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We present a theoretical study of field-induced magnetic phases in the honeycomb Kitaev-
Heisenberg model, which is believed to describe the essential physics of Mott insulators with strong
spin-orbit coupling such as A2IrO3 and α-RuCl3. We obtain rich finite temperature phase dia-
gram in which the competition between the Zeeman coupling and thermal fluctuations gives rise
to both collinear zigzag phases and non-coplanar magnetic orders. Our large-scale classical Monte-
Carlo simulations also unveil intriguing commensurate-incommensurate transitions and multiple-Q
incommensurate phases at high field. Experimental implications are also discussed.

I. INTRODUCTION

Recently, a great interest has emerged in the study of
magnetic properties of 4d and 5d transition metal sys-
tems such as iridates and ruthenates.1 In comparison
with 3d compounds, the iridates and ruthenates have
weaker Coulomb correlations but a much stronger rel-
ativistic spin-orbit coupling. The latter entangles the
spin and orbital degrees of freedom into an effective total
angular moment, which in the case of Ru3+ and Ir4+

is Jeff = 1/2. Notably, the orbital character of the
pseudospin gives rise to highly anisotropic and spatially
dependent exchange interactions. This includes the so-
called Jackeli-Khaliullin-Kitaev (JKK) materials, a fam-
ily of systems in which these magnetic ions occupy sites
with three-fold coordination in a structure with edge-
sharing octahedra.2–4

Significant experimental effort has been devoted to
study JKK materials on the two-dimensional honey-
comb lattice sturture5–20 and on the three-dimensional
trivalent lattice structures in the harmonic honeycomb
family.12–15 The motivation behind this flurry of experi-
mental activity is the possibility of realizing the Kitaev
quantum spin liquid2,3 because these lattice geometries
promote the dominance of the Kitaev interactions be-
tween magnetic moments. The Kitaev model is an ex-
actly solvable quantum spin-1/2 system whose ground
state is a novel quantum spin liquid with fractional-
ized excitations.2 However, it was soon realized that at
sufficiently low temperatures all these compounds order
magnetically rather than exhibiting spin-liquid behav-
ior. These findings suggested the importance of other
subdominant interactions between magnetic moments in
these spin-orbital coupled Mott insulators.21–33 Never-
theless, the aspiration for spin liquid physics in JKK
systems still stands. The new experimental direction is
to investigate the effects of external perturbations, such
as magnetic field,34–36 chemical substitution,37 and pres-
sure.15 For example, recent experiments on α-RuCl3 in
the external magnetic field show the suppression of the
zero-field antiferromagnetic zigzag magnetic order.34–36

The simplest interaction in addition to the Kitaev cou-
pling, which is present in all currently known JKK ma-
terials due to a direct overlap of extended 4d and 5d
orbitals, is the isotropic nearest-neighbor (NN) Heisen-
berg exchange. The frustrated nature of the spin inter-
actions manifests itself in the fact that already the inter-
play of the Kitaev and the Heisenberg interactions in the
so-called Kitaev-Heisenberg (KH) model gives rise to a
very rich phase diagram with many competing magnetic
orders as well as two quantum spin liquids.22 Frustra-
tion also means that the system might be sensitive to ex-
ternal perturbations such as magnetic field.38,39 Indeed,
novel magnetic phases such as fractional magnetization
plateaus40,41 or skyrmion crystals42,43 can be stabilized
by a magnetic field in several highly frustrated magnets.

Recent studies of the KH model in an external mag-
netic field revealed a very rich low-temperature phase di-
agram with a variety of classical phases, including multi-
Q and magnetic vortex states,39 and non-trivial quantum
states, including a topologically ordered quantum state
realized in a narrow region of the parameter space of the
KH model.38 However, the richness and the complexity of
the finite temperature features of the KH phase diagram
have yet to be fully investigated.

In this paper, we discuss field-induced phenomena
in the honeycomb KH model based on a complete
temperature-field phase diagram obtained from our ex-
tensive classical Monte Carlo simulations. We focus
on the fate of the zigzag phase, which is relevant for
Na2IrO3 and α-RuCl3, when the magnetic field is ap-
plied perpendicular to the honeycomb plane, i.e. along
the [111] direction, and the discrete rotational symme-
try of the lattice is preserved. Our main findings are
summarized in the field-temperature H-T phase diagram
of the KH model presented in Fig. 1. In addition
to the low-temperature commensurate phases discussed
in Ref. [39], we have uncovered intriguing discontinu-
ous commensurate-incommensurate transitions and novel
triple-Q incommensurate zigzag states at high magnetic
field. We show that while our findings are reminiscent of
the Z2 vortex crystal one encounters in looking at the tri-
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angular KH model,44,45 which arises from the commensu-
rate 120◦ state through a kind of a nucleation transition,
in our case the origin of the incommensurate zigzag state
is different and is driven partly by entropic selection.

