zero transverse momentum

satisfy ĥ0|ψ0,ms
〉 = 0 and take the form shown in Eq. (2.6),

ψ0,ms
(z) = fms

(z)

[

1
sgn(ms)

]

|ms〉, fms
(z) =

1
√

Nms

exp

(

−∆p|ms|z
2

)

sin

[

z

√

µ− ∆2
pm

2
s

4

]

. (3.2)

Here the explicit 2-component spinor resides in particle-hole (σ) space; the four zero energy states are distinguished

by their Ŝz eigenvalues ms ∈ {± 3
2 ,± 1

2}. The particle-hole spinor is “locked” to the physical spin, as it points along

the +σ1 (−σ1) direction for positive (negative) ms. The form of the envelope function fms
(z) is appropriate for the

weak pairing limit, (3∆p/4)
2 < µ.

To obtain the effective surface Hamiltonian for nonzero transverse momentum, we diagonalize ĥ1 in the basis of
zero modes given by Eq. (3.2). The only non-vanishing elements obtain from

ĥ1 → σ̂2∆p

2

(

Ŝ+
k+ Ŝ−

k̄

)

− σ̂3 γ

4

[

(Ŝ+)2k2 + (Ŝ−)2k̄2
]

. (3.3)

The first term connects the ±1/2 states, giving the {k, k̄}-linear terms in Eq. (2.9). The second term mixes the
{3/2,−1/2} and {1/2,−3/2} states, giving the {k2, k̄2} terms in Eq. (2.9). The parameter c ∝ −γ/∆p.

2. Vanishing SOC in the bulk

If the SOC parameter γ = 0, then the ±3/2 surface bands remain flat in degenerate perturbation theory. Another
way to get nonzero c in Eq. (2.9) is by incorporating an additional weak s-wave pairing amplitude ∆s, as in Eq. (3.1a).
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Then the zero energy surface eigenstates with vanishing transverse momentum again take the form shown in Eq. (2.6),
but with the modified envelope function

fms
(z) =

1
√

Nms

exp

(

−∆p|ms|z
2

)

sinh

[

z

√

∆2
pm

2
s

4
− µ− i∆s sgn(ms)

]

. (3.4)

Here we assume that 0 < ∆s ≪ ∆2
p (so as to remain in the bulk topological phase with winding number ν = 411).

For convenience, we also assume intermediate strength pairing such that 0 < µ < (∆p/4)
2; in this case there is only

one branch of bulk scattering states.
To obtain the effective surface Hamiltonian for nonzero transverse momentum, we use k·p theory. The matrix

elements of ĥ1 [Eq. (3.1b) with γ = 0] give the {k, k̄}-linear terms in Eq. (2.9), which connect the ms = ±1/2 states.
To connect the ±3/2 states to the former, one has to go to second order. This yields the matrix elements31

−〈ψ0,ms
|ĥ1(k) P̂ ĥ−1

0 P̂ ĥ1(k)|ψ0,m′

s
〉, (3.5)

where P̂ projects out of the degenerate zero mode space. Eq. (3.5) can be expressed using the basis of bulk scattering
states with zero transverse momentum:

〈ψ0,ms
|ĥ1(k) P̂ ĥ−1

0 P̂ ĥ1(k)|ψ0,m′

s
〉 =

∑

m′′

s

∫ ∞

0

dq

εm′′

s
(q)

[

〈ψ0,ms
|ĥ1(k)|ψq,m′′

s
〉〈ψq,m′′

s
|ĥ1(k)|ψ0,m′

s
〉

+ 〈ψ0,ms
|ĥ1(k) σ̂2R̂|ψ∗

q,m′′

s
〉〈ψ∗

q,m′′

s
|σ̂2R̂ ĥ1(k)|ψ0,m′

s
〉

]

, (3.6)

where |ψq,m′′

s
〉 denotes a scattering state with standing wave momentum q (oscillation in the z-direction), Ŝz-eigenvalue

m′′
s , and gapped positive energy eigenvalue εm′′

s
(q), while σ̂2R̂|ψ∗

q,m′′

s
〉 is the (negative energy) particle-hole conjugate

of |ψq,m′′

s
〉. The matrix R̂ was introduced in Eq. (2.5).

