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We present an exactly solvable model of a quantum spin liquid with Abelian anyons in d = 2
spatial dimensions. With spins 1/2 on a triangular lattice and six-body interactions, our model
has zero spin correlation length and localized elementary excitations like the toric codes of Kitaev
and Wen. In contrast to those earlier models, it has more elementary particles—4 bosons and 3
fermions—and higher topological degeneracy of 64 on a torus. Elementary excitations are boson-
fermion pairs that come in 12 distinct flavors. We use string operators to expose the topological
nature of the model.

I. INTRODUCTION

Quantum spin liquids (QSLs) have become a major
focus point in magnetism research. Introduced in 1973
by Anderson as “a fluid of mobile valence bonds”1, a
QSL was initially seen as a result of a disruption of long-
range magnetic order by strong quantum fluctuations. In
d = 1 spatial dimension, long-range order is disrupted in
(almost) any magnet with a continuous global symme-
try. Solvable models of QSLs in d = 1 abound, including
S = 1/2 and S = 1 antiferromagnetic chains2,3, and so
do their experimental realizations. It was later realized
that, in the absence of a spontaneously broken continu-
ous symmetry, elementary excitations in a QSL may be
quite different from the familiar magnons of the ordered
state and may carry fractional spin 1/24. Fractionaliza-
tion of elementary excitations in a S = 1/2 Heisenberg
chain has been confirmed by inelastic neutron scattering,
which transfers spin 1 to the magnet and creates two or
more elementary excitations, thereby yielding a contin-
uum of energies for a given momentum5,6.

In higher dimensions, d ≥ 2, solvable models of QSLs
are harder to come by. For a long time, clues about
the nature of higher-dimensional QSLs came from ap-
proximate solutions based on slave-particle approaches,
in which quasiparticles with fractional spin are smuggled
in at the very beginning7,8. These approximate solutions
brought an important insight that QSLs in higher di-
mensions may be closely related to lattice gauge theories.
This connection revealed the presence of a subtle topolog-
ical order in QSLs9 that arises from long-range quantum
entanglement of spins and endows the elementary exci-
tations of the system with anyon quantum statistics10.

These conjectures were confirmed with the advent of
exactly solvable models of QSLs in d = 2 dimensions.
The first of those were spin-1/2 “toric-code” models on a
square lattice of Kitaev 11 and Wen 12 . Kitaev’s model is
in essence a Z2 gauge theory; its elementary excitations
come in the form of electric charges living on sites and
magnetic fluxes of a Z2 lattice gauge field living on pla-
quettes. Closely related Wen’s model also has two types
of elementary excitations, which can be described as two
distinct bosonic particles with mutual semion statistics.
In both models, the creation of a single elementary exci-

tation is a nonlocal process involving a physical transfor-
mation along a path extending to infinity (or to the edge
of the system) implemented by a string operator. Owing
to the highly entangled nature of the ground state, the
exact path of a string is not important and can be de-
formed as long as the ends remain fixed. Simply put, the
ends of a string are visible but the body is not.

A significant drawback of these models is the unnatural
form of their Hamiltonians, which contain only four-spin
interactions of a very specific form. These may be hard
to realize in a magnetic material. (See, however, a re-
cent proposal for realizing these models at an interface
of a magnet and superconductor13.) This problem was
later ameliorated in another solvable model by Kitaev 14

with spins 1/2 on a honeycomb lattice. That model, on
the one hand, is reducible to the toric-code models Ki-
taev 11andWen 12 in a certain limit and, on the other, has
more realistic two-spin interactions. Its elementary ex-
citations are magnetic fluxes of a Z2 lattice gauge field
and Majorana fermions minimally coupled to the gauge
field. Jackeli and Khaliullin 15 pointed out a way of real-
izing the honeycomb model in magnets with strong spin-
orbit coupling. Potential realizations in magnets with
transition-metal ions are currently under experimental
investigation16.

Our brief excursion into the history of quantum spin
liquids was meant to underscore the important role of ex-
actly solvable models. Even if a model does not seem re-
alistic, it can provide a window into the realm of spin liq-
uids. Further research may lead to the discovery of mod-
els with similar properties and better chances of being
found in a real material. With this in mind, we present
a new solvable model of a QSL in d = 2 dimensions.
As in Kitaev and Wen’s models, the elementary particles
are Abelian anyons. Its main difference from the models
mentioned above is a larger number of elementary parti-
cles, which include 4 bosons and 3 fermions, all of them
mutual semions with respect to one another. In Kitaev
and Wen’s models, the elementary particles are 2 bosons
and 1 fermion. A larger number of elementary particles
directly translates into higher topological degeneracy of
energy eigenstates, 64 on a torus in our model versus 4
in Kitaev and Wen’s QSLs.