The paper is organized as follows. In section II, we
briefly review the basics of the KH model and discuss the
zero-field ground states of the model. In section III, we
present the main results of this paper. We show that at
low fields and low temperatures the commensurate triple-
Q zigzag state is stabilized by the magnetic field. On the
other hand, thermal fluctuations at finite temperatures
select the collinear single-Q zigzag order. The transition
between these two phases is, therefore, determined by
the competition between the entropic and Zeeman energy
gain. At intermediate field strength, our Monte Carlo
simulations uncover other phase transitions, first into the
partially incommensurate and then into the fully incom-
mensurate zigzag phases. Interestingly, all these low- and
intermediate-field transitions are hidden in the magneti-
zation curves. At high magnetic fields, our Monte Carlo
simulations and the classical instability analysis at the
saturation field show that a

√
3 ×
√

3 order is stabilized
below the saturation field. In section IV, we discuss the
nature of the field induced phase transitions based on the
annealing and heating simulations and present the tem-
perature dependence of the zigzag order parameters. We
conclude in section V. In two appendices, we provide aux-
iliary information, some technical details and derivations.
Specifically, in appendix A, we present a variational cal-
culation for the classical ground states of the KH Hamil-
tonian. In appendix B, we characterize the various zigzag
phases using the nematic order parameter.

II. MODEL

We consider the KH model subject to a magnetic field

H = J
∑
〈ij〉

Si · Sj + 2K
∑
〈ij〉γ

Sγi S
γ
j −H ·

∑
i

Si. (1)

Here γ = x, y, and z denote the three distinct NN bonds
of a honeycomb lattice. The spin quantization axes are
taken along the cubic axes of the IrO6 octahedra. The
first J term is the isotropic Heisenberg exchange, while
the second Kitaev term describes the bond-dependent
Ising coupling between spin components.

Already at zero field, the KH model exhibits several
interesting phases depending on the relative strength of
the two competing terms. A convenient parameterization
is to write J = A cosϕ and K = A sinϕ, where A > 0 is
the overall energy scale of exchange interaction. In addi-
tion to the conventional ferromagnetic and Néel orders,
the classical phase diagram includes two collinear anti-
ferromagnetic (AF) states with spontaneously broken C3

symmetry, called the zigzag and stripy AF orders. Re-
markably, all magnetic phases survive quantum fluctua-
tions and remain stable in the limit of S = 1/2, except

for two small regions of ϕ close to π/2 and 3π/2 where
quantum spin liquids emerge as the ground states.

III. CLASSICAL H-T PHASE DIAGRAM

The zigzag phase, which is our primary interest in
this work, occupies almost a quarter of the phase
space (0.501π . ϕ . 0.9π) of the KH model at T =
H = 0.22 Here we focus on the KH model with parameter
ϕ = 0.7π and employ Monte Carlo simulations to study
the H-T phase diagram. Our extensive simulations result
in an unexpectedly rich phase diagram shown in Fig. 1,
which is dominated by four distinct zigzag phases labeled
by I, II, III, and IV. In addition, a non-collinear
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order is stable in a magnetic field just below the satu-
ration and low temperature regime. The representative
snapshots and the corresponding spin structure factors
of these five ordered phases are shown in Fig. 2. In the
following, we discuss the properties of these phases and
their numerical characterizations.

A. Low field strength: triple-Q zigzag order

We begin with the single-Q zigzag order (phase I),
which is the low-T phase of the KH model at H = 0.
This ordered state is characterized by collinear spins
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FIG. 1: The field-temperature (H-T ) phase diagram of the
KH model with parameter ϕ = 0.7π. Dashed and solid lines
denote first and second-order phase transitions, respectively.
There are five ordered phases at low temperatures. Other
than the
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3 order at high field, the phase diagram is
dominated by four distinct zigzag phases: single-Q canted
zigzag (I), triple-Q commensurate zigzag (II), triple-Q par-
tial incommensurate zigzag (III), and fully incommensurate
3Q zigzag (IV). The corresponding structure factors and spin
snapshots are shown in Fig. 2. T and H are measured in units
of overall exchange energy scale A.
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forming ferromagnetic zigzag chains, which are anti-
collinearly staggered along the direction perpendicular
to the chains; see Fig. 2(a). Importantly, the direc-
tion of collinear spins is locked to the orientation of the
zigzags. There are three degenerate zigzag states that are
related to each other by symmetry; they correspond to
the three staggering wavevectors: Q1,2 = (±π,−π/

√
3),

and Q3 = (0, 2π/
√

3), which are the middle M points
of the Brillouin zone (BZ) edges. The collinear zigzag
phase can be characterized by an Ising order param-
eter φm, which is the odd-parity one-dimensional irre-
ducible representation of the little group corresponding
to wavevector Qm. A general multiple-Q zigzag state is
then described by a pseudo-vector of three Ising param-
eters: φ = (φ1, φ2, φ3). In terms of the triplet order pa-
rameter, the spins in a general zigzag state are expressed
as Sγi = ±φm S exp(iQm · ri); where ± is used for the
two sublattices of honeycomb, and the spin component
γ = x, y, z corresponds to m = 1, 2, 3, respectively.

In the framework of the Ginzburg-Landau theory, the
transition into the zigzag phase is described by a free-
energy expansion in terms of the pseudo-vector order pa-
rameter φ. Up to quartic order, it reads:

F = r|φ|2 + u|φ|4 + g φ1φ2φ3 + v
∑
m 6=n

φ2
mφ

2
n. (2)

While this free energy respects the C3 symmetry of the
KH model, the first two terms actually preserve a O(3)
rotational symmetry of the pseudo-vector φ, indicating
an emergent continuous degeneracy of the zigzag states.
Indeed, explicit calculation shows that all multiple-Q
zigzag states satisfying |φ| = constant are degenerate at
the mean-field level.21,32

This accidental degeneracy is lifted by the cubic g and
quartic v terms of Eq. (2). In the absence of magnetic
field, the cubic term is not allowed by time-reversal sym-
metry. On the other hand, thermal and quantum fluc-
tuations select the collinear single-Q zigzag order.46,47

This order-by-disorder phenomenon indicates a repulsive
interaction, v ∼ v0 + v1T , with v0,1 > 0; the two terms
correspond to quantum and thermal contributions, re-
spectively. On the other hand, a finite g is allowed when
time-reversal symmetry is explicitly broken by a mag-
netic field. This cubic interaction term favors a zigzag
order with coexisting φm, irrespective of the sign of g.