The scattering states take the form

ψq,ms
(z) =

1
√

Nq,ms

{

α̂q,ms

[

cos(qz)− e−λq,msz
]

+ β̂q,ms
sin(qz)

}

|ms〉, (3.7)

where α̂q,ms
and β̂q,ms

are 2-component spinors in particle-hole space. The expressions for these and λq,ms
are

unwieldy so we omit them here.
Finally, one computes Eq. (3.6) using Eqs. (2.6), (3.4), and (3.7). This second-order result vanishes for ∆s = 0.

Nonzero c in Eq. (2.9) is symmetry allowed, and thus expected in the generic situation. The simplest way to get it is by
retaining nonzero ∆s in the bound states {|ψ0,ms

〉}, but neglecting it in the scattering states {|ψq,ms
〉} (which become

very complicated for ∆s 6= 0). This gives nonzero terms mixing the {3/2,−1/2} and {1/2,−3/2} states proportional

to k
2 and k̄

2 in ĥS (above and below the diagonal, respectively, consistent with planar rotational invariance). Without
loss of generality, we can take the coefficients to be real and positive since the phases can be removed with a unitary
transformation.

B. Calculation of the surface winding number in Fig. 2

We compute the surface winding number W for the clean, noninteracting Majorana surface fluid perturbed by
time-reversal breaking “mass” terms. The Hamiltonian is

ĥm1,m2(k) ≡ ĥS(k) +m1 τ̂
3 +m2 κ̂

3, (3.8)

where ĥS was defined by Eq. (2.9). The energy bands of ĥm1,m2(k) are gapped for non-zero values of m1,2 unless
m1 = ±m2, in which case a gapless linear Dirac point appears at k = 0.
Since the mass terms break surface time-reversal symmetry [Eq. (2.7)], the surface theory resides in class D6. In

2D, this class can exhibit a thermal quantum Hall effect15–17, where edge states carry a quantized energy current.
The thermal Hall conductivity κxy can be expressed in terms of a winding number W via3,18

κxy =W κ◦, (3.9)

where κ◦ was defined by Eq. (1.1). In terms of the surface Green’s function

Ĝ(ω,k,m1,m2) ≡
[

−i ω 1̂ + ĥm1,m2(k)
]−1

, (3.10)
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FIG. 5: Feynman diagrams for the one-loop vertex corrections.

the winding number is given by5

W (m1,m2) ≡
ǫαβγ

3!(2π)2

∫ ∞

−∞

dω

∫

R2

d2k Tr
[(

Ĝ−1∂αĜ
)(

Ĝ−1∂βĜ
)(

Ĝ−1∂γĜ
)]

, (3.11)

where Tr denotes the trace over spin-3/2 components and α, β, γ ∈ {ω, kx, ky}. Numerical evaluation of Eq. (3.11)
using Eqs. (3.8) and (3.10) leads to the winding number results shown in Fig. 2.

C. Perturbative vertex renormalization

The imaginary time action for the clean, time-reversal invariant, interacting Majorana surface theory implied by
Eqs. (2.9) and (2.12) is given by

S =
1

2

∫

dω d2k

(2π)3
ηT(−ω,−k) M̂ (S)

P

[

−iω + ĥS(k)
]

η(ω,k) +
u

4!

