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We construct a two-dimensional (2D) lattice model that is argued to realize a gapped chiral
spin liquid with (Ising) non-Abelian topological order. The building blocks are spin-1/2 two-leg
ladders with SU(2)-symmetric spin-spin interactions. The two-leg ladders are then arranged on
rows and coupled through SU(2)-symmetric interactions between consecutive ladders. The intra-
ladder interactions are tuned so as to realize the ¢ = 1/2 Ising conformal field theory, a fact that we
establish numerically via Density Matrix Renormalization Group (DMRG) studies. Time-reversal
breaking inter-ladder interactions are tuned so as to open a bulk gap in the 2D lattice system. This
2D system supports gapless chiral edge modes with Ising non-Abelian excitations but no charge
excitations, in contrast to the Pfaffian non-Abelian fractional quantum Hall state.

I. INTRODUCTION

That point particles may obey non-Abelian braid-
ing statistics in (2+1)-dimensional spacetime has been
known in quantum-field theory since the 1980’s 2 Moore
and Read showed in 1991 that certain Pfaffian wave func-
tions support quasi-particles with non-Abelian braiding
statistics®! This discovery opened the possibility that
non-Abelian braiding statistics could be found in certain
fractional quantum Hall plateaus 8

A second physical platform to realize braiding statis-
tics that is neither bosonic nor fermionic is provided
by quasi-two-dimensional quantum spin magnets with a
gapped chiral spin-liquid ground state T% Quasi-two-
dimensional arrays of quantum spin chains also have the
potential for realizing gapped spin liquid ground states
with quasi-particles obeying Abelian or non-Abelian
braiding statistics 1412

In this paper, we construct a two-dimensional (2D) lat-
tice model, depicted in Fig. [T} that is argued to realize a
non-Abelian chiral spin liquid. This 2D model consists of
an array of coupled one-dimensional (1D) two-leg quan-
tum spin-1/2 ladders. The inter-ladder coupling leads to
a bulk gap, while gapless modes remain at the bound-
aries. The chiral edge states correspond to the Ising con-
formal field theory (CFT) with central charge ¢ = 1/2,
similarly to the Moore-Read Pfaffian state. However,
in contrast to the Pfaffian quantum Hall state, there is
no additional ¢ = 1 chiral bosonic charge-carrying edge
mode. By the bulk-edge correspondence, the bulk of the
coupled spin-ladder model is a gapped chiral spin liquid
supporting Ising non-Abelian topological order 16:7

To obtain this result, we argue that the aforemen-
tioned lattice model is a regularization of one of the
interacting quantum-field theories presented in Ref. [14],
one that supports chiral non-Abelian topological order.
We start from coupled two-leg ladders (called bundles
in Ref. [I4), on which sites quantum spin-1/2 degrees
of freedom are localized. Two ingredients are needed.
First, the interactions within the two-leg ladders should

be fine-tuned so as to realize the Ising universality class
in (141)-dimensional spacetime, the Ising criticality in
short. Second, the interactions between the two-leg
ladders (the bundles) should be dominated by strong
current-current interactions. Alternatively, the interac-
tions between the ladders (bundles) could be weak when
mediated by Kondo-like quantum spin-1/2 degrees of
freedom, as shown by Lecheminant and Tsvelik in Ref.
15l If so, the results of Ref. 14l suggest that the 1D array
of coupled two-leg ladders is a lattice regularization of a
chiral spin liquid supporting Ising non-Abelian topolog-
ical order. We are going to detail how we achieve Ising
criticality in a single two-leg ladder, and how these fine-
tuned two-leg ladders are coupled so as to stabilize 2D
Ising non-Abelian topological order.

II. ISING CRITICALITY IN A LADDER

To realize the Ising criticality, we assume that the
intra-ladder spin-1/2 interactions allow to interpolate be-
tween two distinct dimerized ground states. This can
be achieved by positing the following quantum spin-1/2
Hamiltonian on a two-leg ladder

Hladder = Hleg + Hlleg + H,

zig—zag"

(2.1a)

The first leg of the ladder hosts the quantum spin-1/2 op-
erators §z on every site t = 1,--- , N, where any two con-
secutive sites is displaced by the lattice spacing a. Simi-
larly, the second leg of the ladder hosts spin-1/2 operators

Si on every site ' = 1,---, N. Hamiltonians H,,, and
Hj,, are the antiferromagnetic J; — .J, one-dimensional

Heisenberg model, i.e.,

N

ﬁleg = Z (J1 ‘§z : ‘§¢+1 +J, ‘§z : ‘§i+2)
i=1

(2.1b)

with J;,J, > 0 and ﬁ]{eg obtained from ﬁleg with the
substitution §Z — §,’/ The spin-1/2 operators on the
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FIG. 1. (Color online) Strongly coupled spin-1/2 two-leg ladders that realize the Ising topological order in two-dimensional
space. The intra-ladder couplings J;, Jy, and J,, are defined in Eq. (2.1). The inter-ladder couplings J, (represented by the
green bond) and x| (represented by the blue arrows) are defined in Eq. (3.2]).

two legs also interact through a SU(2)-symmetric anti-
ferromagnetic Heisenberg exchange interaction, which we
choose to be

N
H,io pag = Jv Z (5i',i + 5i’,i+1) S;-Si (2.1c)
i,i'=1
with J, > 0. The coordination number in ﬁzigfzag is
two, not one as would be the case for the standard rung
antiferromagnetic Heisenberg exchange interaction.

