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The switching field distribution within arrays of single-domain ferromagnetic islands incorporates
both island-island interactions and quenched disorder in island geometry. Separating these two con-
tributions is important for disentangling the effects of disorder and interactions in the magnetization
dynamics of island arrays. Using sub-micron, spatially resolved Kerr imaging in an external mag-
netic field for islands with perpendicular magnetic anisotropy, we map out the evolution of island
arrays during hysteresis loops. Resolving and tracking individual islands across four different lattice
types and a range of inter-island spacings, we can extract the individual switching fields of every
island and thereby quantitatively determine the contributions of interactions and quenched disorder
in the arrays. The width of the switching field distribution is found to be well-fit by a simple model
comprising the sum of an array-independent contribution (interpreted as disorder-induced), and a
term proportional to the maximum field the entire rest of the array could exert on a single island,
i.e., in a fully polarized state. This supports the clain that disorder in these arrays is primarily a
single-island property, and provides a new methodology by which to quantify such disorder.

Ordered arrays of nanoscale single-domain ferromag-
netic islands provide a well-defined Ising system at a
spatial scale where it is possible to resolve every Ising
degree of freedom. Geometries with frustrated interac-
tions, such as artificial realizations of “spin ice,” are par-
ticularly interesting because they allow direct visualiza-
tion of magnetic frustration in a well-controlled model
environment1–3. Recent experiments have used artifi-
cial spin ice arrays to study the nature of the frustrated
ground state4–10, the effect of thermal fluctuations8,9,11,
the emergence of effective magnetic charges10,12–15, and
disorder16,17. However, a deeper understanding of the
relationship between the experimental arrays and the-
oretical models requires a more precise quantification
of the relative strengths of disorder and interactions
in the experimental systems. The recent develop-
ment of ferromagnetic island arrays with perpendicu-
lar anisotropy18–20 provides an important opportunity
in this regard, in that these arrays are amenable to po-
lar magneto-optical Kerr effect (MOKE) studies. Kerr
imaging can potentially resolve array dynamics at the
individual-island level, imaged across an entire array,
during field sweeps: individual Ising degrees of freedom
can be tracked exhaustively not only in space, but also
in time. Furthermore, the pairwise interaction between
two perpendicular moments depends only on the separa-
tion between them, unlike the more complex anisotropic
interactions in systems with in-plane moments.

A variety of methods have been used to investigate
the static and dynamic magnetic behavior of both in-
plane and perpendicular anisotropy arrays. For exam-
ple, magnetic force microscopy (MFM) imaging has been
used to study how individual islands behave within small

bit-patterned media arrays21 (∼100 islands), using the
remanent states and coarse field bins. Thermal fluctu-
ations of in-plane islands have been imaged using X-
ray magnetic circular dichroism photoemission electron
microscopy (XMCD-PEEM) to resolve the individual
islands9. However, only magneto-optical methods can
spatially map the evolution of an array’s magnetization
continuously in an external magnetic field at timescales
which allow for a quasi-dynamic exploration of a system’s
microstates22.

In this study, we use high-resolution polar MOKE to
isolate and detect the magnetic state of individual is-
lands within interacting arrays in a continuously varying
external field. While interactions can be designed in an
idealized way during the fabrication process, the actual
disorder created during fabrication is an important fac-
tor in determining how the islands will physically behave
during magnetization reversal17. We might also antici-
pate that the disorder will influence the outcome of ques-
tions such as how close frustrated arrays can be brought
to the ground state. Given the contemporary interest
in using magnetic arrays as model systems for address-
ing such fundamental questions, it is important to de-
velop methods to efficiently and accurately characterize
the disorder strength in these systems. We make an ad-
vance in this direction by using MOKE imaging to access
the complete microstates of Ising-like ferromagnetic ar-
rays. By carrying out a comprehensive statistical analysis
of the switching field distributions of elements of these
arrays, we precisely quantify the role of static disorder
in island reversal dynamics. The methodology that we
develop for characterizing the disorder strength is quite
general: it can be applied to any high spatial-resolution
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imaging study of magnetic arrays and is more efficient
than other existing characterization methods such as the
∆H(M,∆M) method23, requiring fewer images and thus
fewer memory resources.