∫

dτ d2r ǫi1i2i3i4 ηi1 ηi2 ηi3 ηi4 , (3.12)

where we have antisymmetrized the four-fermion interaction using the fourth-rank Levi-Civita tensor. Repeated
indices are summed.
To one loop, the bare vertex function evaluates to

(Γ(4))i1i2i3i4 = −u ǫi1i2i3i4 +
u2

2
[ǫi1i2j1j2ǫj3j4i3i4 + ǫi1i3j1j2ǫj3j4i4i2 + ǫi1i4j1j2ǫj3j4i2i3 ]

×
∫

dω d2k

(2π)3

[

ĜM̂ (S)

P

]

j1j3
(ω,k)

[

ĜM̂ (S)

P

]

j4j2
(ω,k), (3.13)

valid in the limit of vanishing external frequencies and momenta. The three double Levi-Civita terms in the square
brackets correspond to the three loop corrections shown in Fig. 5. We emphasize that the sign of each diagram has to
be carefully determined using Wick’s theorem for the Majorana fermion field. The Green’s function Ĝ(ω,k) is given

by Eq. (3.10) with m1 = m2 = 0, while M̂ (S)

P
was defined by Eq. (2.8).

We define

D(ω, k) ≡ c4k8 + 2c2k4ω2 + k2ω2 + ω4

and

Ni1i2i3i4(ω, k) ≡
∫ 2π

0

dφkD
2(ω, k)

[

ĜM̂ (S)

P

]

i1i2
(ω, k, φk)

[

ĜM̂ (S)

P

]

i3i4
(ω, k, φk), (3.14)

where we have switched to polar momentum coordinates k → (k, φk). Next we compute

1

2
[ǫi1i2j1j2ǫj3j4i3i4 + ǫi1i3j1j2ǫj3j4i4i2 + ǫi1i4j1j2ǫj3j4i2i3 ]Nj1j3j4j2(ω ≡ ck2x, k)

= −4c4k10π
[

x2 + c2k2(1 + x2)2
]

ǫi1i2i3i4 . (3.15)

Thus Eq. (3.13) reduces to

(Γ(4))i1i2i3i4 = − ǫi1i2i3i4

{

u + u2
∫ ∞

−∞

dx

∫ Λ

0

dk
(ck3)4c4k10π

23π3

[

x2 + c2k2(1 + x2)2
]

D2(ck2x, k)

}

= − ǫi1i2i3i4

{

u +
u2

4πc
ln
[

√

(2cΛ)2 + 1 + 2cΛ
]

}

, (3.16)

where Λ denotes the ultraviolet momentum cutoff. Taking the limit cΛ ≫ 1 gives Eq. (2.13).
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D. Mean-field theory: surface thermal quantum Hall plateaux

The interaction strength u is enhanced (suppressed) by quantum fluctuations for u > 0 (u < 0) [Eq. (2.14)]. In
Eq. (2.12) and the text following, it is noted that u > 0 is an attractive (repulsive) interaction in the “τ̂3” (“κ̂3”)
channel, where these matrices specify mass terms used to construct the thermal quantum Hall phase diagram shown
in Fig. 2. We therefore expect that spontaneous symmetry breaking due to quantum fluctuations for positive u can
be characterized by an order parameter

M ≡ u

2(1− 2α)

〈

ηT M̂ (S)

P
Λ̂α η

〉

, (3.17)

where

Λ̂α ≡ (1− α)τ̂3 + ακ̂3 (3.18)

and α is a real variational parameter. In terms of Majorana (spin-3/2) components,

1

2
ηT M̂ (S)

P
Λ̂α η = η1η4 + (1 − 2α) η3η2. (3.19)

The interaction in Eq. (2.12) can be written as

H (S)

I = − (1− 2α)

2u

∫

d2r

{

M +

[

u

2(1− 2α)
ηT M̂ (S)

P
Λ̂α η −M

]}2

. (3.20)

The interaction is attractive for u > 0 so long as 0 ≤ α < 1/2. Precisely for α = 1/2, Eq. (3.19) implies that
(

1
2η

T M̂ (S)

P
Λ̂α η

)2

= 0 due to Pauli exclusion (neglecting nontrivial anticommutators). In this case the interaction

cannot be written as the square of the bilinear.
The zero temperature mean-field condensation energy density is given by

∆E(M) = (1 − 2α)
M2

u
− 1

2π

∫ Λ

0

kdk {[ε1(k,M)− ε1(k, 0)] + [ε3(k,M)− ε3(k, 0)]} , (3.21)

where ε1(k,M) and ε3(k,M) denote the linear and cubic surface band energies modified by the addition of the

term M Λ̂α to ĥS in Eq. (2.9); ε1(k, 0) and ε3(k, 0) are the unperturbed, gapless linear and cubic dispersion relations
[Eq. (2.10)].