Hamiltonian is invariant under a global SU(2)
rotation of all spins, the interchange of the upper and
lower legs, and the mirror symmetries centered about a
site of one leg and the middle of the bond of the other
leg. Hamiltonian simplifies in two limits, namely
when J,, =0 or when J, = 0.

When J,, = 0, Hamiltonian is the sum of two in-
dependent J; — J, antiferromagnetic Heisenberg chains.
It is gapless when J,/J; < (Jy/J;), ~ 0.24 and gap-
ful otherwise 1812 In the gapped phase, the ground state
manifold is four-fold degenerate as the translation sym-
metry along each leg is spontaneously broken by one of
two possible (leg) dimerized ground states when peri-
odic boundary conditions are imposed (by identifying site
N +1 with site 1). In particular, at the Majumdar-Ghosh
point Jy/J; = 1/2,;%) the ground state is a linear combi-
nation of the four possible direct products of all singlet
states of two spin-1/2 degrees of freedom on every other
bond along the upper or lower legs.

When J, = 0, Hamiltonian is the J,, — J; antifer-
romagnetic Heisenberg quantum spin-1/2 zig-zag chain.
(Notice that the zig-zag chain is equivalent to one of the
chains discussed above upon the identification J; — J,
and J, — J;.) The zig-zag chain is gapless when
Ji/ Iy < (Jy/Jy), = 0.24 and gapful otherwise’® In the

gapped phase, the ground state manifold is two-fold de-
generate as the translation symmetry along the chain is
spontaneously broken by one of two possible (zig-zag)
dimerized ground states when periodic boundary condi-
tions are imposed. Again, at the Majumdar-Ghosh point
Jy/Jy = 1/2/2% the ground state is a linear combination
of the two possible direct products of all singlet states
of two spin-1/2 degrees of freedom on every other bond
along the zig-zag chain. (Henceforth, we shall measure
all energies in units of Jy, i.e., J; = 1.)

We are now going to present numerical evidence ac-
cording to which two distinct dimerized phases that
are adiabatically connected to the two Majumdar-Ghosh
points (Jy, J,) = (0,2) and (1/2,0), respectively, are sep-
arated by a phase boundary that realizes the Ising crit-
icality. This is to say that it is possible to connect the
Majumdar-Ghosh points (J,, J,,) = (0,2) and (1/2,0) by
a one dimensional path in parameter space along which
the spectral gap and order parameters vanish at an iso-
lated quantum critical point. We note that a transition
between distinct dimerized phases may be a general route
to achieving an Ising critical theory. Vekua and Ho-
necker in Ref. 21] and Lavarélo et al. in Ref. 22| have
also shown numerically that two other families of ladders
for quantum spin-1/2 display a quantum critical point
in the Ising universality class that separates two distinct
gapped dimer phases?? We note as well that quantum
spin-1 chains can also show a quantum critical point in
the Ising universality class separating gapped phases that
are not related by a loss of symmetry/24

In order to determine the phase diagram and the na-
ture of the quantum transitions between the different
phases at zero temperature, we resort to the density
matrix renormalization group method (DMRG) 226 We
simulate the two-leg ladder with open boundary
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FIG. 2. (Color online) (a) Leg-dimer order parameter at the
center of the ladder, Dy, across the transition for fixed value
of Jy = 0.44 and different system sizes. The extrapolation
to the thermodynamic limit is obtained with a second order
polynomial in 1/N, while the dashed curve is a fit to the
Ising scaling law with a transition at J,, = 0.442. (b) Scal-
ing of Dy, with 1/N for different values of J,, around the
critical point. The scaling at the transition (J, = 0.44) is
well described by an exponent 1/8 corresponding to the Ising
universality class.

conditions using up to 2000 DMRG states for the largest
systems considered,2” which guarantees an accuracy of 9
significant digits in the energy, and 6 significant digits
in the entanglement entropy. We focus on the transi-
tion line that separates the leg-dimer and zig-zag-dimer
phases. As in Ref. 22 we plot the ground-state expec-
tation value for the leg-dimer order parameters in Fig.
(a) as a function of J,, for different system sizes, to-
gether with an extrapolation to the thermodynamic limit,
which allows us to locate the transition at the point
Jy, & Jy =~ 0.448 Panel (b) shows the anomalous scaling
exponent of the leg-dimer order parameter as a function
of 1/N. Tt can be approximated by an exponent of 1/8
precisely at J, = 0.44, indicating the Ising nature of the
transition.