In this paper, we distinguish between elementary ex-
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FIG. 1. (a) The 6-body spin interaction (2). (b) Its alterna-
tive representation (3).

citations and elementary particles. We define the for-
mer as the smallest quanta of energy and the latter as
the natural building blocks of the model. Although they
happen to be the same in Kitaev and Wen’s models, they
need not be. In our model, there are 12 distinct types
of lowest-energy excitations. However, they can be put
together from a smaller number of basic building blocks.
These building blocks themselves have a higher energy
but they are conceptually simpler. One might point to
a loose analogy with QCD, where quarks are elementary
particles but not elementary excitations.

The paper is organized as follows. In Sec. II we present
the model and outline basic properties of its building
blocks, closed and open strings. Sec. III describes a
systematic construction of closed strings, including non-
contractible loops (e.g., on a torus), whose algebra deter-
mines the topological degeneracy. In Sec. IV we construct
open strings, characterize elementary particles living at
their ends, and build elementary excitations of the Hamil-
tonian out of them. Edge states are discussed in Sec. V.
In Sec. VI we present numerically obtained energy spec-
tra of small clusters to corroborate our theoretical anal-
ysis. We summarize our results in Sec. VII.

II. THE MODEL AND ITS BUILDING BLOCKS

A. The Hamiltonian

Our model has spins 1/2 residing on sites of a triangu-
lar lattice. The Hamiltonian is a sum of six-spin interac-
tions,

H = −
∑
n

Wn, (1)

where the six-spin operator

Wn = σz6σ
y
5σ

x
4σ

z
3σ

y
2σ

x
1 , (2)

is borrowed from the honeycomb model of Kitaev 14 ; sites
1 through 6 are the nearest neighbors of site n, Fig. 1(a).
It has an alternative representation

Wn = (σy1σ
y
6 )(σx6σ

x
5 )(σz5σ

z
4)(σy4σ

y
3 )(σx3σ

x
2 )(σz2σ

z
1), (3)

Fig. 1(b), in which the flavor of the Pauli matrices on a
link is determined by its orientation14,17.
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FIG. 2. Basic properties of strings. (a) Multiplication of two
closed strings sharing a segment. (b) Concatenation of two
open strings sharing a point. (c) Deformation of a string by
the attachment of a closed loop. (d) In a ground state, a
small deformation does not change the value of a string. (e)
Reversal of the string direction may change its sign. (f)

Strings intersecting once either commute or anticommute.

As in the honeycomb model, allWn operators commute
with one another and thus can be simultaneously diago-
nalized. The number of hexagons on a triangular lattice
is the same as the number of sites as every hexagon is
centered on a site. Thus the Wn operators represent a
complete set of observables that can be used to specify
the quantum state of the system. (The usual caveats ap-
ply. E.g., the presence of an edge reduces the number
of hexagons relative to that of sites, leading to higher
degeneracy.)

The state of lowest energy is achieved when we set
Wn = +1 for every hexagon. Elementary excitations are
hexagons with Wn = −1. The energetics are reminiscent
of the toric-code models on a square lattice of Kitaev11

and Wen12. However, we shall see that the nature of
elementary excitations and the spectrum of elementary
particles are different in our model.

B. Basic properties of strings

The basic building block in our model is the string WT,
a product of spin-1/2 Pauli operators along some lattice
path T. Non-commutativity of Pauli operators means
that the value of a string operator may depend on its
direction. Strings can be closed or open. The simplest
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examples of closed strings are operators Wn, Fig. 1. We
will use them to construct longer loops in Sec. III and
open strings in Sec. IV. Here we briefly survey general
properties of string operators. For simplicity, we abstract
from lattice details and depict strings as continuous lines
in Fig. 2.

(a) A closed string may follow a path T = ∂Ω around
the boundary of a region Ω. Consider two adjacent
but non-overlapping regions Ω1 and Ω2. The product
of two closed strings W∂Ω1

and W∂Ω2
yields a string

living on the boundary of the combined region Ω =
Ω1 ∪ Ω2, Fig. 2(a):

W∂Ω1
W∂Ω2

= W∂Ω. (4)

(b) Two open strings sharing a point can be concate-
nated, Fig. 2(b):

WCBWBA = WCBA. (5)

(c) A string can be deformed by attaching to it a closed
loop, Fig. 2(c).

(d) In a ground state of our model, a small deformation
of a string—the attachment of a hexagon—does not
change its value, Fig. 2(d).

(e) Strings are generally directional, Fig. 2(e). A re-
versed string differs from the original by a factor of
±1, depending on its type and length.

(f) Two strings intersecting once either commute or an-
ticommute,

W1W2 = ±W2W1, (6)

depending on their types, Fig. 2(f). Two strings with
an even number of intersections commute. Thus any
two contractible loops commute. An example of that
is the commutativity of all Wn operators (2).

