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We present here a model of carrier distribution and transport in semiconductor alloys accounting
for quantum localization effects in disordered materials. This model is based on the recent develop-
ment of a mathematical theory of quantum localization which introduces for each type of carrier a
spatial function called localization landscape. These landscapes allow us to predict the localization
regions of electron and hole quantum states, their corresponding energies, and the local densities of
states. We show how the various outputs of these landscapes can be directly implemented into a
drift-diffusion model of carrier transport and into the calculation of absorption/emission transitions.
This creates a new computational model which accounts for disorder localization effects while also
capturing two major effects of quantum mechanics, namely the reduction of barrier height (tunnel-
ing effect), and the raising of energy ground states (quantum confinement effect), without having
to solve the Schrödinger equation. Finally, this model is applied to several 1D structures such as
single quantum wells, ordered and disordered superlattices, or multi-quantum wells, where compar-
isons with exact Schrödinger calculations demonstrate the excellent accuracy of the approximation
provided by the landscape theory.

PACS numbers: 71.23.An, 72.15.Rn, 03.65.Ge

I. INTRODUCTION

Alloy semiconductors are ubiquitous in many mod-
ern semiconductor devices, where the use of heterostruc-
tured materials can drastically improve the device perfor-
mances (see e.g. Ref. 1). The main property engineered
here is the bandgap difference between the various ma-
terials associated in the heterostructures. However, due
to the large lattice mismatch between pure compound
semiconductors which would lead to highly defective ma-
terials if employed as such, one has to associate binary
compounds and alloys of binary compounds, leading to
ternary alloys, eventually quaternary alloys. The re-
sulting lattice constants are sufficiently close to obtain
growth of high quality materials. One thus retains part
of the bandgap discontinuities between the binary com-
pounds which allows one to confine carriers in double het-
erostructures or quantum wells.2,3 An additional useful
property is the modulation of the refractive index, which
proved to provide an additional beneficial effect of cru-
cial importance to achieve room-temperature continuous
wave lasers, opening the way to optical telecommunica-
tion systems. Many other properties are impacted by
alloying, some of them not desirable: for instance, the
compositional fluctuations induce an additional scatter-
ing mechanism for charge carriers which diminishes the
carrier mobilities.

GaN-based compounds are among the semiconductors
displaying the largest variety of properties of heterostruc-
tures and alloys. In addition to the usual features, they
show, due to their large ionic composition and crystalline

structure (most often wurtzite along the c-axis), spon-
taneous and piezoelectric fields which strongly impact
their electrical and optical properties.4 They also exhibit
significant effects of the intrinsic spatial compositional
fluctuations of their alloys. The random indium content
in InGaN multiple quantum well (MQW) structures can
vary locally from 10% to 23% within a few nanometers,
for an average composition value of 17%.5 These fluctu-
ations can induce a strong modification of carrier spatial
distributions, of recombination rates, and of the overall
light emission efficiency of the device. They have long
been identified as responsible for the short carrier diffu-
sion lengths which in turn lead to high emission efficien-
cies in spite of the high density of defects still present in
the best grown heterostructures.6

Accounting for carrier localization induced by the lo-
cal material disorder in semiconductor materials and de-
vices is a daunting task. Usually, it requires solving the
Schrödinger equation (both for electrons and holes) for
random realizations of the disordered potential, and de-
termining the energies and the spatial structure of the
localized quantum states. Actually, this problem relates
to the famous Anderson localization phenomenon7 which
has triggered a enormous litterature, and several of whose
aspects still remain puzzling after more than 50 years of
research.8–10 From 1983, early evidence of the role played
by localization in semiconductors has been observed in
conductivity measurements around the metal-insulator
transition of 3D doped charge-uncompensated silicon.11

Theoretical approaches such as the self-consistent scaling
theory of Anderson localization have been able to success-
fully describe this disorder-induced phase transition.12
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More recently, Anderson localization has been found to
play a key role in the transport properties of low dimen-
sional media such as disordered graphene.13 Yet, most
of the theories developed to account for Anderson lo-
calization rely on statistical averages (through correla-
tion functions) and scaling hypotheses.14,15 Moreover,
the fermionic nature of the carriers and the electron-
electron and electron-hole interactions (through the elec-
tric field) increase the difficulty to reproduce the complex
and intricate behaviors of semiconductors. The existing
methods for computing transport needs to go down to the
atomistic level using techniques such as non-equilibrium
Green’s functions and coherent potential approximation,
at a very high computational cost.16 As a consequence,
one still lacks a model able to predict efficiently carrier
localization and its consequences in realistic disordered
semiconductor devices, with the often added complica-
tion of multi-layered heterostructures.

One of the most puzzling aspects of Anderson localiza-
tion is the strong spatial confinement of the one-particle
quantum states, attributed to destructive interferences
between different propagation pathways in a disordered
potential. Recently, a new theory has been proposed,
which allows one to accurately predict the localization
regions of the carriers, and the density of states (DOS)
in the disordered potential created by the fluctuations
of material composition, without having to solve the
Schrödinger equation.17,18 This groundbreaking theory is
based on a new mathematical tool, the localization land-
scape (LL), which is the solution to a Schrödinger-like
equation with uniform right-hand side.