Further evidence for the nature of the transition is
found through finite-size scaling of the energy spectra
and the entanglement entropy.

The finite size spectrum for the 2D Ising CFT depends
on the boundary conditions?? For open boundary condi-
tion, CFT predicts the spectrum

Y 1

1
En(N) =¢&y N+51+W (48 +£Cn> +O (1\72> s (22)

where €, and €; are non-universal constants, while z,, is
the anomalous scaling dimension of the operator corre-
sponding to the state labeled by the integer n. The value
of x,, is sensitive to the limit N — oo being taken with
even or odd values of N. Which set (conformal tower) of
anomalous scaling dimensions enters on the right-hand
side of Eq. depends on the parity in the number of
spins per chain in the two-leg ladder. For an even number

N of spins per chain, the conformal tower starts from the
identity operator, i.e., xy = 0. There follows the anoma-
lous scaling exponents z; = 2, x5 = 3, 23 = ¢, = 4
and so on. For an odd number of spins per chain N, the
conformal tower starts from the energy operator € with
the anomalous scaling exponent x, = 1/2, followed by
the exponents x; = 3/2, z, = 5/2, 3 = 7/2, x, = 9/2
and so on. Our DMRG results are summarized in Figs.
Bfa-d). For any n = 0,1,2,3,4, analyzing the leading
linear dependence and the axis intercept of E,(N)/N
vs 1/N determines the numerical values of ¢, and ¢;.
The value of v is obtained from averaging the slope of
[E,(N) — ey N — &]/N as a function of 1/N? in Eq.
for n = 0,1,2,3,4 assuming that z,, is governed
by the Ising universality class. The consistency of this
assumption is then verified by fitting =,, from the slope
of [E,(N) —ey N —&;]/N as a function of 1/N? with v
given as above. Alternatively, x,, can be fitted from the
slope of E,(N)—E,(N) as a function of 1/N with v given
as above. For even and odd N, the values xz, = 0.000(4)
x; = 2.0(1), x5 = 2.9(5), x5 = 3.9(2), x, = 3.9(9) and
g = 0.5(2) z; = 1.5(1), &z, = 2.5(0), x5 = 3.3(9) follow
from these fittings, respectively. They agree with the
Ising universality class within the error bars.

The entanglement entropy computed with DMRG also
agrees with that of the Ising universality class. If we cut
open the two-leg ladder of length N along a rung into one
block of size x, the entanglement entropy S(z, N) scales
with z and N 1ike22/80 34

N+1 7z 4 4
- SIHZ\H-l) +A(S,-S,.1)+ B,
(2.3)
where the number ¢ = 1/2 is the Ising central charge,
while A and B are non-universal constants. The entan-
glement entropy S(z,N) and the spin-spin correlation
<§x . §z+1> are computed by DMRG and fitted according
to the scaling law as summarized in Figs. e—f).
The best fit for ¢ is very close to one half irrespective of
whether z is varied holding N fixed or choosing © = N/2.
We close this discussion of a single two-leg ladder by
providing a field-theory description of the Ising critical-
ity. The continuum field theory shines light into why
Ising criticality emerges, and into how to couple the two-
leg ladders together so as to build the 2D bulk-gapped
topological phase in the second step of our construction.
The quantum fields that encode the low energy degrees
of freedom around the Ising critical point follow from the

identificationg??

S(z,N) = gm(

S; = I (@) + Jgp(z) + (—1) A(z),
Sl — T (@) + Jp(z) + (-1)" 7/ (2).

(2.4a)
(2.4b)

The modes that vary slowly on the scale of the lattice
spacing a are the non-Abelian chiral currents J, v (z) and
f]’w(x) with M = L, R on the upper and lower legs, re-
spectively. Their scaling dimension is 1 when J, = J,, =
0. The quantum fields n(z) and n’(z) represent the stag-
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FIG. 3. (Color online) The function [Ey(N) —eg N — &1]/N
is plotted as a function of 1/N? with (a) N even and (b) N
odd. The non-universal constants €g = 0.7771(2) and &; =
0.040(6) follow from a linear dependence of E,,(N)/N on 1/N
intercepting the origin in the thermodynamic limit N — oo.
The slopes in (a) and (b) give 7 v [xg— (1/48)] for N even and
odd, respectively. The function E,(N) — Eq(N) is plotted
as a function of 1/N with (¢) N even and (d) N odd for
n =1,2,3,4 and n = 1,2,3, respectively. The slopes in (c)
and (d) give 7 v (z,, —xo) when the limit N — oo is taken with
N even and odd, respectively. The slopes from the plots of
Eq. as a function of (e) sin (7 2/(N + 1)) with N = 768
fixed and (f) In N with = fixed yield ¢ = 0.47 £ 0.02 and
c=0.49 + 0.02, respectively.

