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Synchronization of Spin Torque Nano-Oscillators has been a subject of extensive research as
various groups try to harness the collective power of STNOs to produce a strong enough microwave
signal at the nanoscale. Achieving synchronization has proven to be, however, rather difficult for even
small arrays while in larger ones the task of synchronization has eluded theorist and experimentalists
altogether. In this work we solve the synchronization problem, analytically and computationally, for
networks of STNOs connected in series. The procedure is valid for networks of arbitrary size and it is
readily extendable to other network topologies. These results should help guide future experiments
and, eventually, lead to the design and fabrication of a nanoscale microwave signal generator.

PACS numbers: 74.81.Fa, 85.25.Dq, 43.25.-x, 85.25.-j

I. INTRODUCTION

The synchronization phenomenon of Spin Torque
Nano-Oscillators (STNO) has been the subject of ex-
tensive research for many years due to the potential of
networks of STNOs to generate microwave signals at
the nanoscale1–3. In the last few years, Adler4 type
injection locking has emerged as the most promising
method to achieve synchronization, either through an ex-
ternal microwave current5–7 or through a microwavemag-
netic field8,9. In particular, it has been shown recently,
that a record number of five nano-contact STNOs10 can
synchronize via spin wave beams11. Non-Adlerian ap-
proaches to synchronization of nanopillar STNOs have
also been considered. In Georges et al.12, the critical
coupling strength and minimum number of STNOs for
the onset of synchronization were found analytically by
describing the STNOs as phase oscillators in the frame-
work of Kuramoto13. Later, Iacocca and Akerman15 pro-
vided conditions for the onset of phase instability that
may be caused, surprisingly, by strong coupling in iden-
tical STNOs. It is well known, however, that amplitude
can affect synchronization, specially near the onset of a
Hopf bifurcation16. In fact, in STNOs amplitude and
phase are intrinsically coupled by the dependence of the
effective field on the magnetization17. Thus, if the Hopf
bifurcation parameter is of the same scale as the cou-
pling parameter then the amplitude is no longer negli-
gible and the Kuramoto model reduction is no longer
valid. Furthermore, when the amplitude dynamics are
not negligible and the natural oscillation frequencies are
not homogeneous, synchronization may be enhanced re-
gardless of the topology of the network18. Consequently,
a complete understanding of synchronization of nanopil-
lar based STNOs, via non-Adlerian type, requires an
analysis that incorporates the amplitude dynamics.

In 2005, back-to-back publications in Nature Letters

(Kaka2, a collaboration between NIST and Hitachi GST
and Mancoff19 from Freescale Semiconductor) showed
that two STNOs tend to phase lock when they are in close
proximity of one another. The coupling in these cases re-
sulted from spin waves propagating through the continu-
ous free layers, leading to phase locking. Soon after, Grol-
lier et al.1 investigated computationally the behavior of
a 1D series array of N = 10 electrically coupled STNOs.
Their study showed that the AC current produced by
each individual oscillator leads to feedback between the
STNOs causing them to synchronize and that, collec-
tively, the microwave power output of the array increases
as N2. In a follow-up study, Persson et al.3 mapped out
numerically the region of synchronization of the 1D seri-
ally connected array considered by Grollier et al. for the
special case of N = 2 STNOs. Their work shows that the
region of parameter space where synchronization exists is
rather small, thus explaining the difficulty (already ob-
served by experimentalists) to achieve synchronization.
Li et al.20 showed that this difficulty was due, mainly,
to the coexistence of multiple stable attractors, suggest-
ing that the synchronization regime is highly sensitive
to initial conditions. Persson et al.3 also investigate nu-
merically the effect of including a time-delay between the
magnetization induced change in voltage and the current
variation. They highlight that this increases significantly
the parameter region of synchronization, especially with
respect to differences in anisotropy fields between the
STNOs. We determine numerically that the synchro-
nization for 1000 STNOs is robust to non-homogeneities
in the anisotropy field on the order of 4-5%, as Persson
et al. also observes in the absence of delay. It will be
worthwhile to investigate in future work the effects of
time-delay and to find out whether the synchronization
is robust to larger anisotropy in the network.