By detecting the magnetic state of every island, we
directly measure the distribution of switching fields in
situ for arrays of several thousand islands. The width of
the switching field distribution (here called σ, with the
dimension of magnetic field) should have contributions
from both quenched disorder and dipolar interactions be-
tween islands. We thus try the simple model

σ(L) = αKB0(L) + σd. (1)

for the width σ(L) of the switching field distribution of an
array of inter-island spacing L. The first term takes into
account dipolar interactions between the islands as out-
lined below, and σd is a general term containing all con-
tributions from quenched disorder in the array. We treat
quenched disorder from multiple sources as a single con-
tribution due to studies done on in-plane artificial spin
ice systems showing that the magnitude of the disorder
contribution determines the effect on the system dynam-
ics, and has an indistinguishable effect regardless of the
source of the disorder16. It is widely accepted that such
a term exists due to physical deviations in island prop-
erties, and precisely characterizing its origin is beyond

the scope of this work. B0(r) = µ0

4π
3r̂(r̂·~m)−~m

r3 is the mag-
netic field strength of a single point dipole at a distance
r, and K is an effective coordination number accounting
for significant influence from several near neighbors be-
yond just the nearest. K is taken as a sum of (L/r)3

up to third nearest neighbors. This makes KB0(L) the
total field an island would feel from up to third near-
est neighbors if they were all magnetized in the same
direction. K depends only on the geometry, and there-
fore gives sigma a geometry dependence suppressed in the
notation. The effective coordination numbers for hexag-
onal, kagome, square and triangular lattices are 4.53,
5.52. 5.91, and 7.90 respectively; these values exceed the
nearest-neighbor lattice coordination numbers due to the
contribution from further neighbors. Here, we approxi-
mate the field experienced by a given island by the value
at the island center, assuming pure dipolar fields from
nearby islands. This term, reminiscent of a mean-field
theory, considers the broadening to be consistent across
the lattice and disregards the impact of the exact mi-
crostate of the neighbors. This is a reasonable approx-
imation for this system, since the magnetic elements of
each array are discrete, weakly coupled, and anticorre-
lated in the energetically favorable state, which leads to a
uniform spatial distribution of magnetization throughout
the field sweeps. In regimes where the mean-field theory
is no longer valid, the fitting should break down. Finally,
the term α is a correction factor: if the fitting form of
Equation 1 is physically well-grounded, then α will be
a simple constant of proportionality of value close to 1.
Several questions present themselves upon consideration
of this scaling form. A priori, it is not clear whether the

disorder contribution can be entirely identified with effec-
tive individual-island properties (e.g., variations in shape
and edge roughness) or whether random local variations
in lattice geometry may also enter in an essential way.
Also, it is not clear a priori whether this effective co-
ordination number K fully captures the effect of lattice
geometry on the switching field distribution: i.e. is α ac-
tually constant across different lattice geometries? Since
αKB0(r) ∝ r−3 and α is the only component that cannot
be calculated from other physical properties, functional
fits to Eqn. 1 use the form ar−3 + σd, and α is then
extracted from the parameter a.

E-beam lithography was used to define 450 nm di-
ameter circular islands in both non-frustrated (square
and hexagonal) and frustrated (kagome and triangu-
lar) geometries, using standard lift-off of a bilayer
PMMA/PMGI resist stack. Magnetostatic dipolar in-
teraction strength was tuned by varying the array inter-
island spacing. Pt/Co multilayer stacks in the sequence
Ti(2 nm)/Pt(10 nm)/[Co(0.3 nm)/Pt(1 nm)]8 were de-
posited using DC sputtering; such multilayers have
strong perpendicular anisotropy and nearly square hys-
teresis loops24. Bulk properties were measured using su-
perconducting quantum interference device magnetome-
try (SQUID). Hysteresis loops up to ±5 Tesla were mea-
sured for fields both parallel and perpendicular to the
sample plane (See Fig. 1). The easy axis is perpendicular
to the plane, confirmed by sharp, nearly square hystere-
sis loops with a coercivity of 350 G, Ms = 375×103 A/m
and anisotropy constant K1 = 94× 103 J/m3. Scanning
electron microscopy shows that the individual nanomag-
nets in the array have an edge roughness of ∼5 nm and a
corresponding diameter variation of approximately 5 – 10
nm. Atomic force microscopy shows a surface roughness
of ∼1 nm and a height of 22 – 23 nm, which is consistent
with the nominal film thickness of 22.4 nm. This height
includes the buffer layer, which has a nominal thickness
of 12 nm, so we take the thickness of the magnetically
active region to be 10.4 nm. We fabricated arrays with
nearest-neighbor center-to-center spacings ranging from
500 nm to 800 nm. Using e-beam lithography, we expect
less than 1 nm error in position. Individual islands are
well-separated even at the smallest spacing, as shown in
Figure 2. The chip contains four different arrays for each
combination of lattice geometry and inter-island spacing.