Physically, the accidental continuous degeneracy of the
zigzag states results from the frustrated exchange inter-
actions of the KH model. It also indicates that the phase
might be very sensitive to magnetic field. Here we em-
ploy large-scale Monte Carlo simulations to investigate
the thermodynamic phases induced by the external field
along the [111] direction. Our Monte Carlo simulations
indeed find a triple-Q zigzag order (phase II) that is fa-
vored by the cubic term in a large portion of the phase
diagram; see Fig. 1. The spin configuration of the triple-
Q zigzag corresponding to a pseudo-vector φ ∝ (1, 1, 1)
is shown in Fig. 2(b). The three spin components partic-
ipate in ordering along different zigzag directions char-

acterized by the three wavevectors Qm, giving rise to a
non-coplanar magnetic structure. Our variational calcu-
lations (see Appendix A) based on a quadrupled unit cell,
which encompasses general zigzag patterns, also verifies
that the triple-Q zigzag state is energetically favored by
any finite H.

The transition between phases I and II results from
the competition between the v and g terms in F , i.e.,
between the entropic selection and the Zeeman energy
gain. As the system crosses this phase boundary from the
low field side, the broken C3 symmetry of phase I is re-
stored. Interestingly, this phase transition has almost no
noticeable effects on the magnetization curve, as shown
in Fig. 3(a). It is clearly seen that the magnetization in-
creases smoothly withH in the small to intermediate field
regime. On the other hand, the field dependence of the
zigzag order amplitude |φ|, shown in Fig. 3(b), exhibits a
small kink and a conspicuous drop at intermediate fields,
respectively, indicating hidden phase transitions in the
seemingly linear magnetization curves.

To distinguish the various zigzag orders and particu-
larly to quantify the broken C3 symmetry, we introduce
a doublet order parameter ζ with components:

ζ1 = (φ2
1 + φ2

2 − 2φ2
3)/
√

6, ζ2 = (φ2
1 − φ2

2)/
√

2, (3)

which characterizes the disparity of the three zigzag pat-
terns. Physically, a nonzero ζ corresponds to a spon-
taneously broken C3 symmetry. As discussed above,
thermal fluctuations at zero field select one of the three
collinear zigzag orders, giving rise to a large |ζ|, while
the doublet parameter vanishes in the symmetric triple-
Q zigzag phase at low temperatures. Indeed, as shown
in Fig. 3(c), the amplitude of the doublet order param-
eter decreases with increasing field strength, signaling a
transition into a more symmetric zigzag phase.

B. Intermediate field strength: novel
commensurate-incommensurate transitions

At intermediate field strength, our Monte Carlo simu-
lations uncover another phase transition hidden in the
seemingly smooth magnetization curve. As shown in
Fig. 3(b) and (c), both order parameters φ and ζ exhibit
a pronounced discontinuity at H ∼ 0.8 for temperatures
T . 0.02. In particular, the sudden increase of |ζ| indi-
cates that the C3 symmetry is again broken when crossing
this first-order transition from the low-field side. Detailed
examinations show that this new zigzag order (phase III
in Fig. 1) is a novel partially incommensurate (IC) phase.
Its spin structure factor, shown in Fig. 2(c), exhibits four
peaks at IC wavevectors close to the M points, along with
two larger peaks remaining at the midpoints of the BZ
edges.

A particular IC zigzag order can be understood as
the corresponding order parameter acquiring a long-
wavelength modulation, i.e. φm(r) ∼ cos(km · r + θ0),
where θ0 is a constant phase, km = εQm is parallel to the
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(a) (e)(d)(c)(b)

FIG. 2: Magnetic phases in the honeycomb KH model. Top row shows the spin structure factors obtained from simulations at
T = 0.005; Corresponding snapshots of the spin configurations are shown in the bottom row. The three spin components are
shown here with red, green, and blue colors. The five phases shown here are (a) single-Q collinear zigzag order (H = 0.016),
(b) commensurate triple-Q non-coplanar zigzag (H = 0.48), (c) coexistence of commensurate and incommensurate triple-Q
zigzag phase (H = 1.02), (d) incommensurate triple-Q zigzag phase (H = 1.34), and (e)

√
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3 order (H = 1.4). T and H
are measured in units of A.

corresponding zigzag wavevector and ε � 1. The corre-
sponding spin component thus has a spatial dependence:
Sγi ∼ eiQm·ri cos(km ·ri+θ0). In momentum space, since
Qm ≡ −Qm up to a reciprocal lattice vector, the single
peak at the original commensurate M point splits into
two IC peaks at (1± ε)Qm.