On a single STNO, see Fig. 1(a), an originally unpolar-
ized electric current I, in units of Amp, is applied to the
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FIG. 1: (Left) Schematic representation of a nanopillar
STNO. A spin-polarized current can exert a torque on the
magnetization of the free layer and lead to steady precession.
(Right) a circuit array of STNOs connected in series.

fixed magnetic layer whose magnetization is represented
by M̂ . As the electrons pass through the layer, their spins
become aligned to that of the fixed layer, thus creating a
spin-polarized current. Then the polarized current exerts
a torque on the magnetization of the free layer, which can
lead to steady precession. We consider a circuit array of
N identical STNOs coupled in series, see Fig. 1(b), and
study the conditions to synchronize the individual pre-
cessions. Our approach employs the DC current, IDC ,
flowing in each STNO and the angle θh of the applied
magnetic field as the bifurcation parameters. No injec-
tion of AC current is required. The all-to-all coupling of
the network of identical STNOs implies a complete per-
mutation symmetry which we exploit using equivariant
bifurcation theory21.

We search for fully synchronized periodic oscillations
in the network of N STNOs, first by finding implicit
analytical expressions for Hopf bifurcation curves, in
(IDC , θh) space, at a synchronized equilibrium that yield
symmetry-preserving in-phase oscillations, see Fig 2. We
calculate the stability of the synchronization manifold
near a synchronous equilibrium and combine Hopf crit-
icality results to determine regions of parameter space
where the fully synchronized periodic state is asymptot-
ically stable near bifurcation. More importantly, the re-
sults are valid for networks of arbitrary size N . Normal
hyperbolicity22,23 guarantees the synchronization mani-
fold is robust to small non-homogeneities in the STNOs.
Numerical simulations show that synchronization is pre-
served to approximately ±5% variations in anisotropy
strength. Results are illustrated with arrays of up to
N = 1000 nano-oscillators, see Fig. 3. The analysis also
captures symmetry-breaking patterns of oscillations, but
we do not pursue the study of those cases here. These
patterns are described as “multiple synchronization at-
tractors” in Li et al.24.

FIG. 2: (Top) Loci of Hopf bifurcations of synchronized oscil-
lations. (Bottom) Stability of synchronization manifold. Red:
supercritical Hopf and stable synchronization manifold; black:
subcritical Hopf and unstable synchronization manifold; blue:
supercritical Hopf and unstable synchronization manifold.
The combined results of these two plots reveals the optimal re-
gion to synchronize a series array of nano-pillar STNOs: the
first quadrant of parameter space (IDC , θh). Parameters25

are: N1 = 1, N2 = 0, γ = 2.2 × 105 m·A−1s−1, α = 0.008,
κ = 45Oe, µ = 0.992, ha = 300Oe, β∆R = 5.95×10−4. (Color
online).

II. LOCI OF STABLE SYNCHRONIZED

OSCILLATIONS

The free-layer magnetization vector, m̂ =
[m1,m2,m3]

T , for an individual nanopillar oscillator is
governed by the Landau-Lifshitz-Gilbert-Slonczewski
(LLGS)26–29 equation

dm̂

dt
= −γ m̂×−→

H eff+α m̂×dm̂

dt
−γ µ Im̂×

(
m̂× M̂

)
, (1)

where γ is the gyromagnetic ratio, α is the Gilbert damp-

ing term, µ contains material parameters and ~Heff is

the effective magnetic field. The term ~Heff consists of

an anisotropy field, ~Han = κ(m̂ · ê||)ê||, where κ is the
strength of the anisotropy (we set κ = 45Oe in our simu-
lations25) and e|| = [sin θ|| cosφ||, sin θ|| sinφ||, cos θ||]

T is

a preferred direction of magnetization. ~Hd is a demagne-

tization field and we set ~Hd = −4πS0(N1m1x̂+N2m2ŷ+
N3m3ẑ) where S0 = 8400/4π is the constant magnitude
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of the average magnetization vector S(t) (in units of Oe)
so that m̂ = S/S0, N1, N2, N3 are dimensionless con-
stants satisfying N1 +N2 +N3 = 1 and {x̂, ŷ, ẑ} are the

orthonormal unit vectors. ~Happl is an applied magnetic

field given by ~Happl = ha [0, sin θh, cos θh]
T , which we as-

sume to lie on the yz-plane at some angle θh instead of
the z-axis, and note that ha is in units of Oe. M̂ is the
fixed layer magnetization vector that defines the spin po-
larization direction of the current. In what follows we
assume θ|| = 0 so that e|| = [0, 0, 1], which produces an
easy axis in the z-direction. Finally, we assume the di-
rection of polarization of the spin-polarized current to
remain constant along the z-direction, i.e., M̂ = ẑ.
For an array of STNOs, coupling occurs if the in-

put current I is replaced by Ij . First, we assume the
STNOs to be identical. Later, we consider the effects of
non-homogeinities as perturbations of the synchroniza-
tion manifold. Applying Kirchhoff’s Laws we obtain the
current through the jth STNO:

Ij = IDC

(
1 +

N∑

i=1

β∆Ri cos θi(t)