We present here the implementation of this tool into
semiconductor materials, and its use in a semi-classical
transport model of semiconductor devices. We show
how the formalism of the theory enables us to efficiently
predict in semiconductor structures the wave functions
and eigen-energies of the confined states, the overlap
between electrons and holes, the DOS, and the car-
rier distribution. This implementation conserves a lo-
cal formulation, adding only to Poisson and transport
equations a new partial differential equation (PDE). It
accelerates the computation time by several orders of
magnitude compared to the Schrödinger-Poisson-drift-
diffusion (DD) type approach.

The results of this localization theory are further ap-
plied to the specific case of nitride semiconductors in two
companion papers, one showing experiments and theory
of the Urbach tail of InGaN quantum wells (Piccardo et
al.,19 hereafter called LL2), the other on the simulation
of full light-emitting diode (LED) structures (Li et al.,20

hereafter called LL3).

II. THE LOCALIZATION LANDSCAPE
THEORY

We present first the main features of the LL theory
introduced in Ref. 17,18. According to this theory, the

precise spatial location of quantum states in a potential
V (~r) can be predicted using the solution u(~r) of a simple
associated Dirichlet problem, called the localization land-
scape. The quantum states and the energies of particles
with mass m are, respectively, the eigenfunctions and the
eigenvalues of the Hamiltonian of the system defined as

Ĥ = − ~2

2m
∆ + V . (1)

With this notation, the landscape u(~r) is defined as the
solution to

Ĥu = − ~2

2m
∆u+ V u = 1 , (2)

It is shown in Ref. 17 that the subregions hosting the
localized eigenfunctions are delimited by the valley lines
of the graph of u, see Fig. 1(a) and (b) for the case of
2D potential (for a 3D potential, these valleys would be
surfaces). This property directly derives from a funda-

mental inequality satisfied by any eigenfunction ψ of Ĥ
with eigenvalue E, normalized so that its maximum am-
plitude is equal to 1 (see Ref. 17 for the proof):

|ψ(~r)| ≤ E u(~r) . (3)

In other words, the small values of u(~r) along its valley
lines17 constrain the amplitude of ψ to be small along
the same lines and, as a consequence, localize low en-
ergy eigenfunctions inside the regions enclosed by these
lines. The landscape u therefore exhibits a partition of
the entire domain into a set of subregions, each of these
subregions localizing the carriers. But, as exposed here-
after, much more information can be extracted from the
localization landscape u(~r).

A. The effective localization potential

Not only u(~r) controls the eigenfunctions, but also the
function W (~r) ≡ 1/u(~r) (homogeneous to an energy) can
be interpreted as a confining potential that is related,
among others, to the exponential decay of the Anderson
localized states away from their main localization sub-
region. This property can be proved by transforming
the original Schrödinger equation through the introduc-
tion of an auxiliary function ψ1 such that ψ ≡ uψ1. A
straightforward computation yields:

− ~2

2m

[
1

u2
div
(
u2∇ψ1

)]
+Wψ1 = Eψ1 . (4)

One can see from this equation that the auxiliary func-
tion ψ1 = ψ/u thus obeys a Schrödinger-type equation
in which the original potential V (~r) has disappeared. In-
stead, a new function W (~r) now plays the role of an “ef-
fective confining potential”. The valleys of u, which are
the boundaries of the localization subregions,17 now cor-
respond to the crest lines (or watershed lines) of W and
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FIG. 1. The localization landscape theory: (a) 3D repre-
sentation of the original 2D disordered potential V ; (b) 3D
representation of the landscape u solving Eq. (2). (c) The
valley lines of the landscape u (black lines) delimit the var-
ious localization regions. (d) Effective localization potential
W ≡ u−1. The localization subregions outlined in (c) are also
the basins of W .

thus act as barriers to the auxiliary function ψ1. This
function ψ1, as well as the initial eigenfunction ψ, is now
localized in the basins of W , see Fig. 1(c).

Actually, it was proved that W plays exactly the role
of an effective potential thanks to the following identity
satisfied by any quantum state |ψ〉:

〈ψ|Ĥ|ψ〉 =
~2

2m
〈u~∇

(
ψ

u

)
|u~∇

(
ψ

u

)
〉 + 〈ψ|Ŵ |ψ〉 (5)

This identity shows that the energy E of any quantum
state |ψ〉 can never be smaller than the one it would
have in a potential W (~r). Consequently, according to
Agmon’s inequality,21,22 the quantity (W − E) controls
exponentially the decay of ψ(~r) in the regions where
E < W . Mostly, the eigenfunction decays exponentially
with a rate proportional to

√
W − E in the barriers where

W > E. More precisely, the decay at point ~r of the am-
plitude ψ~r0 (~r) of an eigenfunction centered in ~r0 and of
energy E is expressed through the inequality:

|ψ~r0 (~r) | . e−ρE(~r0, ~r) . (6)

where ρE(~r0, ~r) is the Agmon distance between ~r0 and ~r.
This Agmon distance (depending on E) is defined as:

ρE (~r0, ~r) = min
γ

(∫
γ

√
(W (~r)− E)+ ds

)
, (7)

where γ minimum is the geodesic path (i.e. the path of
minimum length) between points ~r0 and ~r and ds is the
elementary path on that geodesic.