Setting α = 0 (such that Λ̂α = τ̂3) and extremizing ∆E(M) with respect to M leads to the mean-field result in
Eq. (2.15), valid in the weak coupling limit u≪ c. Since quantum fluctuations enhance positive u and the interaction

is attractive in the Λ̂α channel only for 0 ≤ α < 1/2, we expect that the order is weighted towards τ̂3 instead of κ̂3;
the surface winding number W = +2 throughout this range (Fig. 2).
A curious aspect of Eq. (3.21) is the following. By choosing α arbitrarily close to 1/2, we can suppress the

contribution of the first term on the right-hand side of Eq. (3.21). This allows us to take larger and larger values
for M so as to enhance the negativity of the second term. Yet it cannot be that the system wants to condense with
the bilinear with Λ̂α = (τ̂3 + κ̂3)/2, since the interaction cannot even be written in terms of its square (as discussed
above). This suggests that the true admixture of τ̂3 and κ̂3 order [i.e., the value of α in the expectation value of M
defined by Eq. (3.17)] cannot be determined by mean-field theory. This warrants further investigation, but we will
not pursue it here.

IV. QUENCHED DISORDER

A. The “standard” theory for a disordered class DIII system: thermal metal

Next we comment on the physics of the noninteracting, disordered Majorana surface fluid. Since the spin-3/2 model
with surface Hamiltonian given by Eq. (2.9) has a cubic van Hove singularity, one would naively expect the “standard
program”32 for deriving the effective low-energy field theory in the presence of disorder would apply. The steps in
this program are

1. Write a (replicated) Grassmann path integral in order to compute disorder-averaged products of retarded and
advanced Green’s functions.



11

2. Average over the disorder potentials P1,2(r) in Eq. (2.17) with variance λ.

3. Decouple the four-field term using an unconstrained matrix field Q̂.

4. Integrate out the Grassmann field.

5. Compute the saddle-point configuration of Q̂, the strength of which is the self-consistent Born approximation
for the elastic scattering rate. This should smear out the van Hove singularity in the clean density of states.

6. Perform a gradient expansion and integrate out massive modes to get the nonlinear sigma model for the con-
strained matrix field Q̂ in the appropriate symmetry class. Fluctuations due to quantum interference are
controlled by the (inverse of the) coupling constant G, which is the dimensionless charge, spin, or thermal
longitudinal dc conductance (depending upon the class and context).

For a gapless, 2D class DIII Majorana system as described here, this program was carried out in a nontopological
context in21. The resulting theory has the thermal conductance determined by the bare strength of the disorder
G ∝ 1/λ, and G grows with increasing system size due to weak antilocalization. Although the global density of states
(DoS) diverges and wave functions are weakly multifractal, neither are universal.
Our numerical results in Figs. 3 and 4 instead imply universal behavior in the disorder-averagedDoS and multifractal

spectrum for the spin-3/2 surface Majorana fluid, consistent with the SO(n)4 conformal field theory. Interestingly,
the latter has a sigma model description (non-abelian bosonization) that is almost identical to the one obtained by
the “standard program,” but augmented with a Wess-Zumino-Novikov-Witten term8. Yet the key point is that the
coupling strength is pinned to a special value equal to the winding number 4, times a universal constant. Since the
winding number is not large, the field theory is strongly coupled. This is in part why the standard program fails
in this case. For the spin-1/2 TSC models studied previously7,8,10, a nonperturbative derivation was possible using
conformal embedding theory. This is not possible in the present case, since the clean surface with Hamiltonian given
by Eq. (2.9) is not a conformal field theory (as evidenced by the fact that c has units of length).
Finally, we stress an important technical point. The CFT is an unstable fixed point of the sigma model. In the

absence of interactions, the sigma model is characterized by a single coupling strength λ, which can be understood
as the dimensionless thermal resistance of the system. In the large winding number limit |ν| ≫ 1, it is possible to
compute the beta function for λ, incorporating the WZNW term. The result is10

dλ

dl
= −2λ2

[

1− (|ν|λ)2
]