)
, (2)

where IDC is a constant DC current, β∆Ri is a pa-
rameter that depends on the resistances in the paral-
lel and antiparallel magnetization states, and θi(t) is
the angle between the magnetization of the fixed and
free ferromagnetic layers. We substitute Eq. (2) into
Eq. (1) and, for convenience, we convert to complex
stereographic coordinates through the change of variables
zj = (mj1 + imj2)/(1 +mj3). Direct calculations yield

żj =
γ(1 + iα)

1 + α2

[

iha3
zj +

ha2

2
(1 + z2j ) + iκ

1− |zj |2

1 + |zj |2
zj − µIDCzj−

µIDCβ∆R

N
∑

k=1

1− |zk|
2

1 + |zk|2
zj −

4πS0

1 + |zj |2

(

N1 −N2

2
(z3j − z̄j)+

(

1−
3N1 + 3N2

2

)

(zj − zj |zj |
2)

)]

, (3)

where ha2
= ha sin(θh) and ha3

= ha cos(θh).
For the special case N1 = N2 = 0.5, Eq. (3) is more

amenable to analysis, and thus we can find, via Maple,
implicit analytic expressions for the Hopf loci that yield
synchronized periodic states for arbitrary arrays of size
N . Although the synchronized periodic oscillation is un-
stable, we can still use these analytical expressions to fol-
low, via the automatic numerical continuation software
AUTO30, the movement of the Hopf loci as function of
the continuation parameter s, where N1 = 0.5 + s and
N2 = 0.5 − s. For s = 0.5, we arrive at the physically-
relevant configuration of easy-plane anisotropy or x-axis
demagnetization. The Hopf loci curves for s = 0.5 are
shown in Fig. 2 (top) for various sizes of networks. In ad-
dition, we determine the criticality of each Hopf loci point
through the Lyapunov constant formula32 as well as the
local asymptotic stability of the synchronization mani-
fold near the Hopf point, via AUTO. This process yields,
for s = 0.5, the red Hopf loci curves (color online) located

in the first quadrant of (IDC , θh)-space from which sta-
ble synchronized periodic solutions bifurcate, see Fig. 2
(bottom).
Observe that the location of these curves implies that

less current is required to synchronize larger arrays. This
observation suggests that synchronization in series array
of nanopillar STNOs depends more on the dynamical pa-
rameters than on the coupling strength. Similar results
have been observed in studies of power grids, which can
also be treated as Kuramoto oscillator networks31.

We wish to emphasize that the aim of this manuscript
is strictly on the theoretical analysis to determine regions
of existence of stable synchronization. Effects of noise,
such as linewidth reduction, are briefly addressed in Sec-
tion VII, but a detailed analysis is ongoing and deferred
to a future publication. Next we present an outline of
the analysis that was carried out to obtain the implicit
solutions of the Hopf loci.

III. HOPF BIFURCATION CURVES

This section summarizes the mathematical analysis of
how one can exploit the symmetry of the network to ob-
tain the main results shown in Fig. 2. Details of these
calculations can be found in Appendix A.

Due to the all-to-all coupling that appears in Eq. (3)
as a consequence of Kirchhoff’s law, and the assumption
of identical STNOs, any permutation of the STNOs in
the array leaves the coupling term invariant; thus, the
series array has symmetry group SN , the group of all
permutations ofN objects. To find analytical expressions
for the Hopf loci of synchronized solutions we study the
linearized system near the origin. Let z = (z1, . . . , zN) ∈
C

N and denote equation (3) by żj = fj(z). Since we
assume all the STNO’s to be identical, we have f1 =
f2 = . . . = fN . We rewrite the system of Eq. (3) in
abbreviated form

ż = f (z), (4)

where f = [f1, . . . , fN ]T . Let z0 = (z0, . . . , z0) be an
equilibrium solution of (4) with isotropy subgroup SN

21.
Then the linearization at z0 is given by

L :=




A B · · · B

B
. . .

. . .
...

...
. . .

. . . B

B · · · B A




(5)

where A = (dfj j)z=z0
and B = (dfjk)z=z0

are 2 × 2 Ja-

cobian matrices of fj , with j 6= k.Using symmetry meth-
ods, we block diagonalize L to a form which respects
symmetry invariant subspaces. Let P be the change of
coordinates matrix. Applying P to L, we obtain a block
diagonalization of the linear part of the coupled STNO
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array

L̃ := P−1
LP = diag{A+ (N − 1)B,A−B, . . . ,A−B}.