In phase III, two of the zigzag order parameters, say
φ1 and φ2, undergo this modulation instability while the
third one φ3 remains commensurate. This asymmetry is
responsible for the broken C3 symmetry. In real space,
this phase exhibits a stripy superstructure on top of the
underlying zigzag pattern. As the field is further in-
creased, the remaining commensurate zigzag parameter
also undergoes a C-IC transition, giving rise to a fully
IC state corresponding to phase IV in Fig. 1. As shown
in Fig. 2(d), the structure factor of this fully IC zigzag
exhibits six peaks at momenta that are close to the M
points, but inside the BZ. This second C-IC transition is
also marked by the decrease of the ζ parameter, hence
partially restoring the C3 symmetry of the system; see
Fig. 3(c).

The observed C-IC transitions might be partially
driven by entropic selection. Since thermal fluctuations
tend to favor collinear spin configurations, one of the rea-
sons behind the stabilization of the IC order can be due to
the increase of spin collinearity. In Appendix B we char-
acterize various zigzag phases using the nematic order
parameter. Indeed, we find that the IC zigzag state has
a larger value of the nematic order than in the triple-Q
zigzag phase. Phenomenologically, these two C-IC tran-
sitions result from the softening of the gradient terms of
the zigzag order parameters. We can again understand
the nature of these two transitions from the Ginzburg-
Landau formalism. For convenience, we introduce a

triplet of order parameters ξ = (ξ1, ξ2, ξ3) which mea-
sure the incommensurability of the corresponding zigzag
ordering. More specifically, we define ξm = Q̂m · ∇φm.
Note that modulations of φm that are perpendicular to
Qm are not considered here, since they are not observed
in our simulations. Up to the sixth-order, the free-energy
of the gradient terms reads

Fgrad = a|ξ|2 + b|ξ|4 + c|ξ|6 + d
∑
m6=n

ξ2
mξ

2
n + e ξ2

1 ξ
2
2 ξ

2
3 . (4)

Interestingly, the conventional scenario in which the IC
phase is caused by the softening of the stiffness constant
a→ 0 would lead to a continuous phase transition in the
Landau theory. Moreover, the quartic interaction term
will immediately select a zigzag state with either a single
IC zigzag (d > 0) or a fully IC zigzag (d < 0). These
results are inconsistent with our numerical simulations.
Instead, the observed discontinuous C-IC transitions can
be attributed to a negative quartic term b < 0 while a
remains positive throughout the transitions, a scenario
similar to the first-order transition close to a tricritical
point.48 Here a sixth-order term with c > 0 is required
for stability of the system.

The first three terms preserve a pseudo-O(3) rotational
symmetry of the modulation parameters ξ. Similar to the
free-energy in Eq. (2), this symmetry indicates a contin-
uous degeneracy of IC zigzag orders. The exact IC order
is determined by the interactions among the ξm parame-
ters, which are represented by the last two terms in Fgrad.
A dominant e > 0, corresponding to a strong repulsion
between the modulation parameters, favors the partially
IC phase III in which one of the three ξm is zero. On
the other hand, a large attractive interaction among the
modulations ξm, represented by a d < 0 term, would
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FIG. 3: Monte Carlo simulations of KH model subject to a
magnetic field along the [111] symmetric direction. (a) Mag-
netization projected onto the field direction as a function of
H for varying temperatures. (b) Amplitude of zigzag order
parameter φ = |φ| (left axis) and the

√
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3 order parame-
ter ψ (right axis) versus field strength. (c) Field dependence
of the order parameter ζ = |ζ| characterizing the disparity of
the three zigzags. Both temperature T and field strength H
are in units of the exchange energy scale A. The simulations
are performed on the KH model with parameter ϕ = 0.7π,
where single-Q collinear zigzag order is the ground state. The
number of spins is Ns = 2× 602.

drive the system into a fully IC state with restored C3

symmetry.

C. High field strength:
√

3×
√

3 magnetic ordering

At large magnetic field, the IC zigzag phase is con-
nected to a

√
3×
√

3 order through a first-order transition,
which manifests itself in the huge jump in magnetization
at H ∼ 1.35 at low temperatures (see Fig. 3(a)). This
phase is characterized by a Bragg peak at the K point of

the BZ, which also serves as the relevant order parame-
ter. A clear jump of the

√
3×
√

3 order parameter ψ can
be seen in Fig. 3(b).

To verify our numerical results for high values of mag-
netic field, here we perform an explicit stability analysis
of the fully polarized state. Specifically, we search for
the most unstable normal mode of the KH Hamiltonian
in a magnetic field. In a large field limit, all spins are
polarized: Si = S n̂, where n̂ = ê[111] is a unit vector
pointing along the [111] direction. For convenience, we
will set S = 1 in the following discussion. We next in-
troduce two unit vectors êa = (êx + êy − 2êz)/

√
6 and

êb = (êy− êx)/
√

2, where êx,y,z are unit vectors pointing
along the three cubic axes. The three vectors êa, êb and
n̂ form an orthonormal basis.