Note that strings are generally directed, so operators
WAB and WBA are not necessarily identical. In our
model, WAB = ±WBA, where the sign depends on the
type of the string and on its length.

III. CLOSED STRINGS.

A. Fermionic Wilson loops

To gain further insight into the physics of the model,
it is helpful to view the operator Wn as a Wilson loop
measuring the Z2 magnetic flux through a hexagon11. To
use an analogy with a more familiar U(1) gauge theory, a
particle with electric charge e moving around the bound-
ary ∂Ω of some region Ω picks up the Aharonov-Bohm
phase

φ =
e

~c

∮
∂Ω

A · dr =
e

~c

∫
Ω

B · d2r =
eΦΩ

~c
(7)
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FIG. 3. Fermionic Wilson loops live on honeycombs. Loops of
the same color can be deformed into one another by attaching
or removing hexagons.
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FIG. 4. Three honeycombs—red (R), green (G), and blue
(B)—with links on the original triangular lattice.

proportional to the magnetic flux ΦΩ through the area.
In this analogy, Ω is a hexagon, ∂Ω is its perimeter, and
W = eiφ, where φ = 0 or π in a Z2 gauge theory. Whereas
the Aharonov-Bohm phase φ is additive, its exponential
W = eiφ is multiplicative. It can be checked with the
aid of representation (3) that a product of W operators
for two or more edge-sharing hexagons forming a cluster
Ω yields a Wilson loop along the cluster boundary ∂Ω
(Fig. 3):

W∂Ω =
∏
n∈Ω

Wn = (σνnσ
ν
n−1) . . . (σβ2 σ

β
1 )(σα1 σ

α
n) (8)

The flavor α = x, y, z of the Pauli operators in a link
operator σα1 σ

α
n depends on the orientation of the link in

the same way as for a hexagon, Eq. (3) and Fig. 3.
A closed string constructed in this way lives on links

of a honeycomb lattice obtained by removing every third
site of the original triangular lattice. This task can be
accomplished in three ways, with different sublattices re-
moved, Fig. 4. The three resulting honeycombs do not
share links. Strings living on different honeycombs can-
not be deformed into one another by elementary defor-
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FIG. 5. The shaded hexagon contains an elementary exci-
tation W = −1. The little red loop on its perimeter and
the big red loop on the same honeycomb return a nontrivial
Aharonov-Bohm phase W = −1. The blue loop belongs to a
different honeycomb and thus has W = +1.

mations consisting of attaching or removing a hexagon.
We thus find three distinct types of loops labeled red (R),
green (G), and blue (B).

As we shall see later (Sec. IV), Wilson loops of this
type are associated with fermionic particles. We shall
therefore refer to them as fermionic Wilson loops.

The three types of fermionic Wilson loops provide inde-
pendent physical information. Suppose there is a single
excited plaquette (Wn = −1) in the middle of a large
area, Fig. 5. Its presence can be detected by measuring
the value of a Wilson loop F enclosing it. Only one type
of Wilson loop—in this case, red—will have the nontriv-
ial value W = −1, the other two will have W = +1.

Construction of the fermionic Wilson loop (8) with
Pauli operators on the boundary of a cluster but not in
its bulk was enabled by the following property of elemen-
tary Wilson loops (2). A site at the intersection of three
hexagons contributes operators σx, σy, and σz to their
Wilson loops. It thus contributes σxσyσz = i, a number,
to the product of Wn operators of the cluster.

Our construction of fermionic Wilson loops closely
matches that of Kitaev for his honeycomb model11. The
main difference is that our triangular lattice contains
three honeycomb lattices, Fig. 4, which leads to the exis-
tence of three distinct flavors of fermionic strings instead
of one. That, in turn, will give rise to higher topological
degeneracy, as will be seen in Sec. III D.

B. Bosonic Wilson loops

Another way to construct big Wilson loops is to make
a product of W for elementary hexagons sharing corners,
rather than edges. Two hexagons sharing a corner both
contribute the same operator σα. Again, a product of
Wn operators over a cluster of corner-sharing hexagons

K

C M

Y

FIG. 6. Four dual honeycombs—cyan (C), magenta (M), yel-
low (Y), and black (K).
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FIG. 7. Bosonic Wilson loops on dual honeycombs.

will only have Pauli operators on the boundary but not
in the bulk of the cluster. This observation allows us to
construct four more distinct types of strings.

To facilitate this construction, it is convenient to in-
troduce dual honeycombs whose links connect centers of
triangles of the original lattice, Fig. 6. There are four dis-
tinct dual honeycombs labeled cyan (C), magenta (M),
yellow (Y ), and black (K).