The LL therefore provides an estimate of the decay
of the quantum state away from its main existence re-
gion. This decay corresponds to the tunneling effect and
is more commonly known in quantum mechanics as a
result of the Wentzel-Kramers-Brillouin (WKB) approx-
imation. The theory used here is its mathematical gen-
eralization, which holds for any potential W satisfying
〈ψ|Ĥ|ψ〉 ≥ 〈ψ|Ŵ |ψ〉 for all quantum states. The fact
that W plays the role of an effective potential finely
shaping the quantum states is crucial for deriving a ac-
curate expression of the density of states, as we will see
in Section II C. Finally, our estimate of the eigenfunc-
tion amplitudes based on W can also be used for in-
stance to assess the coupling between distant localization
subregions.23

B. Eigenvalue and eigenfunction estimates

In each of the subregions bounded by the valley lines of
the LL u(~r), the local fundamental eigenfunction and its
corresponding energy can also be accurately determined
from u itself inside the localization region (the decay far
from the localization region being assessed as exposed in
Section II A). To this end, the landscape u, satisfying

Ĥu = 1, has to be decomposed on the basis formed by
the eigenfunctions ψi of the Hamiltonian:

u =
∑
i

αiψi (8)

with αi = 〈u|ψi〉 =

∫∫∫
u(~r) ψi(~r) d

3r (9)

The decomposition coefficients αi can be computed using
the self-adjointness of the Hamiltonian:

αi = 〈u|ψi〉 =
1

Ei
〈u|Ĥψi〉 =

1

Ei
〈Ĥu|ψi〉

=
1

Ei
〈1|ψi〉 (10)

From Equations 8 and 10, one can draw three main re-
marks. First, the lower energy quantum states contribute
more to the landscape u than the high-energy ones (be-
cause Ei grows in the denominator of Eq. (10)). Sec-
ondly, in a given localization subregion, the low-energy
states (ψi) entering the decomposition of Eq. (8) are
essentially the local quantum states of this subregion.
Thirdly, in each subregion, the fundamental state has a
bump-like shape, while the higher energy ones, by orthog-
onality, take positive and negative values which cancel
out so that the scalar products 〈1|ψi〉 of Eq. (10) almost
vanish. Note that this cancellation also occurs for the
high-energy delocalized states of the system. As a conse-
quence, in each localization subregion Ωm, the following
relation is deduced:

u ≈ 〈1|ψ
(m)
0 〉

E
(m)
0

ψ
(m)
0 (11)
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ψ
(m)
0 being the local fundamental state of subregion Ωm.

This shows that the local fundamental state ψ
(m)
0 is al-

most proportional to u in Ωm:

ψ
(m)
0 ≈ u

‖u‖
(12)

Inserting Eq. (12) into identity (5) and using the fact that
W ≡ u−1 allows us to evaluate the fundamental energy

E
(m)
0 from the landscape only:

E
(m)
0 = 〈ψ(m)

0 |Ĥ|ψ(m)
0 〉 ≈ 〈u|Ŵ |u〉

‖u‖2
=
〈u|1〉
‖u‖2

=

∫∫∫
Ωm

u(~r) d3r∫∫∫
Ωm

u2(~r) d3r

(13)

The LL u(~r) therefore provides a direct estimate of the
fundamental energy in each of the localization subre-
gions.

C. The density of states

Finally, the prediction of the localized energies ex-
tends to the prediction of the integrated density of states
(IDOS), hence to its derivative, the density of states
(DOS). Thanks to the LL theory, these quantities can
be computed not only globally for the whole system un-
der consideration, but also locally. We detail here the
general case of a 3D system as well as the specific case
of a 1+2D-system exhibiting two-dimensional translation
invariance.

1. 3D DOS

Due to the uncertainty principle, ∆x∆k ≈ 2π, each 3-
dimensional one-particle quantum state spreads in phase

space (~r,~k) on a volume of order (2π)3. As a consequence,
the number of energy states below a given energy E (i.e.,
the counting function, also called integrated density of
states IDOS) is asymptotically equivalent to V(E)/(2π)3

when E → +∞, where V(E) is the volume in phase space

determined by H(~r,~k) ≤ E. This asymptotic behavior is
the so-called Weyl’s law.24 In a 3-dimensional semicon-
ductor, the Hamiltonian of an electron in the conduction
band reads:

H
(
~r,~k
)

=
~2k2

2m∗e
+ Ec (~r) , (14)

where Ec is the conduction band energy and m∗e is the
effective electron mass. The IDOS deduced from Weyl’s