As the field is decreased, the spins start to deviate from
the n̂ direction. We next introduce a two-component
vector σi = (σai , σ

b
i ) and write the spin field as

Si =
√

1− |σi|2 n̂ + σai êa + σbi êb. (5)

It is then easy to see that the individual spin component
can be expressed as

Sγi =
1√
3

√
1− |σi|2 +

√
2

3
σi · tγ , (6)

where tx = ( 1
2 ,
−
√

3
2 ), ty = ( 1

2 ,
√

3
2 ), and tz = (−1, 0) are

the lattice vectors ( see Fig. 4). Using this expression, we
expand the spin interaction term Sγi S

γ
j to second order

in σ:

Sγi S
γ
j =

1

3

(
1− |σi|

2

2
− |σj |

2

2

)
(7)

+

√
2

3
tγ · (σi + σj) +

2

3
(σi · tγ)(σj · tγ),

In particular, the isotropic Heisenberg exchange interac-
tion Si · Sj =

∑
γ S

γ
i S

γ
j becomes

Si · Sj =

(
1− |σi|

2

2
− |σj |

2

2

)
+ σi · σj . (8)

Substituting these expressions into the KH Hamilto-
nian, we obtain

H = E0 +
1

2
(H − 3J − 2K)

∑
i

|σi|2 (9)

+J
∑
〈ij〉

σi · σj +
4K

3

∑
〈ij〉γ

(σi · tγ)(σj · tγ).

where E0 = (3J + 2K)N − 2HN , and N is the number
of unit cells of the honeycomb lattice. The terms lin-
ear in σ in Eq. (7) cancel each other in the lattice sum.
We note that the Hamiltonian Eq. (9) can serve as a
starting point for the quantum mechanical treatment of

the magnon condensation. The spin “deviations” σa,bi are
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FIG. 4: The honeycomb lattice with three types of nearest

neighbor bonds. Here tx = ( 1
2
, −
√

3
2

), ty = ( 1
2
,
√
3

2
) are two

primitive translations. Extended magnetic unit cells used in
our variational calculation of the KH model. The quadrupled
unit cell (yellow shaded sites) corresponding to the general
ordering composed of three wavevecotrs Q1 = (−π,−π/

√
3),

Q2 = (0, 2π/
√

3), and Q3 = (+π,−π/
√

3). The tripled unit
cell (green shaded sites), on the other hand, describes the√

3×
√

3 type ordering with a wavevector K = (4π/3, 0).

now quantum operators satisfying the commutation rela-
tions [σai , σ

a
j ] = [σbi , σ

b
j ] = 0, and [σai , σ

b
j ] = iSδij . In fact,

the Holstein-Primakoff boson operators are expressed as
ai = (σai +iσbi )/

√
2S. The magnon bandstructure is then

obtained by diagonalizing the resultant magnon Hamil-
tonian using the Bogoliubov transformation. Magnetic
instability occurs when one of the magnon bands touches
zero as the field strength is decreased.

Here we treat the spin deviations σi as classical vari-
ables and simply analyze the eigenmodes of the corre-
sponding classical Hamiltonian. In particular, this classi-
cal instability analysis provides a direct comparison with
our classical Monte Carlo simulations. To this end, we in-
troduce Fourier transformation σi = 1√

N

∑
k σs(k)eik·ri

to diagonalize the quadratic Hamiltonian Eq. (9). Here
each site i = (r, s) is labeled by the Bravais lattice point r
and the sublattice index s = 1, 2, ri = r+ds is the actual
physical position of site-i, r = n1t

x + n2t
y are Bravais

lattice points, and d1 = (0, 0) and d2 = dz = (0, 1√
3
) are

basis vectors for the two sublattices. The lattice geome-
try is shown in Fig. 4.

Substituting the Fourier expansion into Eq. (9), the
spin Hamiltonian becomes

H = E0 +
∑
k

U∗k ·Hk · Uk (10)

where the 4-component vector Uk = [σa1k, σ
b
1k, σ

a
2k, σ

b
2k].

The interaction matrix Hk has the following form:

Hk =


εH 0 fk + gaak gabk
0 εH gabk fk + gbbk

f−k + gaa−k gab−k εH 0
gab−k f−k + gbb−k 0 εH

 .(11)

The matrix elements are

εH =
1

2
(H − 3J − 2K), (12)

fk = =
J

2

(
eik·dx + eik·dy + eik·dz

)
, (13)

gaak =
K

6

(
eik·dx + eik·dy + 4eik·dz

)
, (14)

gbbk =
K

2

(
eik·dx + eik·dy

)
, (15)

gabk = − K

2
√

3

(
eik·dx − eik·dy

)
. (16)

Here the three vectors dx,y = (± 1
2 ,
−1
2
√

3
), and dz =

(0, 1√
3
) connect nearest-neighbors in honeycomb lattice.

As the field strength H is reduced, the magnetic insta-
bility starts at the k∗ points at which λmin(k∗) touches
zero; here λmin(k) is the smallest eigenvalue of the matrix
H(k). Figure. 5 shows the contour plot of λmin(k) in k-
space. As can be seen, the function λmin(k) has minima
at the K points, indicating that the instability will take
place at the corner of the Brillouin zone. The resultant√

3×
√

3 magnetic ordering is consistent with our Monte
Carlo simulation results at high field.

IV. TEMPERATURE DEPENDENCE AND
HYSTERESIS

Here we present the temperature dependence of the
zigzag order parameter φ and ζ computed from anneal-
ing and heating simulations. At small field, as shown in

FIG. 5: Contour plot of the minimum eigenvalue of H(k),
showing minimum at the K points QK = ( 4π

3
, 0).
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Fig. 6(a) for H = 0.2, the zigzag order parameter φ in-
creases monotonically as temperature is lowered. On the
other hand, the amplitude of the doublet order parameter
ζ, which characterizes the disparity of the three zigzag
Ising parameters φm, shows a non-monotonic tempera-
ture dependence; see Fig. 6(b). As discussed in section
III A, the doublet order parameter vanishes identically
in a perfect triple-Q zigzag state, while ζ = |ζ| reaches
its maximum value in a single-Q zigzag. The re-entrant
behavior shown in Fig. 6(b) thus corresponds to an in-
termediate single-Q zigzag phase that is stabilized by
thermal fluctuations at finite temperatures. The absence
of hysteresis from the annealing and heating simulations
points to a continuous transition between the single and
triple Q zigzag phases.