An elementary hexagon can be identified with the
shortest loop on a dual honeycomb, Fig. 7. Longer dual
loops can be constructed from products of W operators
on the same dual honeycomb:

W∂ω =
∏
n∈ω

Wn = σνn . . . σ
β
2 σ

α
1 . (9)

Here ω is a cluster of dual hexagons residing on the same
dual honeycomb and ∂ω is its perimeter containing points
1, 2, . . . , n. The flavor α of the Pauli operator σαn is deter-
mined by the orientation of the dual link passing through
site n, Fig. 7.

As we shall see later, strings on dual honeycombs are
associated with bosonic particles, so we will refer to them
as bosonic.
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FIG. 8. Fourteen topologically distinct global loops winding
in the two directions of the torus.

The existence of multiple string types—3 fermionic and
4 bosonic—has an analog in Wen’s model12, which has 1
fermionic and 2 bosonic strings18.

C. Strings are invisible

Big Wilson loops W commute with the Hamiltonian
and are thus integrals of motion. However, they do
not carry additional information beyond that which is
already contained in elementary Wilson loops Wn (2).
Thus, in a ground state |ψ0〉, all Wilson loops constructed
out of short loops W are trivial,

W |ψ0〉 = |ψ0〉. (10)

A simple way to phrase this result is to say that closed
strings are invisible in a ground state. Indeed, we can
deform any loop (on an original or dual honeycomb) by
attaching or removing hexagons to it. Thus the action
of a W operator on a ground state is invariant under
deformations of the Wilson loop. If a Wilson loop is
contractible to a point, its value must be trivial, W = +1.

D. Global loops

A system with a nontrivial topology (e.g., a torus) will
have non-contractible loops T on the original lattice or
τ on the dual one that wind around the system. We
can use the same prescriptions (8) and (9) to construct
such non-contractible loops ST and Sτ . These global
loop operators commute with short loops W and thus
with the Hamiltonian (1). However, because they are not
reducible to a product of W operators, their eigenvalues
in a ground state are not necessarily +1. Thus we can
use them to determine the topological degeneracy.

On a torus, viewed as a rectangle with periodic bound-
ary conditions along both x and y directions, we obtain 7

Rx

Cy
Ry

(b)

(a)

FIG. 9. (a) Seven overlapping strings cancel out as at each in-
tersection we have a product of two operators σx and two op-
erators σy. (b) Global loops WRx and WRy commute, whereas
WRx and WKy anticommute. Note that strings Rx and Ry
are considered to have a single intersection, even though they
share two lattice sites.

topologically distinct loops winding around the lattice in
the x direction (Fig. 8): 3 fermionic WRx, WGx, WBx and
4 bosonic WCx, WMx, WY x, WKx; 7 more wind around
the torus in the y direction.

Two global Wilson loops winding around the torus in
the same direction commute because we can deform them
to avoid any intersections, Fig. 8. We can thus use their
eigenvalues to label ground states:

|ψ0〉 = |WRx,WGx,WBx,WCx,WMx,WY x,WKx〉. (11)

If these operators could independently take on eigenval-
ues ±1, we would obtain 27 ground states on a torus.
However, they are not fully independent and satisfy the
constraint

WRxWGxWBxWCxWMxWY xWKx = +1, (12)

which can be checked by examining a segment of 7 over-
lapping strings, where all Pauli operators cancel out,
Fig. 9(a). The constraint (12) reduces the number of pos-
sible ground states (11) to 27−1 = 64. We may use the
first six bits in Eq. (11) to designate a ground state; the
seventh, WKx, adjusts as necessary to satisfy the parity
constraint (12).

As can be seen in Fig. 8, two global loops winding
along different directions of a torus intersect once (or,
more generally, an odd number of times). The two Wil-
son operators commute if the loops are of the same type
(e.g., both R or both M) and anticommute otherwise,
Fig. 9(b). Thus we may use Wilson operator WRy to al-
ter all bits in a ground state (11) except for WRx. Even
more convenient would be to use a combination such as
WRyWKy, which alters the encoding bit WRx as well as
the ancillary WKx. In this way, we can access all 26 de-
generate ground states starting from any of them.
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IV. OPEN STRINGS

A. Open fermionic strings

Another way to make nontrivial string operators is to
cut a loop and make a string with open ends:

ST = (σνnσ
ν
n−1) . . . (σβ2 σ

β
1 )(σα1 σ

α
0 ), (13)

where T is a path on a honeycomb lattice traversing
points 0, 1, . . . , n, Fig. 10. The order in which the path
T is traveled matters:

ST−1 = (−1)|T|+1ST, (14)

where the path length |T| equals the number of links.
When T is a simple loop (every site is traversed once),

its string operator (13) reduces to a Wilson loop (8).
Open strings (13) are multiplicative under concatena-

tion. If the tail of path T1 coincides with the head of
path T2 then

ST2
ST1

= ST2T1
. (15)