gered magnetizations on their respective legs. Their scal-
ing dimension is 1/2 when J, = J,, = 0. In the absence
of the microscopic couplings J, and J,,, each chain can be
separately described using the su(2), affine Lie algebra
satisfied by the chiral currents. Together, the two sets
of currents also satisfy a su(2); @ su(2), affine Lie alge-
bra (with central charge ¢ = 2). Once the microscopic
couplings J, and J,, are turned on, a number of macro-
scopic interactions appear, including the mariginallif rele-
vant current-current interaction (fL —|—f’L) (Jr+Jp), as
we show in the Appendix|Al The chiral sums J, Mt J! Mo
M = L, R, of the currents on both chains satisfy them-
selves an affine sub-algebra su(2), (with central charge
¢ = 3/2). At strong coupling, the added interactions
gap the su(2), piece, leaving behind the coset theory
[su(2), ®su(2),]/5u(2),, which is precisely the Ising crit-

FIG. 4. (Color online) (a) Coset representation of the criti-
cal point of the two-leg ladder in the Ising universality class.
(b) Coset representation of the strong current-current interac-
tions that stabilize the chiral spin liquid phase with Ising topo-
logical order. A microscopic regularization of these strong
current-current interactions is encoded by the inter-ladder

couplings J, and x, defined in Eq. (3.2).

ical theory (with central charge ¢ = 1/2). While the
marginal twist term n - 9,n’ is allowed by symmetry
in the continuum description of the two-leg ladder/*®
our DMRG results support the case that, by properly
selecting the microscopic couplings, the total current-
current interactions can dominate the renormalization-
group (RG) flow to strong couplings and gap the corre-
sponding sub-algebra.

A useful pictorial rendition of this mechanism is the
following. The two-leg ladder is represented by a col-
ored square box in Fig. a). The chiral critical modes
generating the affine Lie algebra su(2); @ su(2); are rep-
resented by two lines with opposite arrow in Fig. (a).
The forking of either one of the directed lines repre-
sents the fact that the affine Lie algebra contains the
diagonal affine subalgebra 5u(2),,; (dashed blue tine of
the fork) and the coset 5u(2); ® 5u(2),/5u(2);,, (red
tine). The marginally relevant current-current perturba-
tion (fL + f'L) : (fR + f}’%) is represented by an arc that
connects the lines associated with the 5u(2),,, subalge-
bra. This coupling gaps the modes associated with this
subalgebra without affecting the modes associated with
the coset theory. We are thus left with a gapless Ising
critical theory.

IITI. ISING NON-ABELIAN TOPOLOGICAL
ORDER

Equipped with this pictorial representation, we con-
sider next an array of two-leg ladders labeled by the in-
dexm=1,--- ,nin Fig. b), each of which is fine-tuned
to the Ising quantum critical point. Next, we present a
mechanism to gap the bulk modes, and leave behind only
the Ising critical theories at the left-most and right-most
bundles, i.e., at the edges. This cannot be achieved by
simply coupling the Ising modes with opposite chirality
across any two consecutive two-leg ladders, depicted as
neighboring colored boxes in Fig. b). The reason is
that the Ising degrees of freedom are fractionalized, and
one is only allowed to write microscopic couplings be-
tween unfractionalized degrees of freedom. There is no



physical current operator associated with the coset. The
mechanism to circumvent this problem was presented in
Ref. [14. One couples the chiral currents associated with
the original su(2); @ su(2); algebra with the same end
result of gapping the bulk and leaving the edge states.

To gap the bulk, any two consecutive two-leg ladders
are coupled by the marginally relevant su(2); @ su(2),
current-current interactions

~

n—1
Hij= 95 ) (JL,m Tpapr +Ion Jll{,m+1> - (3.1)
m=1

These couplings are represented by the directed arcs in
Fig. b). The arrows on the arcs are needed because this
choice of current-current interaction breaks time-reversal
symmetry. By inspection of Fig. [{b), the array of two-
leg ladders is fully gapped if periodic boundary condi-
tions are imposed on the label m, whereas gapless chiral
edge states from the Ising universality class survive in the
vicinity of the first and last two-leg ladders when open
boundary conditions hold. Hereto, we want a lattice reg-
ularization of the quantum-field theory represented by
Fig.[[(b). It is depicted in Fig.