At high field H = 0.92, annealing simulation from a
disordered state shows a monotonic growth for both or-
der parameters φ and ζ with decreasing temperature;
see Fig. 6(c) and (d). From the H-T phase diagram
shown in Fig. 1, there are two low-T zigzag phases at
this field value: the single-Q commensurate phase I and
the partially incommensurate phase III at lowest tem-
peratures. Since the C3 symmetry is broken in both
phases, the ζ order parameter describing the disparity of
the three zigzag chains is nonzero throughout the low-
T ordered regime. Interestingly, our simulations also
find that the incommensurate zigzag phase III coexists
with the commensurate triple-Q zigzag II state over a
wide range of temperatures, as demonstrated by the pro-
nounced hysteresis loop from the annealing and heating
simulations shown in Fig. 6(c) and (d). In the heating
simulations, the spins are initialized to the commensu-
rate triple-Q zigzag state obtained from the variational
minimization discussed above. At zero temperature, this
triple-Q phase with three coexisting zigzag Ising order
parameters φ1 = φ2 = φ3 is characterized by a vanishing
ζ. As T increases, we find that the triple-Q state is a very
robust local minimum and remains stable until T ∼ 0.1,
above which the system decays spontaneously into the
partially incommensurate zigzag phase III as indicated
by a sudden increase of the ζ order parameter.

V. CONCLUSION

To summarize, we have investigated the finite temper-
ature phase diagram of the KH model subject to a mag-
netic field. Our extensive Monte Carlo simulations have
uncovered several novel zigzag orders and phase tran-
sitions. Of particular interest is the existence of two in-
triguing IC zigzag orderings at intermediate to large field
regime. Interestingly, these unusual zigzag states are
completely hidden in the magnetization measurement,
which shows a smooth growth of the magnetic moment
with increasing field. These intriguing IC zigzags might
be identified in high-field µSR experiments which provide
a powerful means of measuring the internal magnetic field
distribution caused by the presence of the peculiar field
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FIG. 6: Temperature dependence of order parameters φ = |φ|
and ζ = |ζ| from annealing and heating simulations. Panels
(a) and (b) are obtained with H = 0.2, while (c) and (d) are
obtained with H = 0.96.

texture. The C-IC transition could be observed experi-
mentally using inelastic neutron scattering techniques.

One last and yet very important question to address
is the relevance of the obtained results to the real ma-
terials. Although zigzag phases have been detected in
Na2IrO3 and α-RuCl3, the spin Hamiltonian of both
compounds remains uncertain, and it probably involves
both other anisotropic interactions and further neighbor
isotropic couplings.25,28,30,32,33,49,50 In particular, the NN
off-diagonal exchange Γ may play an important role in
both Na2IrO3 and α-RuCl3, e.g. in fixing the global di-
rections of the spins in the zigzag state at zero field.32 Al-
though the effects of a magnetic field in these more realis-
tic models have yet to be investigated in detail, given the
frustrated nature of spin interactions in such spin-orbit
Mott insulators, we expect similar field-induced phases
to occur in real materials, which is left for future studies.
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Appendix A: Variational ground states

In this appendix, we present a variational calculation
for the classical ground states of the KH Hamiltonian.
We consider magnetic structures with both a quadru-
pled unit cell and a tripled unit cell as our ansatz; see
Fig. 4. In the former case, the 8-site spin structure in-
cludes the simple ferromagnetic and Néel orders with
Q0 = 0, as well as the general zigzag and stripe or-
ders characterized by wavevectors Q1 = (−π,−π/

√
3),

Q2 = (0, 2π/
√

3), and Q3 = (+π,−π/
√

3). As dis-
cussed in the previous section, magnetic instability from
the saturated state starts at the K = (4π/3, 0) points
of the BZ. The corresponding eigen-mode belongs to the
class of magnetic states with a tripled unit cell contain-
ing 6 inequivalent spins. In both cases, each spin in
the extended unit cell is parameterized by two angles:
Si = S(sinβi cosαi, sinβi sinαi, cosβi). The total varia-
tional energy Evar({αi, βi}), which is a function of these
angle variables, is then minimized to obtain the varia-
tional ground states.

Next we discuss the characterization of the minimum-
energy solution in the quadrupled unit cell. We first de-
fine vector order parameters that correspond to wavevec-
tor Q0 and the three Qm (m = 1, 2, 3) at the M -points of
the BZ. By labelling the 8 inequivalent sites according to
Fig. 4, these vector order parameters are basically linear
transformations of the eight spins {Si}:

M = 1
8 (S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8),

L = 1
8 (S1 − S2 + S3 − S4 + S5 − S6 + S7 − S8),

N1 = 1
8 (S1 − S2 − S3 + S4 + S5 − S6 − S7 + S8),

N2 = 1
8 (S1 + S2 − S3 − S4 − S5 − S6 + S7 + S8),

N3 = 1
8 (S1 − S2 + S3 − S4 − S5 + S6 − S7 + S8),(A1)

R1 = 1
8 (S1 + S2 − S3 − S4 + S5 + S6 − S7 − S8),

R2 = 1
8 (S1 − S2 − S3 + S4 − S5 + S6 + S7 − S8),

R3 = 1
8 (S1 + S2 + S3 + S4 − S5 − S6 − S7 − S8).