(6)
From the diagonal structure, the eigenvalues of the blocks

are also eigenvalues of L̃. It follows that Hopf bifur-
cations in (4) occur if and only if A + (N − 1)B or
A − B have purely imaginary eigenvalues. In the for-
mer case, the eigenspace associated with A + (N − 1)B
is v0 = [v, . . . , v]T and the symmetry group SN acts triv-
ially on v0. This corresponds to a symmetry-preserving
Hopf bifurcation in which all STNOs oscillate in syn-
chrony, i.e., same wave form, same amplitude and same
phase. In the latter case, the eigenvalues have, generi-
cally, multiplicity N−1 (from theN−1 blocksA−B) and
the emerging patterns of oscillations arise via symmetry-
breaking Hopf bifurcations21. For instance, the case re-
ported in24, in which two pairs of STNOs are in-phase
with one another and half a period out-of-phase with
respect to each pair, corresponds to a Hopf symmetry-
breaking pattern that emerges from the A−B block with
N = 4. A complete description of the possible patterns
of oscillations that can appear for each value of N can
be found via equivariant Hopf bifurcation 21. The em-
phasis of this manuscript is, however, on the symmetry-
preserving synchronization state.

Combining the equilibrium conditions with the trace
condition of purely imaginary eigenvalues for the block
A+(N−1)B and using polar coordinates, z0 = r(cos θ+
i sin θ), we get the following set of equations as a function
of (r, cos θ, IDC, θh):

Re(fj) = 0

Im(fj) = 0

Tr(A+ (N − 1)B) = 0.

(7)

To find the desired analytical expressions for the Hopf
boundary curves, we solve the first three equations in
Eq. (7) implicitly for the state variables (r, θ) as functions
of the parameters IDC and θh. We set N1 = N2 = 0.5
as a starting point to facilitate the analysis. Through a
series of substitutions we are able to reduce this system
of three equations with four unknowns, (r, θ, IDC , θh), to
a single expression with two variables (r, θh). To plot the
boundary curves, we first extract the coordinate points
from the solution sets and back-substituting gives the
actual point values (IDC, θh) along the curves. VaryingN
we can then trace the movement of the synchronous Hopf
bifurcation curves. We verify along the curves obtained
that det(A − B) > 0 and det(A + (N − 1)B) > 0. The
results just described are then extended using AUTO to
the case N1 = 1, N2 = N3 = 0 by continuing the Hopf
loci curves in (IDC, θh) space using N1 = 0.5 + s and
N2 = 0.5 − s and letting the continuation parameter s
evolve from 0 to 0.5.

FIG. 3: Locking into synchronization with N = 1000 STNOs.
Start at high IDC and let the system lock into the common
equilibrium. Then sweep down IDC until the common equi-
librium vanishes and synchronized oscillations appear. Inset
(top): zooms-in on the top part of the oscillation showing a
high level of synchronization between all the STNOs. Inset
(bottom): zoom-in on the set of random initial conditions for
the N = 1000 STNOs and evolution for small time values
showing rapid convergence to a synchronized equilibrium.

IV. STABILITY

The Hopf bifurcation can be supercritical or subcrit-
ical, leading to stable or unstable synchronized oscilla-
tions, respectively. Which one appears is determined by
the Lyapunov constant32. If the Lyapunov constant is
negative, the Hopf bifurcation is supercritical while if it
is positive, it leads to subcritical Hopf. Now, the stability
property of the synchronization manifold is determined
by the eigenvalues transverse to the manifold. Those
eigenvalues are given by N − 1 copies of the eigenvalues
of the blockA−B and since the synchronization manifold
is computed near an equilibrium, then normal hyperbol-
icity follows from the eigenvalues of the A−B block. The
actual calculation of Lyapunov constant and that of the
transverse eigenvalues are technical and lengthy and have
been moved to Appendix A under nonlinear analysis.

V. LOCKING INTO SYNCHRONIZATION

Numerical simulations indicate the common equilib-
rium state of large arrays has a large basin of attraction
for large values of DC current, about 15 mA. This sug-
gests a possible strategy to achieve synchronization in
actual experiments: start the experiments at high IDC

current and let the system lock into the common equi-
librium. Then sweep down IDC until the common equi-
librium vanishes at a saddle-node bifurcation and sta-
ble synchronized oscillations appear, created via Hopf bi-
furcation from a co-existing common equilibrium found
at lower IDC values. This strategy was tested with
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FIG. 4: Frequency response of an array of N STNOs con-
nected in series. The observed dips in frequency correspond
to switching between out-of-plane and in-plane oscillations.
Parameters are the same as in Fig. 2, with θh = 3π/4.

non-homogeneities introduced through variations in the
anisotropy field constant κ. As a consequence of the
normal hyperbolicity of the synchronization manifold,
we expect the synchronization state to be robust under
small perturbations, such as the non-homogeneities in κ.
Indeed, numerical simulations confirm that the STNOs
are able to synchronize with up to ±5% variations in
anisotropy strength if the values are chosen randomly
from a uniform distribution, see Fig. 3, and up to ±4%
with a Gaussian distribution.