We measured the switching field distributions (SFDs)
using polar MOKE. Our optical setup is an optimized
Kerr reflectometry system to allow for diffraction-limited
spatial imaging. The maximum spatial resolution of a
Kerr microscopy system is described by the Abbe diffrac-
tion limit, d = λ

2n sin θ , where n sin θ is the numerical aper-
ture (N.A.) of the objective lens and λ is the wavelength
of light. We use a 100x oil objective lens (1.3 N.A.) to at-
tain diffraction-limited spatial resolution (150 nm – 300
nm) using white light filtered to the visible spectrum (400
nm – 700 nm), which lets us clearly resolve the 450 nm
diameter nanomagnets in each array. Island arrays were
fabricated to be approximately 35µm×35µm so that the
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FIG. 1. Magnetic hysteresis loops for the continuous Pt/Co
film, measured using SQUID magnetometry. The red curves
were measured perpendicular to the sample plane, and the
blue curves were measured parallel to the sample plane. The
inset image is magnefied in scale to more clearly show the
hysteresis.

FIG. 2. Left: Scanning electron microscopy images of arrays
with different geometries. Partial arrays are shown. Full ar-
rays measure 35µm× 35µm. All images shown are of arrays
with a inter-island spacing of 500 nm. Right: MOKE con-
trast in a 500 nm inter-island spacing square array, near the
coercive field during a hysteresis loop.

entire array fits within the 35µm × 50µm field of view
of the Kerr imaging setup. Lateral drift of the array
is inevitable for field sweeps lasting several tens of min-
utes. The centroid for the collection of pixels associated
with each island was isolated and tracked throughout a
saturating magnetic field sweep. Field sweeps range from
−800 to 800G. In the switching region from 150 to 500G,
we use 2 G steps, and outside this region, we use 40 G
steps.

By the Kerr effect, island reversal manifests as a frac-
tional change in island intensity, linear in magnetization.
The representative image in Fig.2 shows the MOKE con-
trast between islands; Fig. 3 provides a raw hysteresis
field sweep and the hysteresis loop of an individual is-
land. The sharp switching behavior of an individual
island agrees with MFM measurements from previous
studies that show that islands of this diameter have a
single domain19. The switching behavior has been stud-

FIG. 3. (a) Raw hysteresis loop calculated across an entire
array (red) compared to the refined hysteresis loop calculated
by combining contributions from individually resolved island
switching fields (blue). The inset is a MOKE image of the
entire array. (b) Hysteresis loop of an individual island and its
pixelated image. c) Histogram of switching fields calculated
from a series of MOKE images, averaged over several runs,
with Gaussian fit. The histogram is centered at the coercive
field Hc. For this particular fit we find A = .00734 and σ =
57.16 All data in this figure were taken on a 500 nm square
array.

ied elsewhere for similar magnetic structures25, showing
coherent domain rotation on the order of several tens of
picoseconds, much faster than the acquisition time for
a frame in this study and consistent with our observa-
tion that an individual island transitions between mag-
netic states in a single field step. Full-array hysteresis
loops can be calculated in two ways: unresolved “raw”
hysteresis loops that average the MOKE intensity across
the entire image and fully resolved “refined” loops that
enumerate the actual individual islands that switch at
any given field step. These two methods agree closely, as
shown in Fig. 3a.