When two paths overlap and have a single branching
point, their string operators anti-commute. In Fig. 11,
strings T1 and T2 connect point 0 with points 1 and 2,
respectively. The product of string operators

ST1
ST2

= −ST2
ST1

(16)

creates excitations near the end points 1 and 2. The anti-
commutation of ST1

and ST2
implies that the resulting

excitations are fermions. See Sec. IV C.
The fermionic nature of strings ST becomes manifest

if one uses Kitaev’s representation of spin operators in
terms of Majorana fermions14, σαn = ibαncn. Eq. (13)
translates into a product of c Majorana operators at the
ends connected by a Z2 gauge string,

ST = cn(−iun,n−1) . . . (−iu21)(−iu10)c0. (17)

T1

T2

1

0

2

FIG. 11. Two string operators ST1 and ST2 with heads at 0
and tails at 1 and 2, respectively, create excitations near the
tails (shaded areas).

x yyy

z

x

z

23456

7

1

FIG. 12. An open bosonic string Sτ = σz7σ
y
6 . . . σ

y
2σ

z
1 creates

excitations within the shaded areas.

It should be noted that link operators umn = ibαmb
α
n =

−unm commute among themselves only for a single hon-
eycomb (as is the case in Kitaev’s honeycomb model).
Link operators belonging to different honeycombs anti-
commute if the two links share a site and point in the
same direction.

B. Open bosonic strings

In a similar way, we define a dual open string,

Sτ = σνn . . . σ
β
2 σ

α
1 , (18)

where τ is a path on a dual honeycomb connecting sites
1, 2, . . . , n, Fig. 12. Dual strings are not sensitive to the
direction of traverse:

Sτ−1 = Sτ . (19)

Strings on the same dual honeycomb can be concate-
nated,

Sτ2Sτ1 = Sτ2τ1 , (20)
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FIG. 13. (a)–(c) Braiding of two red fermions (the ends of a red string). The initial (a) and final (c) states are physically
equivalent to each other. 1, 2, 3, and 4 are sites of the original lattice. (d)–(f) Braiding of two black bosons (the ends of a
black string). The initial (d) and final (f) states are physically equivalent to each other. A, B, C, and D are sites of a dual
honeycomb. (g)–(i) A blue fermion (the end of a blue string) goes around a black boson (the end of a black string).

and commute with one another,

Sτ2Sτ1 = Sτ1Sτ2 . (21)

Thus excitations at the ends of dual open strings are
bosons.

C. Braiding statistics

1. Fermions

Quantum statistics of string ends can be established
through braiding. Consider a state with two elementary
particles obtained by the action of an open red string,
Fig. 13(a),

|a〉 = S21|0〉. (22)

Here 21 denotes a path running from 1 to 2. By extending
the string on both ends, Fig. 13(b), we first obtain an
intermediate state

|b〉 = S42S31|a〉, (23)

and then eventually the state where the string ends have
been braided clockwise, Fig. 13(c),

|c〉 = S14S23S42S31|a〉, (24)

States |a〉 and |c〉 are physically indistinguishable as
they have the same set of excited hexagons near points
1 and 2. However, they may differ by a phase factor.
Indeed, the operator connecting them in Eq. (24) can be
rearranged to form a Wilson loop,

|c〉 = −S14S42S23S31|a〉 = −W14321|a〉 = −|a〉. (25)

The minus sign arises from the anti-commutation of
strings S42 and S23 containing Pauli operators σx2 and
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σy2 , respectively. The red Wilson loop W14321 = +1 in
state |a〉 because there are no excited hexagons on the
red honeycomb in that state.

We thus conclude that the ends of a string living on an
original honeycomb (red, green, or blue) are fermions.

2. Bosons

In a similar way we braid the ends of a black string
living on a dual honeycomb, Fig. 13(d)–(f). The initial
state |d〉 and final state |f〉 are related by string exten-
sions,

|f〉 = SADSBCSDBSCA|d〉. (26)

By rearranging the operators in the middle, we again
reduce the product to a Wilson loop:

|f〉 = SADSDBSBCSCA|d〉 = WADBCA|d〉 = |d〉. (27)

This time, the operators SDB and SBC commute as they
do not share common sites of the original lattice. The
black Wilson loop WADBCA in Fig. 13(f) is again triv-
ial in the initial state |d〉 because it encloses no excited
hexagons from its own honeycomb.

We thus find that ends of a string on a dual honeycomb
(cyan, magenta, yellow, or black) are bosons.

3. Mutual semions

The ends of two strings of different types are of course
distinguishable (e.g., with the aid of various Wilson
loops), so exchanging them will result in a physically dif-
ferent state. Instead, we may move one of these particles
around another, Fig. 13(g)–(i). The initial state |g〉 and
the final state |i〉 are related by a blue Wilson loop,

|i〉 = W1321|g〉 = −|g〉. (28)

Here the blue Wilson loop encloses one excited hexagon
of the blue honeycomb created by the action of the black
string terminating inside it. Put another way, the blue
Wilson loop anti-commutes with the black open string
because they intersect once at point 3, where they con-
tribute Pauli operators σy3 and σz3 , respectively.