FIG. 2. Local density of states (LDOS) deduced from the

effective potential Wc ≡ 1

ue
.

formula is therefore:

IDOS(E) =
2

(2π)3

∫∫∫
H(~r,~k)≤E

d3rd3k

=
2

(2π)3

∫∫∫
~r

(∫∫∫
~2k2

2m∗
e
≤E−Ec(~r)

d3k

)
d3r

(15)

The factor 2 appearing in the numerator accounts for
the spin degeneracy, and the integral within parentheses
on the second line is simply the volume of a sphere in
k-space. The IDOS can therefore be written as a space
integral of a local quantity that is classically assimilated
to a local IDOS, noted LIDOS(E,~r), in the local band
structure approximation:

IDOS(E) =

∫∫∫
r̃

LIDOS(E, r̃) d3r (16)

with

LIDOS(E, r̃) =
2

(2π)3

4π

3

(√
2m∗e (E − Ec(~r))

~2

)3

=
1

3π2

(
2m∗e
~2

) 3
2

[E − Ec(~r)]
3
2 (17)

Differentiating this LIDOS with respect to E gives the
local density of states LDOS(E,~r):

LDOS(E,~r) =
1

2π2

(
2m∗e
~2

) 3
2 √

E − Ec(~r) (18)

One recovers here the classical expression of the local
density of states for conduction electrons in a semicon-
ductor.

In a disordered system, Eq. (5) shows thatW (~r) acts as
an effective potential on the particle. Subsequently, W
controls the distribution of energies for localized states
in each localization subregion. One of the main conse-
quences of this control, as shown on several examples in
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Ref. 18, is that W can be used to accurately estimate
the integrated density of states, hence of the density of
states also, although the approximate DOS obtained af-
ter differentiating the IDOS is in essence less accurate.
Practically, this is achieved by replacing the original po-
tential (here Ec) by W in the LDOS:

LDOS(E,~r) =
1

2π2

(
2m∗e
~2

) 3
2 √

E −W (~r) (19)

This expression physically means that at each point ~r,
the local density of states is equal to the one of an in-
finite medium with identical material composition and
a parabolic band whose minimal energy would be W (~r)
(see Fig. 2). In the classical view of the local band ap-
proximation, ~r represents in fact a small volume com-
pared to the typical size of the system, but large enough
so that it can contain the local electronic states. This
approximation which is routinely used when the wave
functions are delocalized Bloch waves, is even more jus-
tified when dealing with localized eigenfunctions.

The reason for the quality of the approximate IDOS
computed using Wc (resp. Wv) instead for Ec (resp. Ev)
has been detailed in Ref. 18, but one can give here a
short explanation. Weyl’s law is fundamentally based
on an analogy between quantum and classical filling of
phase space, the classical being the volume bounded by

H(~r,~k) = E, and the quantum originating from the un-
certainty principle which states that the volume of a
quantum state in phase space is approximately constant
(due to ∆x.∆k ≈ 1). Thus, counting the number of quan-
tum states of energy smaller than E (the IDOS) comes
back to assessing the size of the corresponding volume in
phase space. It is known that in a disordered medium,
localized states contribute to perturb the bulk IDOS and
make it depart from the Weyl’s equivalent. Now, the ef-
fective potential, which can be seen a smoothed version
of the original potential (Ec in the case of electrons), ex-
hibits much better defined wells and barriers. The spatial
shapes of the quantum states are closer to the classical
trajectories in this effective potential than in the origi-
nal random or disordered potential. In others words, the
effective potential is closer to what is “experienced” by
the quantum wave if it were a classical particle. As a
consequence, the validity of the classical-quantum anal-
ogy is strengthened, and the local density deduced from
Weyl’s law using W much more accurate than any other
available estimate.

One needs here to express one word of caution. While
IDOS(E) can be understood as the actual number of
states below energy E over the spatial region of inte-
gration, the “local” density of states LDOS(E,~r) cannot
be understood as the actual number of states at point ~r
as soon as the spatial fluctuations of this LDOS occur
on a scale smaller than the typical spatial extension of
the electronic states. It should rather be considered as
an “effective” value, a useful tool for assessing physical
quantities.

This remark is of particular importance when this
LDOS is integrated over all possible energies to compute
the local carrier density n(~r):

n(~r) =

∫ +∞

W (~r)

1

1 + e
E−EF
kBT

LDOS(E,~r) dE (20)

This carrier density is apparently a local quantity at
point ~r, as in the classical DD model of transport,25

but thanks to the effective potential W appearing in
the LDOS, it now also encompasses the quantum con-
finement induced by the material disorder. As a con-
sequence, this expression is much more accurate than
what could be estimated from the classical similar ex-
pression with Ec(~r) instead of W (~r). At the same time,
it can be easily implemented into a PDE model such as
a drift-diffusion solver with Poisson-DD-continuity equa-
tions, instead of solving the eigenfunctions of the Hamil-
tonian.