Here the Q0 = 0 part includes M, which is the simple
ferromagnetic order, and L which describes the stagger-
ing of sublattice magnetization. The vectors Nm charac-
terize the odd-parity zigzag order with wavevectors Qm.
And finally, the even-parity combinations corresponding
to the stripe order are given by the three vector parame-
ters Rm. For spin Hamiltonians that preserve the SU(2)
or O(3) spin rotational symmetry, or if the spin rotations
are decoupled from the real-space symmetry operations,
these vectors are the appropriate order parameters for
the characterization of the magnetically ordered states.

However, the presence of the anisotropic Kitaev term
in the KH Hamiltonian explicitly breaks the spin rota-
tional symmetry, and only generalized symmetry opera-
tions that involve discrete rotations in both spatial and
spin spaces are preserved. For example, permutations of
the three vector parameters Nm (by the C3 rotations)
must be accompanied by the corresponding rotation in

FIG. 7: Variational ground-state calculation of KH model at
ϕ = 0.7π in the magnetic field along the [111] direction : (a)
Magnetization given by the ferromagnetic order parameter m
as a function of field strength. Also shown for comparison
is the magnetization curve obtained from Monte Carlo sim-
ulations at a temperature T = 0.005. (b) The amplitude of
the various order parameters defined in Eqs. (A2) and (A5)
versus H. T and H are measured in units of A.

spin space. Consequently, instead of the vector parame-
ters listed above, the proper order parameters are given
by the irreducible representations of the group of com-
bined symmetry operations. For instance, as discussed in
the main text, a multiple-Q zigzag order is characterized
by a triplet of Ising parameters φ = (φ1, φ2, φ3). Simi-
larly, a multiple-Q stripe order is described by a triplet
η = (η1, η2, η3). In terms of these Ising order parameters,
the corresponding vector parameters are Nm = φm êγ
and Rm = ηm êγ . Here m = 1, 2, 3 corresponds to
γ = x, y, z. Our direct numerical minimization finds
that combined C3 symmetry is preserved in the varia-
tional ground states in the parameter regime of our in-
terest. As a result, for example, the symmetric zigzag
order with φ1 = φ2 = φ3 is specified by only one scalar
parameter.

In the limit of H → 0, the only nonzero order param-
eters are the three vectors Nm while all other vectors
vanish. The magnetic field not only induces a finite mag-
netization M, but also generates other small secondary
order parameters due to the hard constraint of fixed spin
length |Si| = S. Through our direct numerical minimiza-
tion, we find that the variational ground state of the KH
model can be described by six scalar parameters m, `, φ,
φ̄, η, and η̄:

M = m (êx + êy + êz)/
√

3,
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L = ` (êx + êy + êz)/
√

3,

N1 = φ êx/
√

3 + φ̄ (êy + êz)/
√

6,

N2 = φ êy/
√

3 + φ̄ (êz + êx)/
√

6,

N3 = φ êz/
√

3 + φ̄ (êx + êy)/
√

6, (A2)

R1 = η (êy + êz)/
√

6 + η̄ êx/
√

3,

R2 = η (êz + êx)/
√

6 + η̄ êy/
√

3,

R3 = η (êx + êy)/
√

6 + η̄ êz/
√

3,

With these variational parameterization, the energy den-
sity of the 8-site spin structure is

ε = −Hm− 1

2
(3J + 2K)(`2 −m2)

+
J

2

(
φ2 + φ̄2 − η2 − η̄2

)
(A3)

−K
(
φ2 − φ̄2 + η2 − η̄2

)
.

The two exchange terms of the KH Hamiltonian are pa-
rameterized as J = A cosϕ, and K = A sinϕ. For a
strong antiferromagnetic Kitaev interaction (K > 0), as
in the case of KH parameter ϕ = 0.7π, the two domi-
nant orderings are zigzag order characterized by φ and
the stripe order characterized by η. The zigzag pattern is
further favored by a ferromagnetic Heisenberg term with
J < 0, again as in the case of ϕ = 0.7π. Indeed, as shown
in Fig. 7, a significant stripe order η appears at high field
in addition to the dominant zigzag order φ. Finally, we
note that the Néel order ` and φ̄, η̄ are secondary param-
eters with small amplitude.

We next turn to the characterization of the magnetic
structure with tripled unit cell. Other than the usual fer-
romagnetic M and Néel order L, we are most interested
in the order parameter corresponding to the

√
3 ×
√

3
type pattern. This long-range order is characterized by
a wavevector K = (4π/3, 0). For convenience, we define
ω = exp(iK ·tx) = exp(i 2π/3). Using the labeling of the
six inequivalent spins in Fig. 4, the appropriate vector
order parameters are then given by

V1 = 1
3 (S1 + ω S3 + ω2 S5),

V2 = 1
3 (S2 + ω S4 + ω2 S6). (A4)

Here the subscript 1, 2 refers to the two sublattices of
the honeycomb lattice. Consistent with the linear sta-
bility analysis discussed in the previous section, we find
that the