Microscopic interactions between neighboring two-leg
ladders that break time-reversal symmetry and gener-
ate the desired current-current interactions are ob-
tained from the interactions

~

Hinter—ladder = ﬁA + ﬁ/A + ﬁD + ﬁI/ZI ’ (32&)
where
N Y N n—1 N N N
Hp = 5= [Sz nt+1 (Si+1 n NS m)
2 ; a (3.2b)
+Sitin (Si,m+1 A Si+1,m+1> }
and
N n—1
Hp=J, Z (Si,m “Sint1 T Sint1- S¢+1,m)a

(3.2¢)

with H 'y and H 4 following from H A and ﬁD by the sub-
stitution .§i7m — §Z’»,’m. The choice (x,/m) = 2J, yields
the current-current interaction Eq. in the contin-
uum limit with g;; oc (x, /7) +2J,, as we show in the
Appendix [B] where we also argue that any relevant bare
coupling vanishes by symmetry. Marginally relevant and
relevant couplings that compete with g;; can still be gen-
erated at higher loop order, as shown in Refs. [37] and
38. If the coupling g,; is small, these competing inter-
actions may overtake it in a weak coupling RG analy-
sis. An alternative way to rephrase the issue is that,
if the gap is only exponentially small in the bare cou-
pling g,;, the stability of the desired phase is still sub-
ject to the weak coupling analysis done around the fixed
point defined by J, = x, = 0, i.e., a fixed point that

is not stable against these competing relevant perturba-
tions. However, for strongly coupled chains, the gap is
not exponentially small in the bare coupling g,;, and the
addition of the very weak perturbations will not destroy
the gap. Ultimately, non-perturbative techniques such as
DMRG are needed to confirm that the Ising topological
phase depicted in Fig. b) is stable when interactions are
strong in the microscopic model in Fig. 39 We also note
that introducing a buffer of Kondo spin-1/2 between ev-
ery neighboring two-leg ladders that mediate an indirect
interaction between neighboring two-leg ladders, as was
done by Lecheminant and Tsvelik in Ref. [I5] also stabi-
lizes the Ising topological phase depicted in Fig. b).

IV. CONCLUSION

In summary, field-theoretical arguments supported by
DMRG suggest that it is possible to tune a quantum spin-
1/2 two-leg ladder to Ising quantum criticality through
strong current-current interactions. Similarly, strong
current-current interactions between consecutive two-leg
ladders are argued to stabilize a ground state supporting
2D Ising topological order.
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Appendix A: Continuum limit for a single ladder

In this appendix, we start from the spin-1/2 two-leg
ladder Hamiltonian , whose antiferromagnetic ex-
change couplings are depicted in Fig. (a). We are go-
ing to deduce a naive continuum limit of Hamiltonian
(2-1), which we shall interpret as a perturbed conformal
field theory (CFT). In doing so, we shall keep track of
the following symmetries obeyed by Hamiltonian 7
namely (i) invariance under any global SU(2) rotation
of all spins, (ii) invariance under the interchange of the
upper and lower legs, (iii) and the mirror symmetries cen-
tered about a site of one leg and the middle of the bond
of the other leg [see Fig. [ff(a)].

In Sec. we review the limit J,, = 0 for which the
two-leg ladder decouples into two J; — J, antiferromag-
netic spin-1/2 chains and how this limiting case is related
to perturbed conformal field theory.

In Sec. we explain within perturbed conformal
field theory why the fine-tuning of Hamiltonian (2.1]) to
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FIG. 5. (a) A two-leg ladder is the set of points represented
by the filled black circles on which the quantum spin-1/2 de-
grees of freedom are localized. The chain of upper (lower)
circles defines the upper (lower) leg. The bonds between two
consecutive sites on either the upper or lower leg represent the
antiferromagnetic exchange coupling J; > 0. The bonds be-
tween two next-nearest neighbor sites on either the upper or
lower leg represent the antiferromagnetic exchange coupling
Jo > 0. The dashed bonds across the upper and lower legs
represent the antiferromagnetic exchange coupling J, > 0.
(b) When J,, = 0, the two-leg ladder decouples into two iden-
tical J; — Jo antiferromagnetic Heisenberg chains. (c) When
Joy = 0, the two-leg ladder turns into a single J,, — J; antifer-
romagnetic Heisenberg chain. (d) One-dimensional phase di-
agram in parameter space relating the two Majumdar-Ghosh
points J, =0, J;/J, =1/2 and J, =0, Jo/J; = 1/2. The
Majumdar-Ghosh points are represented by squares. They
realize gapped phases. The gap closes in a continuous fash-
ion at the unstable quantum critical point represented by the
filled circle that belongs to the Ising universality class.

the point (A13]) in coupling space has the potential for
realizing Ising criticality. This fine-tuning is captured
by turning the perturbation (A11)) into the perturbation
(A14]).

1. The case J, =0

When J, = 0, the ladder Hamiltonian de-
couples into two independent quantum spin-1/2 chains
with nearest- and next-nearest-neighbor antiferromag-
netic Heisenberg exchange couplings J; > 0 and J, > 0,
respectively [see Fig. [5[b)]. Without loss of generality, we

shall consider the Hamiltonian for the upper leg
only. The results below apply to the lower leg by adding
a prime to all operators and quantum fields.