VI. FREQUENCY RESPONSE

We now employ the Fast Fourier Transform to char-
acterize the frequency response in networks of N non-
identical oscillators coupled in series. The plots in Fig. 4
show the frequency of oscillation for N = 1, 10, 100 and
1000. The observed “dips” for small values of IDC cor-
respond to the switch from out-of-plane oscillations to
in-plane oscillations. For θh = 0, the switch is character-
ized by a gluing bifurcation; that is, a global bifurcation
where a pair of homoclinic loops (symmetrically related
in this case) are connected to a saddle equilibrium, see34

for an example in the context of STNOs. For θh = 3π/4,
which is the value used in Fig. 4, the switch involves two
homoclinic bifurcations. In both cases, the switch from
out-of-plane to in-plane oscillations explains why the fre-
quency approaches 0 Hz. In general, lines terminating at
non-zero frequency correspond to known Hopf bifurca-
tions and lines terminating at or near 0 Hz correspond to
suspected (not verified for every value of N) homoclinic
bifurcations. These results suggest that the range of IDC

values for which oscillations are present increases with
the number of STNOs, however the interval of possible
frequencies decreases with increased N .
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FIG. 5: Linewidth. The observed dips in frequency corre-
spond to switching between out-of-plane and in-plane oscilla-
tions. Parameters are the same as in Fig. 2, with θh = 3π/4.

VII. LINEWIDTH

We now consider (briefly) the effects of thermal noise
on the oscillations of the synchronized solutions by

adding a stochastic thermal field term ~Hth to ~Heff
35,36

in the original LLGS Eq. (1), becoming

dm̂

dt
= −γ m̂× (

−→
H eff +

−→
H th) + α m̂× dm̂

dt
−

γ µ Im̂×
(
m̂× M̂

)
,

(8)

where
−→
H th = [hx(t), hy(t), hz(t)]

T , in which hx(t), hy(t)
and hz(t) are Gaussian distributed random functions, un-
correlated, of zero mean. The added term also carries to
the complex form Eq. (3). Linewidth was computed as
full width of the Power Spectra Decomposition (PSD) of
the synchronized oscillations, via FFT, at half maximum
of main frequency in the PSD. The computation was car-
ried out as a function if IDC , on the same interval of the
frequency response of Fig 4, and for a few different values
of array size N . The results are shown in Fig. 5.
The spikes in linewidth that are observed near the end

points of the interval of synchronization are due to the
oscillations having different characteristics. More specif-
ically, for small IDC the spikes are due to a change to
out-of-plane oscillations and for large IDC (and large ar-
rays) the spikes are due to loss of synchronization, i.e., for
large arrays the synchronized oscillations give way to out-
of-phase oscillations before eventually converging to an
equilibrium point. But for the most part of the interval of
synchronization, the linewidth remains relatively small.
These results suggest, again, that the synchronized so-
lution is significantly robust against the effects of noise.
However, one would have to carry out a complete analysis
of the stochastic properties of the coupled network equa-
tions as a function of coupling strength and noise inten-
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sity, for instance. We also wish to point out that temper-
ature is assumed to be implicitly included in the stochas-
tic thermal field. Future experimental works should pro-
vide a more explicit contribution of temperature varia-
tions and material properties towards the stochastic field.
Those issues are important but they are beyond the scope
of the present work. Instead, our emphasis is, mainly, on
finding the conditions for the existence and stability of
synchronized oscillations in the deterministic system. We
expect to carry out the stochastic analysis in future work.
In particular, it would be interesting to obtain theoretical
formulas (possibly asymptotic for large N) for the half-
linewidth for serially coupled STNOs using the theory
developed in Slavin and Tiberkevich36.