2. 1D DOS

The procedure described above for 3D states can be
applied similarly to 1D systems. In this case, the IDOS
reads:

IDOS(E) =
1

π

∫
z

(∫
~2k2

2m∗
e
≤E−W (z)

dk

)
dz

=
2

π

∫
z

√
2m∗e(E −W (z))

~2
dz (21)

and the local density of states is:

LDOS(E, x) =
1

π

√
2m∗e
~2

1√
E −W (z)

(22)

If one considers a 3D system with translational invariance
in the two other directions x and y, such as a quantum
well, then the quantum states are products of 1D and 2D
states in the z direction and the (x, y) plane, respectively.
The 3D density of states can thus be deduced from the
above 1D density of states along z by convoluting it with
the 2D LDOS:

LDOS3D(E, z) =

∫ E

W (z)

LDOS2D(E − E1)

×

(
1

π

√
2m∗e
~2

1√
E1 −W (z)

)
dE1 (23)

LDOS2D being the 2D density of states for free particles,
which is constant and equal to m∗e/(2π~2) (we do not
count the spin degeneracy here as it is already included
in the 1D LDOS). This finally gives the 3D density of



6

states:

LDOS3D(E, z) =
1

4π2

(
2m∗e
~2

) 3
2
∫ E

W (z)

dE1√
E1 −W (z)

=
1

2π2

(
2m∗e
~2

) 3
2 √

E −W (z) (24)

One can notice that the above expression is exactly iden-
tical to the 3D local density of states obtained in Eq. (19),
except that here W depends only on z.

D. Setting the potential reference

One needs here to underline a peculiarity of the LL.
When solving the Schrödinger equation, the potential
V (~r) experienced by the quantum particle can be defined
up to a constant valueK. If one shifts the potential byK,
then the resulting energies are also shifted by the same
constant K. However, this invariance does not hold for
the landscape u. If one considers u being the solution to
Eq. (2), then the solution uK corresponding to the same
potential shifted by a constant K satisfies:

− ~2

2m
∆uK + (V (~r) +K) uK = 1 (25)

If the constant K is much larger than the typical ener-
gies of the quantum states, then KuK ≈ 1. Therefore,
the corresponding effective potential WK = 1/uK is very
close to K. Inserting the effect of the potential shift on
the energies into Eq. (3), the amplitudes of the quan-
tum states are controlled by the landscape through the
following inequality:

|ψ(~r)| ≤ (E +K) uK(~r) (26)

In the situation where KuK becomes very close to 1, this
inequality is almost trivially satisfied. In other words, the
constraint on ψ exerted by the LL uK becomes weaker.
This means that the constant K has to be chosen in order
to be as small as possible, in such a way that the Hamil-
tonian remains a positive operator (a condition of ap-
plicability of the LL theory). As a consequence, in semi-
conductor structures where one encounters large, smooth
variations of potential superimposed on small scale ran-
dom potentials, one should resort to solving the LL piece-
wise in regions over which the variation of the potential
V is of the same order of magnitude than the energies of
the quantum states.

III. THE TRANSPORT MODEL

A. The new self-consistent approach

In this section, we present the first implementation
of the LL theory in the physical description of pro-
cesses in semiconductor heterostructure devices. The ex-
posed model uses an hybrid approach where energy levels,

wavefunctions and DOS are computed using the lans-
dscape theory, while a standard description is retained
for carrier transport and statistics, as described by the
DD equations of semiconductor textbooks.26 Classically,
the DD model is described through the following set of
coupled equations whose unknowns are the electrostatic
potential ϕ and the quasi-Fermi levels EFn and EFp:

div
(
εr ~∇ϕ

)
=

q

ε0

(
n− p−N+

D −N
−
A ± ρpol

)
div( ~Jn) = R+Gn
div( ~Jp) = −R+Gp
~Jn = nµn~∇EFn
~Jp = pµp~∇EFp

n(~r) =

∫ +∞

Ec

1

1 + e
E−EFn

kBT

LDOSn(E,~r) dE

p(~r) =

∫ Ev

−∞

1

1 + e
EFp−E

kBT

LDOSp(E,~r) dE

(27)

where εr is the medium relative permittivity, n and p
are the electron and hole densities, N−A and N+

D are the
activated doping densities of acceptors and donors; ρpol
is the polarization charge which appears in some semi-
conductors such as nitrides where electric polarization

effects are important; ~Jn and ~Jp are the electron and
hole currents, respectively, and µn and µp their mobil-
ity; R is the recombination rate which includes all types
of recombination processes (SRH, radiative, Auger), and
Gn,p are the carrier generation rates. Finally, LDOSn,p
are the bulk local densities of states for electrons and
holes, respectively.