The phase diagram along the line parameterized by the
dimensionless coupling J,/J; > 0 consists of the quan-
tum critical segment 0 < Jy/J; < (J5/J;),., the quan-
tum critical end point (J,/J;),, and the gapped phase
along the semi-infinite segment (J,/.J;). < Jo/J; < cot8
The gapped phase breaks spontaneously the translation
symmetry by one lattice spacing of the spin-1/2 chain
through the onset of long-ranged dimer order when J,/.J;
becomes larger than (J,/J;).. In particular, at the
Majumdar-Ghosh point,?Y (J,/J; )y o = 1/2 > (o)1),
the ground state for an even number of sites N and with
periodic boundary conditions (PBC) is two-fold degener-
ate, i.e., any linear combination of the two valence bond
states.

This phase diagram can be derived as was done in Ref.
40 by perturbing the su(2); Wess-Zumino-Witten the-
ory describing the gapless phase by the addition of the
current-current interaction

‘7bs = = (91(;.? - 912?) /dz jL(IL) ’ fR(IR)

= g1 / Ao Jy (1) - Tular) (Ala)

in the Hamiltonian picture of quantum-field theory,
where x; == v7 +ir and v, := v7 — ir. Here,

1)

0< gy oxJy, (2)

0 < gbs X J2~ (Alb)
The quantum critical regime corresponds to this pertur-

bation being marginally irrelevant,

Ips < 0. (A2a)
The gapped regime corresponds to this perturbation be-
ing marginally relevant,

The spin operators that were defined on the sites ¢ from
the one-dimensional chain with the lattice spacing a are
encoded in the effective low-energy quantum-field theory
by the following quantum fields. If

i(2a) — =, Na— L, (A3a)

then
S,, = (2a) [mi(z) + n(z)], (A3D)
Syip1 — (20) [m(z) — A(x)], (A3c)

for all sites ¢ = 1,--- ,N/2 of the upper leg, assuming
that IV is even. It then follows that the quantum fields
m(z) and n(z) commute at equal time,

[m(z),n(y)] = 0 (A4)



for all  and y from [0, L]. Furthermore, if we assume
that the quantum fields m(z) and n(x) vary smoothly
relative to the length scale 2a, we may then interpret
the former vector of quantum fields as encoding smooth
fluctuations of the uniform magnetization and the latter
vector of quantum fields as encoding smooth fluctuations
of the staggered magnetization.

Finally, the decomposition

~ ~

m(r,z) = J (7 +iz) + Jp(T — ix), (Aba)
and the identifications
Ty () = Jy(zy),  a(nz) —n(nz)  (A5b)

hold between the operators fM with M = L, R and n in
the imaginary-time Heisenberg picture and the bosonic
fields J,, with M = L, R and n. The latter enter the
operator content of the conformal field theory with the
affine su(2), algebra. They are the closed affine su(2),
algebra, 4143

18%/2 1 ie?eJs,(0)

J]?/[(Z‘M) J&(O) ~ (27‘()2 1_2 ot T ) (A6a‘)
M M
the closed algebras
a b 1 5ab
n(r, @) n’(0,0) ~ 2r%a (zp xp)/? +oo (A6D)
and
1 6ab
e(r,2)e(0,0) ~ +--, (A6c)

2n2a (x, xp)t/?

L
ﬁJV — (2a) Jv/da: [m(x) +n(z)] -2 x m/(z))
0

with the nonvanishing cross terms

i€ nc(0,0) 416 £(0,0)

Ji () n’(0,0) ~ Ir, . (A6d)

T8 (2 p) nb(O, 0) ~ jeabe nC(O,Zi)?)T; igab (0,0) . (A6e)
R

T () (0,0) ~ —”475‘;0) (A6F)

Tl 20.0) ~ +720, (A6)

Here, (7, ) is the quantum field that encodes smooth
fluctuations of the staggered dimerization.

Having established the nature of the line of quantum
critical points along the segment 0 < J,/J; < (J5/J,).
and the dictionary relating the spins to the operator con-
tent at criticality, we can construct the continuum limit
for the perturbations of the critical segment

J, =0,

0 < Jy/Jy < (Jo/J1), (A7)

in the parameter space for the two-leg ladder.

2. The case J, #0

To obtain the naive continuum limit of the Hamilto-
nian (2.1¢)), treated as a perturbation to the critical seg-
ment 0 < J,/J; < (Jy/Jy),. , we first write

N/2
H;, =J, Z So; - (Séz' + S§i+1)

i=1
N2 (A8)

+Jy Z Soit1 - (S§i+1 + S§i+2> )
i=1

where we have assumed that IV is an even integer and im-
posed PBC. If we insert the decomposition into the
chain-like Hamiltonian , and perform an expansion
in powers of (2a) to leading order, we get

(A9)

L
+(2a) J,, / da [m(x) — ax)] - [2 x W (z) + (20) 0,7 (x) + (20) 9,7 (x) + O((20)%)] .
0

Hence, the segment of quantum criticality (A7) in pa-
rameter space is perturbed by