VIII. DISCUSSION AND CONCLUSIONS

To date, the strongest microwave power that has been
produced by a single STNO is in the order of 0.28µW 33.
As mentioned in the introduction, Grollier et al.1 showed
that for an array of N = 10 electrically coupled STNOs,
the synchronized array microwave power output increases
as N2 . Thus, if the N2 law holds in general, 1000 syn-
chronized nano-oscillators, as simulated in this paper,
should produce about 0.28W . Communication systems,
which require power in the order of milliwatts, e.g., wire-
less devices, radar, air traffic control, weather forecasting
and navigation systems, would only require about 188
nano-oscillators.
In Turtle et al.34, we showed computationally the na-

ture of the bifurcations leading to these attractors and
discovered that changing the angle of the applied mag-
netization field could enlarge the basin of attraction of
the synchronized oscillations. In this work we extended
the bifurcation analysis of nanopillar based STNOs con-
nected in series arrays of arbitrary size. We use equiv-
ariant bifurcation theory to find the region of existence
and stability of the synchronization manifold for which
all STNOs oscillate with the same frequency, phase and
amplitude. Our approach to achieve synchronization,
via non-Adlerian dynamics, employs only the DC cur-
rent flowing in each STNO and the angle of the applied
magnetic field. The main results include implicit solu-
tions of the Hopf loci as a function of the DC current and
the applied magnetic field. Normal hyperbolicity of the
synchronization manifold implies robustness of the syn-
chronization state to small perturbations, such as those
caused by non-homogeneities or imperfections during the
manufacturing process. Computer simulations with non-
identical STNOs indicate robustness up to ±5% varia-
tions, which is well within typical fabrication processes.
It is our hope that the theoretical results and simula-
tions provided in this manuscript will help guide ongoing
experiments. The STNOs are currently fabricated using
the 50 nano-meter technology where large arrays can be
configured on a substrate. Each oscillator is indepen-
dently isolated and unconnected at the fabrication stage.

Once the devices are finished, the STNOs will be bonded
and connected in a series array. The post fabrication
bonding and connection will afford us the opportunity to
verify the results established in this paper.
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Appendix A: Hopf Curves

This Appendix describes the mathematical analysis
that was carried out to obtain the boundary curves that
lead an array of STNO into and out of synchronization,
as is shown in Fig. 2 in the main manuscript. We start
by considering again the array dynamics in stereographic
coordinates captured by Eq. (3) with the full network in
abbreviated form given by Eq. (4).

1. Linear Analysis

Let z0 = (z0, . . . , z0) be an equilibrium solution of (4)
with isotropy subgroup SN

21. Then, as described in the
text, the linearization at z0 is given by

L :=




A B · · · B

B
. . .

. . .
...

...
. . .

. . . B

B · · · B A




where A = (dfjj)z=z0
and B = (dfjk)z=z0

are 2 × 2

Jacobian matrices of fj, with j 6= k. To diagonalize L,
we employ the SN isotypic decomposition of the phase
space C

N , which is given by

C
N = V1 ⊕ C

N,0,

where

V1 = {(z, . . . , z)|z ∈ C},
C

N,0 = {(z1, . . . , zN ) ∈ C
N | z1 + · · ·+ zN = 0}

are absolutely irreducible representations of SN
21. Let

vj = [v, ζjv, ζ2jv, . . . , ζ(N−1)jv]T ,

where ζ = exp (2πi/N) and v ∈ R. The vector v0, is a ba-
sis for V1 while the remaining vectors vj , j = 1, . . . , N−1,

form a basis for CN,0. Now let

P = [ Re{v0}, Im{v0},Re{v̄0}, Im{v̄0}, . . . ,
Re{vN−1}, Im{vN−1},Re{v̄N−1}, Im{v̄N−1}]T .
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Applying P to L, we obtain the following block diago-
nalization of the linear part of the coupled STNO array

L̃ := P−1
LP = diag{A+ (N − 1)B,A−B, . . . ,A−B}

(A1)
From the diagonal structure, the eigenvalues of the

blocks are also eigenvalues of L̃. It follows that Hopf
bifurcations in (4) occur if and only if A + (N − 1)B or
A−B have purely imaginary eigenvalues. In the former
case, the eigenspace associated with A+ (N − 1)B is

v0 = [v, . . . , v]T ,

where the symmetry group SN acts trivially. This cor-
responds to a symmetry-preserving Hopf bifurcation in
which all STNOs oscillate in synchrony, i.e., same wave
form, same amplitude and same phase. In the latter
case, the eigenvalues have, generically, multiplicity N −1
(from the N−1 blocks A−B) and the emerging patterns
of oscillations arise via symmetry-breaking Hopf bifurca-
tions21. Combining the equilibrium conditions with the
trace condition of purely imaginary eigenvalues for the
block A+(N−1)B (or equivalently A−B for symmetry-
breaking Hopf bifurcation) and using polar coordinates,
z0 = r(cos θ+i sin θ), we get the following set of equations
as a function of (r, cos θ, IDC, θh):