Generally, whenever one particle encircles another par-
ticle of a different type, the quantum state acquires a fac-
tor of −1. Thus, different particles are mutual semions.

D. Elementary excitations

In contrast to the Z2 spin liquids of Kitaev11 and
Wen12, the creation of an elementary excitation in our
model requires the action of not one but at least two
open strings. To see this from a topological perspective,
consider a large lattice with no excitations, Fig. 14. The

FIG. 14. Creation of a single elementary excitation W = −1
at the ends of two open strings detected by large Wilson loops.

FIG. 15. The action of two open strings, bosonic Sτ (18) and

fermionic S̃T (29), creates two elementary excitations W =
−1 at the ends (shaded hexagons).

absence of excitations can be confirmed by running 7
large Wilson loops (3 fermionic and 4 bosonic) that will
have the values +1. Creating a single excited hexagon in
the middle of these loops will change that. If the excited
hexagon belongs to the red original honeycomb and to
the black dual honeycomb then the red and black Wilson
loops will switch to the value −1 and the rest will stay
unchanged. To accomplish this, we can act on the ground
state with two open strings, one red and one black, in-
tersecting the Wilson loops once, Fig. 14.

To construct an elementary excitation out of two
strings on a microscopic level, we find it necessary to
adjust slightly the definition of an open fermionic string
(13). Instead of terminating a string on a site of the
original lattice, we end it on a link:

S̃T = σρn(σνnσ
ν
n−1) . . . (σβ2 σ

β
1 )σα1 . (29)

The two definitions of a fermionic string (13) and (29)
differ by local operators at the string ends, which pre-
serves the braiding statistics of elementary particles.
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FIG. 16. Each hexagon, labeled by a circle at its center, is
assigned two flavors, fermionic (R, G, or B) and bosonic (C,
M , Y , or K). The resulting pattern of hexagons has a period√

12×
√

12.

The combined action of a fermionic string S̃T and a
bosonic one Sτ , produces a pair of elementary excitations
W = −1, one at each end of the double string, Fig. 15.

We thus find that elementary excitations W = −1 in
our model come in 3 × 4 = 12 flavors determined by a
choice of one fermionic (R, G, or B) and one bosonic (C,
M , Y , or K) string. It is not possible to convert the an
elementary excitation of one flavor (e.g., RK) into an-
other (e.g., BK) without creating additional excitations.

Note that excitations are created in pairs with the same
flavors, e.g., GC and GC. Hexagons with the same pairs
of fermionic and bosonic flavors form a triangular lattice
with the period

√
12×

√
12, Fig. 16.

V. EDGE STATES

A. Majorana zero modes

As often happens with topological phases of matter,
the edge of our quantum spin liquid harbors zero modes.
In Wen’s spin model12, a straight edge of the square lat-
tice has one Majorana zero mode per site. A similar
count of the degrees of freedom in our model reveals two
Majorana zero modes per site along a straight edge.

The existence of these zero modes manifests itself in an
extensive degeneracy of the ground state (and generally
of all energy levels) and can be established through the
existence of multiple integrals of motion

Sn,n+1 = σynσ
x
n+1, (30)

in which one may recognize very short open bosonic
strings (18) starting and ending just off the edge,
Fig. 17(a). These short strings commute with the Hamil-
tonian (Eq. 1) but not necessarily with one other: strings
of different flavors anticommute if they intersect once,

+1n

z z z z z x

n

y x

(a)

(c)

(b)

FIG. 17. (a) Short bosonic strings at the edge (30) commute
with Wilson loops but may anticommute with one another.
(b) A Majorana zero mode (31). (c) An equivalent combina-
tion of two bosonic strings (18).

Fig. 17(a). A large number of non-commuting integrals
of motion indicates high degeneracy of energy levels.

The Majorana zero modes can be explicitly con-
structed as shown in Fig. 17(b). Operators

αn+1 = . . . σzn−2σ
z
n−1σ

z
nσ

x
n+1 (31)

satisfy the standard algebra of Majorana fermions,

αmαn + αnαm = 2δmn. (32)

One may worry that the string operator (31) represents
a new string type overlooked in our earlier construction.
(Its existence would increase the topological degeneracy.)
Fortunately, that is not the case: the “new” string (31)
is merely a product of two bosonic strings (18), of C
and M flavors in Fig. 17(c). By combining two bosons
that are mutual semions we obtain a fermion. The same
happens in the toric code11, where a combination of an
electric charge and a flux (two bosons with mutual semion
statistics) yields a fermion.