L
BY, = / do (W) + Wy, +-+) (@), (Al0a)
0

(

where

Wy (@) = + g, [To(@) + Tn(@)] - [Ti.(@) + Tp(@)]



is a marginally relevant perturbation® with the coupling

gy =4 xv, >0, vy = (2a) Jy, (A10c)
and
Wy, = — gu i(2) - 9,7 (2) (A10d)
is a marginal interaction®® with the coupling
I = (20) vy, > 0, (A10e)

and - -- represents irrelevant local perturbations.
Observe that [see Egs. (Ala) and (A10b))]

Vi (@) + Vs (@) + Wy (a)
= Goe [T (2) - Tp(@) + T () - T(@)]
9y [T(@) - Tr(@) + Tp(@) - Ti(

~ ~,

gy [To(@) - T (@) + (@) - Tp(a)] .

)

8

)] (A11)

Define
K, (z) Kp(z)
N R (A12a)
= [Te(@) + T @)] - [Tala) + Ta(@)]
where
Ky (x)= Jy(z)+ Jj(x), M=LR. (Al2Db)
If
Ibs = 9v = Gps=v> (A13)
then
Vi (@) + Vi (@) + Wi (2)
= gpoey K1 (2) - Kp(z) (A14)

+ Gy [T2(@) - T (2) +

Ising quantum criticality of the two-leg ladder (2.1)) is
the consequence of the flow to strong coupling of the lo-

cal current-current interaction (f(\ - K R) (z) when it is

the only runaway flow from the su(2); @ su(2); quan-
tum critical point. The Ising quantum critical point
realizes the coset theory with the affine Lie algebra
su(2); @ su(2),/su(2),, whose central charge is 1/2.

Appendix B: Continuum limit for coupled ladders

We are going to construct the perturbation to the
conformal field theory derived in Appendix that re-
sults from coupling the spin-1/2 two-leg ladders as shown
in Fig. The counterpart to the generic perturbation

(A11) in Appendix |A]is the generic perturbation (B7)).

We consider n two-leg ladders labeled by m=1,-
They interact through the perturbations H A and H s
where
n—1

o=y

i=1 m=1

+ §i+1,m . (gi,m+1 A §i+l,m+1) ]
(Bla)

with x, real valued and " 'y that follows from H A by
the substitution S n— S/
and HD, where

ﬁD = Z Z {JJ_ ‘§7,m ) ‘§i,m+1

+ (J/ §i,m : ‘§i+1,m+1 +J\ ‘§iam+1 ' §i+1’m> }
(B1b)

and the perturbations ﬁD

i/ ,m’

with JL,J/,J\ > 0 and I/i\'l’:, obtained from ﬁD by the

. . 4 A/
substitution S; , — Sj ..

Figure (1| depicts the special
case of

JJ_:J\,

which is considered in Eq. (3.2]) from the main text.
The continuum limit of the three-spin interaction H .
(Bla) is derived in Sec. The result is the local poly-

nomial

n—1
VA = gXJ_ Z (JL7m : JR,erl - JR,m . JL,m+1) +y

m=1

(B3a)

where
- Xo
Iy, = 2 x (2a) b (B3b)
and - -- denotes irrelevant local perturbations. Similarly,

the continuum limit of 'y delivers the local polynomial
‘//\'A that follows from substituting J, M(T) = J M oa(z) for
M=L,Rin V,.

The naive continuum limit of H, g defined by Eq.

can be derived in a similar way as we did in Sec. The
result is the local polynomial

n—1[ n-2
Vo= Z Z g;?) (JL,m “Jopiw T IRa JR,m-‘rm’)
m=1 [m'=1
n—2 ,
+ Z gJ(I; : (JL,m ’ JR,m+m’ + JR7m ’ JL,m+m')
m'=1
n—2
+ (9% Ay g + 90 &, Tmf)
m'=1
n—2 /
+ Z gg’n" ’I’L a:rnm+m )]
m'=1

(B4a)



up to irrelevant local perturbations. Here, the bare values
of the couplings are

('

) — (4L / \
955" = (%‘j + 955 +gjj) O

—2 % (2a) (JL I+ J\) 8ot (B4b)
950 = (G700 + G + 9hn) St
—2 % (2a) (JL —J, - J\) St (B4c)
& =0, (B4d)
gm) = (gt/w - gt\w) O
= (20)2 (—J/ + J\) F (Bde)

We note that the initial value of the twist coupling van-
ishes** if

The continuum limit of ﬁf(j can be obtained by the sub-
stitutions Jy,  (7) — Jyr,(2) with M = L, R, n,(z) —
ni(x), and £, (z) — &,(z) in ‘75. The result is the local

m _m m
polynomial V.