First equation of (27) is the Poisson equation which de-
termines the electrostatic potential from the charge car-
rier densities. Second and third equations are the conti-
nuity equations for both carrier transport. Equations 4
and 5 of (27) are the semi-classical expressions of the cur-
rent densities, derived from the Boltzmann equation as-
suming a linear collision kernel. These expressions corre-
spond to the linear response theory in statistical physics.
The mobilities µn and µp are effective parameters that
summarize the scattering events and the quantum trans-
port in the bulk materials, either pure compounds or al-
loys. Finally, equations 6 and 7 of (27) compute the car-
rier densities from the quasi-Fermi levels EFn and EFp
through the densities of states LDOSn,p.

In the usual DD model, Poisson and transport equa-
tions are solved self-consistently to obtain the converged
electrostatic potential and the quasi-Fermi levels EFn
and EFp. More advanced models, called hydrodynamic,
include also energy transport and hot carriers,26 but at
the expense of much larger computational time. In order
to account for quantum confinement effects, one has to
solve the Schrödinger equation using Ec(~r) and Ev(~r) as
potentials for electrons and holes, respectively. The car-
rier densities are then deduced from the electron and hole
wave functions, {ψe,i} and {ψh,j}, and their correspond-
ing energies, {Ee,i} and {Eh,j} through summation with
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FIG. 3. Schematic structure of the new self-consistent
Poisson-landscape model allowing us to bypass solving the
Schrödinger equation.

Fermi-Dirac distribution:
n(~r) =

∑
i

(
1

1 + e
Ee,i−EFn

kBT

)
|ψe,i(~r)|2

p(~r) =
∑
j

(
1

1 + e
EFp−Eh,j

kBT

)
|ψh,j(~r)|2

(28)

In the absence of currents, these carrier densities enter
Poisson equation which in turn modifies the electrostatic
potential, and then Ec and Ev (the band offsets δEc,v
mentioned in Fig. 3 being local properties of the mate-
rial). This is the usual (without disorder) self-consistent
Poisson-Schrödinger scheme, depicted by the blue cycle
in Fig. 3. Accounting for quantum transport adds an-
other level of complexity, which consists in solving the
Schrödinger equation to determine the equilibrium quan-
tum states, and then compute transitions between these
states.27 The dynamic carrier densities now enter Pois-
son and transport equations, from which one deduces the
electrostatic potential and the quasi-Fermi levels. This
loop results in lengthy, time-consuming and possibly un-
stable simulations that can take days of computation for
a complex 3D structure, even damagingly longer with
compositional disorder. At an even more fundamen-
tal level, non-equilibrium Green’s function techniques or
atomistic tight binding models are used to assess fast
processes.28,29

Overall, DD-based models still remain to this date the
only models able to simulate large structures and com-
pute carrier transport in realistic semiconductor devices
with a computational time compatible with optimization
and design (see LL3, Ref. 20).

In the following, the implementation of the LL the-
ory is first presented for the Poisson scheme, then for
the full DD model including carrier transport. Introduc-
ing the LL u(~r) allows us to entirely bypass solving the
Schrödinger equation, a computationally highly demand-

FIG. 4. Flow chart solving the Poisson and drift-diffusion
equations by applying the localization landscape theory.

ing step. From the electrostatic potential, we deduce
two LLs ue and uh, hence two effective potentials Wc

and Wv. According to the theory, these landscapes pro-
vide direct estimates of the density of states LDOSn(~r)
and LDOSp(~r) [see Eq. (22)], and of the carrier densities.
This bypass is depicted by the red arrow in Fig. 3. The
recombination rates are also assessed by computing the
overlap between electron and hole states in the localiza-
tion subregions (see next subsection). These quantities
are then used to solve Poisson and DD equations. This
makes the LL theory easily compatible with a classical
DD approach. The schematic flow chart of the entire
self-consistent simulation process is displayed in Fig. 4.

One has to underline that in this new model, the cur-
rent densities still take their classical DD form expressed
in Fig. 4. In this form, the tunneling current caused by
the spatial tails of the eigenstates that cross potential
barriers is inherently accounted for in the model through
the lowering of the effective potential Wc (resp. Wv) as
compared to Ec (resp. Ev). However, the quantum cur-
rent originating from phonon-assisted hopping between
different eigenstates or by scattering events, is still ac-
counted for through effective transport parameters, i.e.,
the mobilities µn and µp. Extension of the theory to ac-
count for a full quantum model of transport is currently
work in progress.
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B. Computing generation/recombination processes

The final subsection of the modeling section is dedi-
cated to the computation of the generation and recombi-
nation processes in direct gap semiconductors using the
LL, the focus being in particular on optical interband
transitions, namely absorption and emission. Typically,
the computation of these processes in quantum-confined
semiconductor structures requires the knowledge of the
eigen-energies and eigenfunctions of the quantum states,
which determine respectively the energy of the transi-
tions and the overlap between the electrons and holes.
As derived in Sec. II B, these quantities can be in fact di-
rectly assessed from the LL. It should be noted that due
to the integrals appearing in Eq. (12) and (13), these re-
lations cannot be implemented into a local formulation,
such as a self-consistent Poisson-DD-landscape loop, but
can be evaluated after convergence is reached for the sim-
ulated system.