Re(fj) = 0

Im(fj) = 0

Tr(A+ (N − 1)B) = 0,

(A2)

and require

Tr(A−B) < 0

det(A−B) > 0

det(A+ (N − 1)B) > 0,

on the solution set of (A2) to guarantee no eigenvalues
with positive real parts. To find the desired analytical ex-
pressions for the Hopf boundary curves, we solve Eq. (A2)
implicitly for the state variables (r, θ) as functions of the
parameters IDC and θh. We set N1 = N2 = 0.5 as a
starting point to facilitate analysis. Through a series of
substitutions we are able to reduce this system of three
equations with four unknowns, (r, θ, IDC , θh), to a single
expression with two variables (r, θh). Using Maple’s im-

plicitplot function 16 times, curves are found in the (r, θh)
domain to account for all possible solutions. Combining
results produces the desired zero solution set of Eq. (A2).
To plot the Hopf curves, we first extract the coordinate
points from the solution sets and back-substituting gives
the actual point values (IDC, θ) along the curves. Then
we substitute these points to verify that det(A−B) > 0
and det(A + (N − 1)B) > 0. By varying N in the im-
plicit solver, we are then able to trace the movement of
the synchronous Hopf bifurcation curves. As mentioned
above, the Hopf curves are extended using AUTO to the
case N1 = 1, N2 = N3 = 0 and those are the curves
plotted in Fig 2.

2. Nonlinear Analysis

We set again N1 = N2 = 0.5 as a starting point and
assume A + (N − 1)B has a pair of purely imaginary
eigenvalues and translate the equilibrium z0 of Eq. (4) to
the origin using v = z− z0, leading to

v̇ = f(v + z0),

where fj is given by

fj =
γ(1 + iα)

1 + α2

[

iha3(vj + z0) +
ha2

2
(1 + (vj + z0)

2)+

iκ
1− |vj + z0|2

1 + |vj + z0|2
(vj + z0)− µIDC(vj + z0)−

µIDCβ∆R

N
∑

k=1

1− |vk + z0|2

1 + |vk + z0|2
(vj + z0)+

2πiS0

1 + |vj + z0|2
(vj + z0 − (vj + z0)|vj + z0|

2)

)]

.

(A3)

To determine criticality of the Hopf bifurcation we set
g(v, v) = (1 + |v + z0|2)−1 and Taylor expand Eq. (A3)
at (0, 0) up to cubic order32, which yields

v̇j = H1(vj , vj , v, v) +N (vj , vj , v, v), (A4)

where N (vj , vj , v, v) = H2(vj , vj , v, v) + H3(vj , vj , v, v)
with Hℓ a homogeneous polynomial of degree ℓ. That is,

H1(v, v) = a10vj + a01vj +

n∑

k=1

b10vk + b01vk

H2(v, v) = a20v
2
j + a11|vj |2 + a02v

2
j +

n∑

k=1

b20v
2
k+

b11|vk|2 + b02vk + c110vjvk + c101vjvk

H3(v, v) = a30v
3
j + a21|vj |2vj + a12|vj |2vj + a03v

3
j+

n∑

k=1

b30v
3
k + b21|vk|2vk + b12|vk|2vk + b03v

3
k+

(c120v
2
k + c111|vk|2 + c102v

2
k)vj .

For brevity, we list only a few of the coefficients:

b10 τ = µIDCβ∆R(2g(0, 0)2|z0|2)

a10 τ = iha3 + z0ha2 + iκg(0, 0)2(1− 2|z0|2 − |z0|4)− µIDC−

µIDCβ∆Rg(0, 0)2(N(1 − |z0|4)− 2|z0|2)+

2πiS0g(0, 0)2(1 − 2|z0|2 − |z0|4)− b10τ

b11 τ = −2µIDCβ∆Rz0(|z0|2 − 1)g(0, 0)3

c101 τ = 2µIDCβ∆Rz0g(0, 0)2

a11 τ = −4z0g(0, 0)3(iκ+ i
2
− µIDCβ∆R)− b11 τ − c101 τ,

where τ = (1 + α2)/(γ(1 + iα)).
We now rewrite Eq. (A4) using the same matrix P

given by the decomposition of CN = C
N,0⊕V1 into SN

irreducible representations and letting v = Pu yields

u̇ = L̃u+ PT
N(Pu, Pu),

where L̃ = PT
LP are the linear terms given by

Eq. (A1) and the nonlinear terms are N(v, v) =
(N (v1, v1, v, v), . . . ,N (vN , vN , v, v))T .
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An important observation is that the center manifold is
V1 = Fix(SN ) and so the flow-invariant center manifold
is in fact a subspace for Eq 4. Thus we can compute
the criticality of the Hopf bifurcation directly from the
equation for u̇1 evaluated at uℓ = uℓ = 0 for ℓ = 2, . . . , N ,
which yields