A second Majorana zero mode at the edge can be con-
structed from the other two bosonic strings.

B. Majorana modes in a magnetic field

Zero modes at the edge of a spin liquid are sensitive
to perturbations14. The Majorana modes acquire a dis-
persion and propagate along the edge. We have analyzed
their response to a weak uniform magnetic field,

H1 = −
∑
n

(hxσ
x
n + hyσ

y
n + hzσ

z
n), (33)

along the lines of Yu et al. 19 .
The application of a perturbation term such as −hxσxn

creates 4 excited hexagons in the bulk, Fig. 18. To the
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(a)

(b)
(c)

FIG. 18. The action of a σxn operator creates different num-
bers of excitations (shaded areas) depending on the location
of site n (black dot): (a) 1 hexagon for a site at a horizon-
tal edge, (b) 4 hexagons for a site in the bulk (excluding the
hexagon centered on site n), (c) 3 hexagons for a site near a
horizontal edge.

second order in h, the perturbation simply shifts the en-
ergy of the ground state by

∆E
(2)
bulk = −

h2
x + h2

y + h2
z

8
(34)

for every bulk site. For a site near a horizontal edge,
perturbations −hxσxn and −hyσyn creates 3 excitations
(Fig. 18), whereas −hzσzn just 2; the energy of the ground
state is shifted by

∆E
(2)
near edge = −

h2
x + h2

y

6
− h2

z

4
(35)

per site. For a site at the edge, the energy shift is

∆E
(2)
edge = −

h2
x + h2

y

2
− h2

z

4
. (36)

In addition to the trivial shift of the energy, the second-
order perturbation generates the following virtual pro-
cesses: an excited hexagon can be at first created by
−hxσxn+1 and then destroyed by −hyσyn, or vice versa.
These virtual processes give rise to an effective perturba-
tion Hamiltonian for a straight edge, Fig. 17(a):

H
(2)
eff = −hxhy

∑
n

σynσ
x
n+1 (37)

made of short bosonic strings (30) and thus commuting
with the bulk Hamiltonian (1).

Expressed in terms of the Majorana fermions (31), the
effective Hamiltonian reads

H
(2)
eff = −hxhy

∑
n

iαnαn+1. (38)

The excitation spectrum of the edge fermions is

εk = 4|hxhy| sin k, 0 ≤ k ≤ π. (39)

For an open cylinder with N sites and two straight
edges oriented as in Fig. 18 and containing L sites each,
the second-order correction to the energy of the ground
state can be split into the bulk and edge parts,

∆E(2) = −N
h2
x + h2

y + h2
z

8
+ 2Eedge, (40)

where the edge energy includes the trivial local shift and
the zero-point energy of Majorana fermions propagating
along the edge:

Eedge = −
5h2

x + 5h2
y + 3h2

z

12
L−2|hxhy|

∑
0<k<π

sin k. (41)

Periodic boundary conditions for edge spins, σαL = σα0 ,
translate into either periodic or antiperiodic boundary
conditions for Majorana fermions,

αL = −α0W, (42)

where

W = σz1σ
z
2 . . . σ

z
L = WCWM (43)

is a global Wilson loop winding around the cylinder.
For W = +1, the boundary conditions are antiperi-

odic and Majorana fermions have momenta kn = 2π(n−
1/2)/L. For W = −1, kn = 2πn/L. In both cases,
n = 1, 1, . . . , L. We assume that L is even. The edge
energy in the two sectors is

EW=+1
edge = −

5h2
x + 5h2

y + 3h2
z

12
L− 2|hxhy| csc

π

L
, (44)

EW=−1
edge = −

5h2
x + 5h2

y + 3h2
z

12
L− 2|hxhy| cot

π

L
.(45)

The state with a trivial global flux W = +1 is lower in
energy:

EW=+1
edge − EW=−1

edge = −2|hxhy| tan
π

2L
< 0. (46)

VI. NUMERICAL DIAGONALIZATION

To verify our results, we obtained energy spectra for
some finite clusters. We employed brute-force diago-
nalization of the Hamiltonian (1) for small clusters; for
larger ones, we used the Lanczos algorithm and took into
account translational symmetry to reduce the sizes of the
Hilbert spaces. Anticipating high topological degeneracy,
we seeded the Lanczos algorithm multiple times and or-
thogonalized low-energy states with respect to the ones
already obtained.

A. Topological degeneracy and elementary
excitations

To check the predicted topological degeneracy of 64 on
a torus, we examined the energy spectra of two clusters
containing N = 12 and 24 sites with periodic bound-
ary conditions compatible with the existence of 7 dis-
tinct types of strings, Fig. 19. Both clusters have 64-fold
degenerate ground states with energies E0 = −N , as ex-
pected. Here we label energy levels by the number of
excited hexagons.
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(a)

(c)

(b)

FIG. 19. (a) and (b) Clusters with periodic boundary condi-
tions (opposite edges identified) containing N = 12 (a) and
24 (b) sites. Some of the global Wilson loops are shown. (c)
A cluster with N = 24 sites and two open edges (top and
bottom) containing L = 4 sites each. Left and right edges are
identified.