We consider in the following the case of a homoge-
neous quantum well (QW), for which the classical absorp-
tion/emission expressions are rewritten using the LL the-
ory. The extension to the case of QWs with in-plane dis-
order is briefly outlined, while for more details the reader
is referred to the companion papers LL2 and LL3.

1. Absorption

The quantum mechanical expression of the absorption
coefficient α of a homogeneous QW of thickness L as a
function of photon energy hν is30

α(hv) =
C

L
· g2D

∑
i,j

Θ(hν −Eg −Ee,i −Eh,j) Ii,j (29)

where the prefactor C = πe2~|pcv|2/m2
0cnrε0hν depends

on the real part of surrounding refractive index nr and
the interband momentum matrix element pcv. Con-
sidering a narrow photon energy range (close to the
bandgap), we neglect the k-dependence of pcv and the
hν dependence of C, and treat this prefactor as a con-
stant; g2D = mr/π~2 is the joint density of states (JDOS)
of a 2-D system including the spin degeneracy with
mr = (1/m∗e+1/m∗h)−1 being the reduced effective mass.
The summation is performed over all electron and hole
states (labeled i and j, with i = j = 0 being the fun-
damental states) with eigen-energies Ee,i and Eh,j . The
overlap factor Ii,j is determined by the electron and hole
eigenstates ψe,i and ψh,j as

Ii,j =
| 〈ψe,i|ψh,j〉 |2

‖ψe,i‖2‖ψh,j‖2
(30)

Our approach here is to use the LL theory to assess the
absorption coefficient directly from the maps of ue and uh
computed for electrons and holes using Eq. (2), where V
corresponds to the conduction and valence band poten-
tial, respectively. The valleys of the landscapes (which

are also the crest lines of the Wc,v potentials) partition
the domain into localization subregions. Note that in the
case of a homogeneous QW, only one localization sub-
region exists for each type of carrier, determined by the
confinement along the growth direction, while in the case
of a disordered QW several subregions can be found.19,20

The determination of the valley lines in a homogeneous
QW is discussed in Sec. IV A.

In each subregion the eigenfunctions of the fundamen-
tal states, ψe,0 and ψh,0, and the corresponding eigen-
energies, Ee,0 and Eh,0, can be calculated using Eq. (12)
and (13). From the estimation of the eigenstates, the
overlap factor I0,0 of Eq. (30) can then be directly com-
puted. To sum over all interband transitions, Weyl’s law
can be used to estimate the system DOS instead of sum-
ming over all possible i, j as in Eq. (29). In Sec. II C it
was shown that in a 3D system exhibiting confinement
along one direction and translational invariance along the
others, Weyl’s law predicts an LDOS exactly identical to
that of the bulk case. Although the values of Ee,0 and
Eh,0 account for the quantum confinement of the carriers
in the disordered potential, bulk asymptotic Weyl’s law is
only a continuous yet good approximation of the discrete
energy spectrum. Future works should allow us to pro-
vide a discrete and even better estimate of the spectrum
in each localization subregion, based on W . To compute
the JDOS of the homogeneous QW, the following well-
known expression for bulk is thus used considering an
effective bandgap Eg + Ee,0 + Eh,0:

JDOS3D(hν) =

√
2 m

3
2
r

π2~3

√
hν − Eg − Ee,0 − Eh,0 (31)

Finally the absorption coefficient of the homogeneous
QW can be rewritten as

α(hv) =
2

3
· C · JDOS3D(hv) I0,0 (32)

where all quantities can be derived from the landscapes
without solving the Schrödinger equation. (The factor
2/3 in Eq. (32) and the absence of the 1/L prefactor
appearing in Eq. (29) are due to the use of the bulk ex-
pression of the JDOS in the absorption coefficient.30)

The procedure for determining the absorption coeffi-
cient in the case of a disordered QW remains essentially
the same. When superimposing the maps of the two land-
scapes, one can define the subregions which are the inter-
sections between the various localization subregions for
electrons and holes (Fig. 5). For each of these electron-
hole “overlapping” subregions a local value of α can be
computed using Eq. (32). The overall absorption coeffi-
cient of the disordered QW is obtained by summing over
all electron and hole subregions, Ωm and Ωn, as:

α(hv) =
2

3
· C ·

∑
m,n

JDOS
(m,n)
3D (hv) I

(m,n)
0,0 , (33)

where the JDOS and overlap factors depend on the fun-
damental state and corresponding energy of the consid-

ered subregion, namely ψ
(m)
e,0 and E

(m)
e,0 for electrons, and
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FIG. 5. Overlap regions are defined as intersections between
electron and hole localization subregions. (Left) superim-
posed electron and hole landscapes. (Right) Example of one
overlapping region defined as the intersection between two
electron and hole localization subregions.

ψ
(n)
h,0 and E

(n)
h,0 for holes, which again can be calculated

from the landscapes using Eq. (12) and (13). Such an ac-
curate accounting of carrier localization in a disordered
material is crucial for a precise assessment of the below-
gap absorption processes. A detailed study on this topic
is presented in Ref. 19.