The condition

Jy =, J, =0 (B6)

forbids the presence of any relevant perturbation of the
form n, - n, ., and £, &, with m" an odd integer by
the symmetry under reflection in a plane perpendicular
to the chainsgt5,

Addition of the contributions to the current-current
back-scattering from the local perturbations V, , V4, VA,

J

9

and 175 [see Egs. 1] and 1’ gives the local current-
current perturbation

n—1

VA,D bs ‘T Z |:g+ (JL,m ' JR,m+1 + Ji,m ' Jll%,m—&-l)
m=1
+9- (Tra Toars + Tha Tian) |

(B7a)
with the couplings
1
gy =gy, + Iy,

— 2 % (2a) (JL +J, 4+ J\) +2x (2a)’%. (B7b)

Given the initial values g, > 0 and g_ < 0, g, flows to
strong coupling while g_ flows to zero. Conversely, given
the initial values g_ > 0 and g, <0, it is g_ that flows
to strong coupling while it is g, that flows to zero. The
strong coupling fixed points that we seek require that

sgn (g4 x g_) <O0. (B8)
Furthermore, under the condition , if we choose

AL =2y, (B9)
71'

then

9+ =95, =8 % (2a) J, g_=0. (B10)
This is the case considered in Eq. (3.1) from the main

text.

1. Continuum limit of the three spin interactions (B1lal)

The perturbation H A defined by Eq. 1D couples two consecutive two-leg ladders in such a way that it breaks

time-reversal symmetry. The coupling H, involves two term per square plaquette defined by the vertices (¢,m),
(i4+1,m), (4,m+ 1), (¢ 4+ 1,m+ 1). We shall take the naive continuum limit arising from each term separately.

We write

N n-—1

Ty X1 abe Qa ab qc
HA1 = T E E € Si,m+lsi+l7msi,m

i=1 m=1
N/2np—1

X1 abe [ Qa ab qc
= 5 E Z € S2i,m+1 SQiJrl,m S2i,m

=1 m=1
N/2np—1

(B11)

X1 abe [ Qa ab ac
T 2 ZZG S2i+1,m+1 52i+2,m Szi+1,m )

i=1 m=1

where we have assumed that N is an even integer and imposed PBC. If we insert the decomposition (A3]) into the



10

Hamiltonian (B11)), and perform an expansion in powers of (2a) to leading order, we get

4 L
NEESS / o €2 x (20)? [y () M (x) g () — e (2) P ) P )
E=F (B12)
~ ~b ~ ~ ~b ~
+ T (@) Tih(2) () — T (@) () g (@) -
where - - - refers to irrelevant local perturbations. To proceed, we need to point-splitting pairs of operators sitting at

the same position x in the same bundle m. After point-splitting, we shall use the operator product expansion (OPE)
so as to reduce the point-split pair of operators to either a C number or a single operator. We treat such pairs
of point-split operators one by one. First,

m

e b (@) g (@) = e Jim [T} (@ +20) + Tha(@ +20)] [T a@) + Toa(@)]

2a—0 ?
o R PO T We)
2a—0 | 872 (+i2a)? 27 (+i2a) 8n2(—i2a)? 27(—i2a)
(2a)7t 14 -
== [T (@) = Tha(a@)] - (B13a)

The OPE (A6a)) were used for the line with the ~, the identity ¢?*¢e**? = 2% was used to reach the last equality.
Second,

e nb(z)ns(z) ~0. (B13b)
Hereto, the OPE were used. Third,

e mb(z) A (x) ~0. (B13c)
Insertion of Egs. into Hamiltonian gives

Ha, =X, Z / ar B (5, @) 4 Traa )] [Trae) — Tpalw)] - (B14)

Next, we write
Y N n—1
7 L L abec Qa ab e
Hp,= — 5 Z Z €S 1 m i Lt 1 imt1
i=1 n=1
X N/2 n—1
1 abe [ Qa Qb Qc
T 9 Z Z € (52i+1,m S2it1mt1 Szi,m+1) (B15)
i=1 m=1
N/2n—1

X1 abc (Qa Qb Qc
T Z Z € S%im 5% mi1 92 1mt1) 5

i=1 m=1

where we have assumed that IV is an even integer and imposed PBC. The continuum limit of H Ao || can be

derived in a similar way as we did for H A, The result is

4 L
N Z/ B [, (@) + Fna@)] - [Trais @)~ Trwra(@)] 4 (B16)
n=17
Thus, the continuum limit of HA can be read from Egs. and 1D It is
n—1 L
— (2q) %Z/dz Tia=Tra) (Tran + Tnar) = (Toa+ Tra) - (Trmpr = Trae) |+
m=1 0

1

=g /dI JL,m : jR,m—i—l - j\R,m ' fL,m—&-l) +oeee (Bl?a‘)
1
0

3
|

8
Il



where the coupling Iy, stands for

Ix

L

= 2 x (2a) 2+,

11

X (B17b)

™

Similarly, the continuum limit of FAI’A follows from that of I;TA with the substitution J), ,(v) — J}, ,(z) with M = L, R.
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