Using the switching fields of individual islands in the
array, we directly measure the distribution of average
switching fields from several hysteresis loops and fit the

results to a Gaussian distribution (Ae
−(H−Hc√

2σ
)2

, Fig. 3c)
to extract the width σ, a global property of the array.
Figure 4 shows values of σ for each lattice examined and
the corresponding fits to Equation 1. Fits were carried
out using the Levenberg-Marquardt algorithm, and have
reduced χ2 values of 7.53, 2.54, 2.28, and 0.71 with 5
degrees of freedom for hexagonal, kagome, square, and
triangular arrays respectively. The initial curve fitting
finds a value of σd for each lattice type; however, since σd
arises from physical properties of an island and all islands
are fabricated simultaneously, it is reasonable to assume
σd is a constant across all lattices on the same chip. The
calculated values of σd from the curve fits are consistent
with this assumption. To treat σd as a global property
of all arrays, we average the values of σd obtained from
fits to each lattice type and then recalculate each fit with
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FIG. 4. (a) Inter-island spacing dependent values of σ (closed
circles) along with the “intrinsic” values of σ from the ∆H
method (open circles). The value of σd from fitting to Eqn. 1
for each array type is shown in each panel as a thick horizontal
colored line, along with the global average value shown as a
thin black line extending across the entire width of the figure.
The fits to Eqn.1 with σd held to its global average are shown
as black dashed lines. The fitted values of α for both variable
σd (αV ) and fixed σd (αF ) are shown as numerical values.

σd fixed to this average value. The results are shown in
Fig. 4.

To quantify how well the global width in switching
field is described by the local information in Eqn 1,
we first turn to the ∆H(M,∆M) method23 used in bit-
patterned media to extract the so-called “intrinsic” por-
tion of the switching field distribution. The intrinsic por-
tion solely arises from the properties of the individual is-
lands and disregards any contributions from interactions.
This method involves subtracting a series of first-order
reversal curves, or minor loops, from major hysteresis
curves, inverting these curves, and fitting them to the
following function:

∆H(M,∆M) = I−1

(
1−M

2

)
−I−1

(
1− (M + ∆M)

2

)
.

(2)
Here, I−1 is given by:

I−1

(
1−M

2

)
= −
√

2σI
erf−1(M)

1 + γM
− w

2

tan(π2M)

1 + βM
. (3)

The fit parameters σI and w describe the intrinsic switch-
ing distribution of the array, with γ and β allowing for
distribution asymmetry. Both Gaussian and Lorentzian
forms are allowed in the model, to capture contribu-
tions that originate from both the composition of lo-
cal variations (Gaussian terms originating in the central
limit theorem) and possible linewidth broadening effects
(Lorentzian terms). In our fits, the Lorentzian term w
is several orders of magnitude smaller than the Gaus-
sian contribution σI, which underlines the origin of the
switching field distribution in the composition of multiple
local variations (i.e. disorder) in individual island struc-
ture. Thus it is reasonable to identify σI as the Gaussian
width of the full distribution.

The values of σI from these fits agree well with the val-
ues of σd obtained from fitting to Eqn.1. These values are
consistent within a margin of error across all lattice types
and inter-island spacings, which supports the hypothesis
that the disorder contribution arises from distributions in
individual island properties and does not contain signif-
icant contributions due to variations arising from lattice
geometry or from localized defects. This strengthens the
utility of these systems as an acceptable model system
because any lithographically-induced disorder is applied
globally across the system, allowing for consistent inter-
pretation of multiple arrays across a sample.

Eqns. 1 and 2 give consistent values for the width due
to physical island properties, but it remains to be veri-
fied that Eqn. 1 accurately models dipolar contributions.
We have measured the physical parameters that describe
B(r): Ms = 375× 103 A/m from SQUID magnetometry
measurements, V = πr20h and for our islands r0 = 225
nm and h = 10.4 nm, and K for each lattice is listed pre-
viously. Using these parameters and the value of a from
fitting σ, we can calculate the value of the proportionality
constant α.