, (4.1)

valid for λ ≤ |ν|. The CFT has λ = 1/|ν|, and this remains a fixed point to all orders in λ. However, any λ < 1/|ν|
flows to ever smaller λ; this is the signal for weak antilocalization in the thermal metallic phase21. The fact that our
numerical results for the spin-3/2 Majorana surface fluid studied in this work coincide with the SO(n)4 fixed point
implies that the topology “fine tunes” λ to its fixed point value. Since λ is an inverse conductance, it implies the
quantization of the thermal conductivity [Eq. (1.2)], which remains true even when interaction (Altshuler-Aronov)
corrections are taken into account10.

B. Momentum space exact diagonalization

We consider the effective surface Hamiltonian in the presence of the most general form of time-reversal invariant
disorder, as given in Eq. (2.17). For a system of finite size L, the Hamiltonian can be expressed as a sum over discrete
points in momentum space:

H =
1

2

∫

d2r ηT(r) M̂ (S)

P

[

ĥS + τ̂ ·P(r)
]

η(r) =
1

2

∑

n,m

ηT−m
M̂ (S)

P
[ĥ(P)

S
]m,n ηn,

[ĥ(P )

S
]m,n ≡ δm,n ĥS

(

k = 2π
L n

)

+ τ̂ ·P(m−n), (4.2)

with the Fourier conventions

ηn =
1

L

∫

d2r e−i 2π
L

n·r η(r), η(r) =
1

L

∑

n

ei
2π
L

n·r ηn, Pµ,n =
1

L2

∫

d2r e−i 2π
L

n·r Pµ(r), Pµ(r) =
∑

n

ei
2π
L

n·r Pµ,n.

In these equations n ∈ {Z,Z} and the components of Pµ are µ ∈ {1, 2}.



12

For exact diagonalization, we choose a momentum cutoff Nk and keep only those points n in momentum space with
−Nk ≤ ni ≤ Nk, for i = 1, 2. This choice corresponds to an energy cutoff of Λ = 2πNk/L. We also approximate the
Gaussian white noise disorder potentials Pµ,n with random-phase Gaussian amplitude distributions via

Pµ,n ⇒
√
λ

L
exp

(

−π2

L2
ξ2n2 + i θµ,n

)

, (4.3)

where λ is the dimensionless variance of the disorder, ξ is a short-distance correlation length of the order L/Nk, and
θµ,n ∈ [0, 2π) is a uniformly distributed random phase angle. Since Pµ(r) is a real-valued disorder potential, the
phases are taken to satisfy θµ,n = −θµ,−n. The random-phase approach is equivalent to the disorder-average up to

finite-size corrections9. The resulting approximate Hamiltonian [ĥ(P )

S ]m,n is a dense numerical matrix acting on a
4(2Nk +1)2-dimensional Hilbert space that we diagonalize to obtain the energy values and eigenstate wave functions.
In the plots shown in Figs. 3 and 4, we set ξ = 0.25 (L/Nk) and c = 0.078 (L/Nk) (such that 2πNkc/L = 0.49 for

Nk = 40). Our results are robust with respect to variation of the system size Nk, the correlation length ξ, and c. In
our calculations, we have retained Pµ,0 given by Eq. (4.3) with θµ,0 = 0. This represents a nonzero average disorder

strength proportional to
√
λ. The associated matrix bilinears τ̂1,2 break rotational invariance. Thus our numerical

results show good agreement with the CFT even when we incorporate nonzero (but weak) average anisotropy. We
have also performed calculations with Pµ,0 = 0. The results are indistinguishable.
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