u̇1 = G10u1 +G01u1 +G20u
2
1 +G11|u1|2 +G02u

2
1+

G30u
3
1 +G21|u1|2u1 +G12|u1|2u1 +G03u

3
1,
(A5)

where G10 = a10 +Nb10
G01 = a01 +Nb01
G20 = (a20 +N(b20 + c110))/

√
N

G11 = (a11 +N(b11 + c101))/
√
N

G02 = (a02 +Nb02)/
√
N

G30 = (a30 +
√
N(b30 + c120))/

√
N

G21 = (a21 +
√
N(b21 + c111))/

√
N

G12 = (a12 +
√
N(b12 + c102))/

√
N

G03 = (a03 +
√
Nb03)/

√
N .

Now, at a Hopf bifurcation, Re(G10) = 0 and the eigen-
values are ±iρ with

ρ :=
√
|G10|2 − |G01|2.

We use the linear transformation

Q =

(
G01 iIm(G10)− iρ

−iIm(G10) + iρ G01

)

and the change of coordinates [w1, w̄1] = Q[u1, ū1]
T to

diagonalize the linear part of Eq. (A5) to diag(iρ,−iρ).

Let H̃ℓ(w1, w1) = Q−1Hℓ(Q(w1, w1)
T ) for ℓ = 2, 3, then

ẇ1 = iρw1 +
ρ+ Im(G10)

2G01ρ

(
H̃2(w1, w1) + H̃3(w1, w1)

)

− i

2ρ

(
H̃2(w1, w1) + H̃3(w1, w1)

)
.

(A6)
We denote by gij the coefficients of the quadratic and

cubic terms; i + j = ℓ and ℓ = 2, 3. For the quadratic
terms, the coefficients are:

g20 =
(ρ+ Im(G10))

2G01ρ

(

4G20G
2
01 +G11(−2G10G01i+ 2iG01ρ)+

G02(−G2
10

+ 2G10ρ− ρ2)
)

−

i

2ρ

(

4G20G
2
01

+G11(−2G10G01i+ 2iG01ρ)+

G02(−G2
10

+ 2G10ρ− ρ2)
)

g11 =
(ρ+ Im(G10))

2G01ρ

(

8G20G
2
01 +G11(−4G10G01i)+

G02(−2G2
10

+ 2ρ2)
)

−

i

2ρ

(

8G20G
2
01

+G11(−4G10G01i) +G02(−2G2
10

+ 2ρ2)
)

g02 =
(ρ+ Im(G10))

2G01ρ

(

4G20G
2
01 +G11(−2G10G01i− 2iG01)+

G02(−G2
10

− 2G10ρ− ρ2)
)

−

i

2ρ

(

4G20G
2
01

+G11(−2G10G01i− 2iG01)+

G02(−G2
10

− 2G10ρ− ρ2)
)

,

and the cubic coefficient is:

g21 =
(ρ+ Im(G10))

2G01ρ
W −

i

2ρ
W.

where

W :=
(

12G30G
3
01

+G21(−6G10G
2
01
i+ 2iG2

01
ρ)

+G12(4G10G01(−G10 + ρ) − 2G10(G10 − ρ))

+2G01ρ(G10 + ρ) +G03((G2
10

− 2G10ρ+ ρ2)(G10 + ρ)i

+2i(ρ2 −G2
10
)(−G10 + ρ))

)

3. Lyapunov Constant and Stability

Using the coefficients just listed above, we then obtain
the Lyapunov constant from the formula32

Re(c1) = Re

(
i

2ρ

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+

g21
2

)
.

(A7)
The Hopf bifurcation is supercritical if Re(c1) < 0

and subcritical if Re(c1) > 0. However, this condition
only determines the stability of the synchronized peri-
odic solution on the center manifold. Thus, we also
need to consider the eigenvalues transverse to the cen-
ter manifold. Those eigenvalues are given by N − 1
copies of the eigenvalues of the block A − B with real
parts 1

2 Tr(A − B) = Re(a10 − b10). It follows that
the synchronized oscillations are asymptotically stable if
Re(a10 − b10) < 0.
For N1 = N2 = 0.5, subcritical Hopf bifurcations are

obtained. We change the direction of demagnetization
to N1 = 1, N2 = N3 = 0 by numerical continuation us-
ing AUTO and we obtain that, Hopf bifurcation curves
in the first quadrant of (IDC, θh) space are supercriti-
cal and the synchronization manifold is asymptotically
stable near z0. This leads to an asymptotically stable
periodic solution near bifurcation. See Fig 2.
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