Hex Kag Squ Tri

σ 23.66 ± 1.96 23.63 ± 1.92 25.38 ± 2.20 31.06 ± 0.56

σI 18.24 ± 1.44 13.55 ± 4.32 15.52 ± 3.97 15.39 ± 0.53

αF 0.84 ± 0.21 0.69 ± 0.17 0.78 ± 0.18 0.93 ± 0.05

TABLE I. Values of σ and α as a function of lattice geometry
for the second fabricated sample with 600 nm inter-island
spacing. σ and σI represent the distribution widths for the
full switching field distribution and the calculated intrinsic
distribution, and σI is interchangable with σd. αF are values
of α with fixed values of the parameter σd = 15.7 ± 0.98.

The resulting values of α are shown in Figure 4. Values
from the initial fit with variable σd are denoted αV and
values from the second fit treating σd as a fixed global
parameter are denoted αF . The data from the hexago-
nal lattice are less clean, which causes larger deviations
in the fitting. Even with this noisier data, all lattices
are consistent within the margin of error. This suggests
that all significant differences in the switching field dis-
tribution due to variations in lattice geometry are ade-
quately accounted for by the effective coordination num-
ber K. Physically, this supports the idea that, at least in
this range of interaction strengths, the dominant cause
of distribution broadening is the overall magnitude of
the field experienced by an island from its neighbors and
is unrelated to precise details of the geometric arrange-
ment. Averaging across the different geometries we find
〈αV 〉 = 0.89± 0.02 and 〈αF 〉 = 0.89± 0.01.

Eqn.1 describes both the intrinsic distribution and the
broadening due to dipolar interactions accurately and
works well as a systematic approach to studying arrays
as a function of inter-island spacing. To verify that α
is a general quantity, we applied our analysis to a dif-
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ferent set of fabricated arrays with inter-island spacing
is L = 600 nm. These arrays have different parame-
ters, specifically Ms = 346 × 103 A/m and r0 = 200
nm. Because these arrays were fabricated at a different
time with different parameters, we expect the value of σd
for these lattices to differ from the previous set. How-
ever, since we verified with the previous samples that σI
gives a reasonable approximation for σd, we can find this
parameter using the minor loops method described pre-
viously. Again, we find the average value of σd from all
geometries and treat it as a global variable. The values
of σ for these different arrays are shown in Table I, along
with the value of α calculated using Eqn 1 with the new
parameters and fixed inter-island spacing L. It is not
surprising that the error in this measurement is larger,
since we are including information from different lattice
geometries at a fixed spacing, instead of fitting each lat-
tice type across a range of spacings. To find the average
value of αF , taking into account the different errors, a
weighted average is used. The values are weighted by
the variance, 〈αF 〉 =

∑
i αFiσ

−2
i /

∑
i σ

−2
i . This value,

〈αF 〉 = 0.90 ± 0.04, agrees well with that calculated for
the other samples, shown in Fig. 4.

In summary, we have demonstrated that using
diffraction-limited MOKE imaging combined with appro-
priate image processing techniques, we can reliably find
the switching fields of individual islands within a large
array of perpendicular nanomagnets. This information

allows us to directly measure the switching field distri-
bution, which we can then analytically interpret to isolate
the contributions from dipolar interactions and disorder
due to individual island properties. By confirming the ef-
ficacy of our numerical analysis using the refined hystere-
sis loops from individual island switching fields, we have
verified a global analysis method that allows for quick
quantization of the strength of disorder. We have chosen
to focus on quantifying this disorder based on its effect
on the dynamics of the system, but another interesting
experiment that could be carried out would be to study
the various possible structural or compositional contri-
butions to this disorder (ellipticity of islands, deviations
in island size and position, etc.). Such a study would
now be possible given that we can quantify the intrin-
sic disorder. This study focuses on global analysis, but
we also have ongoing studies investigating the switching
behavior dependent on island position in the array. Ad-
ditionally, accessing individual island information from a
quasi-dynamic measurement with an in situ applied field
opens the door to further studies of dynamics and corre-
lations that could lead to a much richer understanding of
the behavior of systems governed by dipolar interactions.

This project was funded by the US Department of
Energy, Office of Basic Energy Sciences, Materials Sci-
ences and Engineering Division under Grant No. DE-
SC0010778.
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