√
3 ×
√

3 structure indeed has a lower energy
compared with the general 8-site ansatz in the high field
regime. Moreover, our direct minimization shows that
the
√

3 ×
√

3 order can be characterized by a complex
order parameter ψ as follows:

V1 = +ψ (êx + ω êy + ω2 êz),

V2 = −ψ (ω2êx + ω êy + êz), (A5)

where the phase of ψ is field dependent. Fig. 7 summa-
rizes our numerical calculation of the variational ground

states. Other than the fully polarized state at high field,
there are two nontrivial ordered states separated by a
first-order phase transition at Hc ∼ 1.37. The low-field
phase is the symmetric triple-Q order with a dominant
zigzag order parameter φ. While the only nonzero order
at H → 0 is given by φ = 1, all other order parameters
are induced by the magnetic field and grow gradually
with increasing H. Interestingly, a small Néel order is
generated by the field. Moreover, the stripe order charac-
terized by η becomes quite significant in the intermediate
field regime. For field strength above Hc, all order pa-
rameters related to three Qγ wavevectors suddenly drop
to zero. The high-field ground state corresponds to a
finite ψ, indicating the

√
3×
√

3 type long-range order.
We note that the variational ground states are consis-

tent with the Monte Carlo simulations for regimes where
the ground state is the commensurate triple-Q zigzag
(small H), and the

√
3 ×
√

3 order (large H). The two
methods give very consistent values for the Hc of the
first-order transition and the saturation field; see the
comparison in Fig. 7(a). However, since the variational
calculation is restricted to commensurate unit cells, it
cannot address the commensurate-incommensurate tran-
sitions and the novel incommensurate zigzag orders ob-
served in Monte Carlo simulations. The variational ap-
proach, nonetheless, provides a guideline of the underly-
ing energetics and serves as a useful double check for the
large-scale simulations.

The triple-Q zigzag order has an interesting canting
pattern shown in the animation Canting.gif attached
in the supplementary material. At H = 0, the eight
inequivalent spins point in the eight symmetry-related
〈111〉 directions. As H is increased, the two spins point-
ing along [111] and [1̄1̄1̄], are completely unaffected by
the field. The other six spins cant towards the direc-
tion of the field, with the canting angle increasing as a
function of the field magnitude. At intermediate field,
this canted triple-Q zigzag gives way to the incommen-
surate zigzag orders, phases III and IV discussed in the
main text. As discussed above, the variational calcula-
tion based on 8-sublattice unit cell cannot describe the
corresponding C-IC transitions. Finally, at high enough
magnetic field it is no longer energetically favorable to
keep one spin in the direction opposite of the field and
the results of the calculation revert back to single-Q com-
mensurate zigzag phase with canted spins from our vari-
ational calculation. However, it should be noted that
this high-field two-sublattice zigzag is only a metastable
state. As shown in Fig. 7, the six-sublattice

√
3 ×
√

3
order is the ground state in the field regime immediately
below the saturation field.

Appendix B: Nematic order

In this appendix, we characterize the various zigzag
phases using the nematic order parameter. The nematic
phase of liquid crystals is marked by a preferred direc-
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FIG. 8: Field dependence of the uniaxial nematic order pa-
rameter λQ at various temperatures. The arrows indicate
the small jumps of λQ at the commensurate-incommensurate
phase transitions. T and H are measured in units of A.

tion of the molecules. While ordered magnetic phases
such as ferromagnetic or Néel order give rise to a nonzero
nematic order parameter, an intriguing possibility is a
phase which breaks the rotational symmetry while pre-
serving the time-reversal symmetry. Such a spin nematic
phase has been discussed in several quantum and frus-
trated magnetic systems. Here we are interested in the
so-called uniaxial order parameter as a measure of the
collinearity of spins. Specifically, we first compute the
second-rank tensor order parameter:

Qαβ =
3

2
〈Sα Sβ〉 − 1

2
δαβ , (B1)

where Sα is the α component of spin. The uniaxial order
parameter λQ is then given by the largest eigenvalue of
a 3 × 3 matrix whose elements correspond to the above
second-rank tensor. A full collinear spin configuration,
e.g., a ferromagnetic or Néel order, is characterized by a
maximum λQ = 1, while a completely disordered state
has a vanishing uniaxial order parameter.

Fig. 8 shows the field dependence of the uniaxial or-
der parameter λQ obtained from our Monte Carlo sim-
ulations for three different temperatures. As discussed
in the main text, the low-temperature phase at small
field is the collinear single-Q zigzag state. A rather large
λQ ≈ 1 in this regime is consistent with this conclusion.
As H is increased, the transition into the triple-Q zigzag
phase is marked by a pronounced drop of the uniaxial
order parameter as demonstrated in Fig. 8. In fact, the
second-rank tensor Qαβ vanishes identically in a perfect
triple-Q zigzag state. As the field strength is further
increased, the tilting of spins toward the [111] direction
gradually increases the uniaxial parameter. Interestingly,
λQ exhibits small jumps at the two C-IC transitions, i.e.
from zigzag phase II to III and from III to IV. Since
thermal fluctuations tend to favor collinear spin config-
urations, the observed jumps of λQ imply that the C-IC
transitions might be partially driven by entropic selec-
tion. Finally, the transition from the zigzag phase IV to
the
√

3 ×
√

3 order at Hc ∼ 1.37 is accompanied by a
pronounced increase of the uniaxial order parameter.
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