The first excited state of the N = 24 cluster has the
energy E2 = −20 = E0 + 4, which corresponds to 2 ex-
cited hexagons. This energy level had the degeneracy of
768 = 12 × 64, of which the factor of 64 is the topolog-
ical degeneracy. The remaining factor of 12 reflects the
number of distinct excitation types in this cluster. As
explained in Sec. IV D, excitations are created in pairs at
hexagons belonging to one of the 12 sublattices. In the
cluster with N = 24 sites, there is exactly one pair of
hexagons for each of the 12 sublattices.

The N = 12 cluster has only one hexagon for each
pair of flavors. Thus it is not possible to create a pair of
excitations out of the ground state. Indeed, this cluster’s
energy spectrum does not have levels with energy E2 =
E0 + 4. The lowest excited state with energy E4 = E0 +
8 contains 4 excited hexagons in combinations of two
fermionic and two bosonic flavors, e.g., RY , RC, BY ,
BC. The number of possible combinations is 3!

2!·1!
4!

2!·2! =
18, so we expect the total degeneracy of 18× 64 = 1152,
which is indeed the case.

B. Edge modes

The energy of the ground state of a cluster withN = 24
sites and two open edges with L = 4 sites each, shown in
Fig. 19(c), has the following dependence on the applied
magnetic field h = ( h√

3
, h√

3
, h√

3
) of strength h < 0.02:

E0(h) = E0(0)− 7.77452h2. (47)

This numerical result matches well the second-order cor-
rection for the W = +1 state (Sec. V B):

∆E(2) = −

(
53

9
+

4
√

2

3

)
h2 ≈ −7.77451h2. (48)

The agreement confirms the existence of propagating Ma-
jorana modes at the edges in the presence of an external
magnetic field.

VII. DISCUSSION

We have presented an exactly solvable model of a quan-
tum spin liquid on a triangular lattice with six-spin in-
teractions. Strong quantum fluctuations generate long-
range entanglement of spins and topological order. Ele-
mentary excitations are nonlocal objects. To understand
their nature, we have constructed natural building blocks
of the model—string operators defined on links of either
the original or dual lattice. The geometry of our model
gives rise to a larger variety of strings than in predeces-
sor square-lattice models of Kitaev 11 and Wen 12 . Both
of those had 2 bosonic strings and 1 fermionic, whereas
ours has 4 bosonic and 3 fermionic string types. In all
of these models, ends of strings are associated with el-
ementary particles (hence the designation of strings as
bosonic or fermionic). Particles of two distinct types are
mutual semions, a feature also found in the Kitaev and
Wen models.

Elementary excitations in our model (defined as small-
est quanta of energy) are distinct from elementary parti-
cles (ends of strings). A single excitation can be viewed as
a pair of elementary particles, one boson and one fermion.
We thus have a large number, 4×3 = 12, distinct types of
elementary excitations living on 12 sublattices, Fig. 16.
These elementary excitations are static in the exactly
solvable model. A small modification of the Hamilto-
nian (1) will make them mobile. For weak perturbations
away from the solvable point, these excitations will only
be able to tunnel between sites of their own sublattice
separated distance

√
12 apart.

The large number of string types (and of elementary
particles) directly translates into high topological degen-
eracy, 26 on a torus. This number, and the Abelian na-
ture of the anyons, suggests that our model is equivalent
to three decoupled Z2 gauge fields, each of which con-
tributes a factor of 22. This could be verified by con-
structing three pairs of Z2 electric charges and fluxes
{ei,mi}, i = 1, 2, 3, where the bosonic electric charge ei
and magnetic flux mi within any pair would be mutual
semions and would have trivial braiding statistics with
the members of the other pairs. Although this construc-
tion is indeed possible, it requires the use of composite
particles as there are only 4 elementary bosons. E.g.,
{e1,m1} = {C,M}, {e2,m2} = {RY,RK}, {e3,m3} =
{BCM,GCM}. Such an asymmetric construction does
not look natural and provides no additional insights. If
anything, it obscures the link between lattice symmetries
and topological order14,20.

It would be interesting to see whether one may find a
model with similar properties but less contorted interac-
tions than the six-spin term (2). That this is possible,
at least in principle, can be seen from the example of
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the toric code11,12. Its universal features—the topologi-
cal order and anyon excitations—are reproduced in the
gapped phase of Kitaev’s honeycomb model with more
realistic two-spin interactions14.
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