2. Emission

Let us first discuss the homogeneous case. While in the
previous derivation of optical absorption [Eq. (32)] the
conduction and valence bands were considered as com-
pletely empty and filled, respectively, in the case of opti-
cal emission the occupation of the states depends on the
specific injection conditions of the QW. Assuming that
the quasi-Fermi levels for electrons and holes are known,
the electron and hole distributions n(z) and p(z) in the
QW can be determined using Eq. (20). The radiative
recombination rate then reads

Rint =

∫
B0(z) n(z) p(z) dz (34)

corresponding to the transition energy Eg + Ee,0 + Eh,0
calculated from the landscapes as in Sec. III B 1. B0(z)
is the local radiative recombination coefficient. If the
transition is homogeneously broadened then a Lorentzian
function must be used to determine the emission spec-
trum of the non disordered QW as

Rsp(hν) =

Γ

2π
Rint

(hν − Eg − Ee,0 − Eh,0)
2

+

(
Γ

2

)2 (35)

In the case of a disordered QW, the emission spectra have
to be summed over all possible transitions between local-
ized states to produce the inhomogeneously broadened
luminescence spectrum of the QW (see companion paper
LL3, Ref. 20).

The localization landscapes can also be used to com-
pute non-radiative recombination processes which may

be strongly affected by disorder. In Auger recombination
the confinement increases the carrier momentum com-
pared to free carriers, leading to a better overlap with the
wave function of the final high-energy carrier, and thus
an enhanced transition probability. Let us consider for
instance the “hhe” Auger process: an electron and a hole
recombine and transfer their energy through Coulomb in-
teraction to a second hole which becomes highly energetic
(hot). Using the Fermi Golden Rule, one expresses the
Auger recombination rate in one overlapping region:

1

τ
=

2π

~
|Mif |2ρ(Ef ) (36)

where ρ(Ef ) is the density of final states and Mif is the
matrix element defined as:

Mif =
√

2

∫∫
dr1dr2 ψh,0

∗(r1)ψh,0
∗(r2)

× V (r1, r2) ψe,0(r1) ϕh,f (r2) (37)

ri being the initial and final positions, and V the
Coulomb interaction potential. ψh,0(r1) and ψh,0(r2) are
the initial states of the two holes, while ψe,0(r1) is the
initial electron state. Finally, ϕh,f (r2) is the final state
of the second hole. After dividing the entire system into
the aforementioned overlapping regions, the above inte-
gral is computed over each region separately. For in-
stance, in the above integral, the final hole wave function
ϕh,f is assumed to be a simple plane wave of wavevector
kf , while the initial states are approximated by the lo-
cal landscapes in the considered overlapping region (see
Section II B). All these local integrals can then be assem-
bled to build maps of the Auger recombination times in
the whole system. The influence of compositional disor-
der on Auger recombination tackled by the localization
landscape theory is currently under study.

IV. APPLICATIONS OF THE LANDSCAPE
THEORY TO SIMPLE 1D
HETEROSTRUCTURES

In the following sections, we study several structures
to show in various configuration the ability of our model
to capture the main features of quantum devices. We
successively study the eigen-energies and the overlap
between quantum states in Single QW (SQW) and 3-
QW structures (Section IV A). We then apply our model
to the computation of density of electronic states in 1-D
periodic and disordered superlattices (Section IV B). Fi-
nally in Section IV C, a 1-D SQW structure is simulated
to perform a detailed comparison of the carrier distri-
butions computed by the classical Poisson equation, the
Poisson-landscape model (LL theory), and the Poisson-
Schrödinger equation, respectively. All modeled struc-
tures presented in the following are 1-D with homoge-
neous layers. A full 3-D modeling of carrier transport in
a semiconductor device including the effect of composi-
tional disorder is presented in the companion paper LL3
(Ref. 20).
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FIG. 6. QW structures used to test the LL theory. (Left)
SQW well with m-plane orientation of the well material.
(Right) 3-QW structure with c-plane orientation. The well
width and the barrier thickness are 3 nm and 7 nm, respec-
tively.

A. Eigen-energies and overlap

In GaN-based materials, the polarization field at
hetero-interfaces can strongly depend on the growth di-
rection due to the wurtzite crystal structure. Conven-
tionally, GaN grown along the (0001) direction (c-plane)
cannot avoid a lattice mismatch which in turn induces a
piezoelectric polarization. In addition, the relative dis-
placement of the cation and anion sub-lattices from the
ideal wurtzite position generates a net spontaneous po-
larization. In contrast, GaN grown along the (11̄00) di-
rection (m-plane) is non-polar and does not exhibit any
strain-induced piezoelectric polarization or spontaneous
polarization field. In the simulation framework devel-
oped here, the density of polarization charges ρpol is com-
puted by taking the divergence of the total polarization
(∇·Ptotal), including spontaneous and piezoelectric po-
larization fields to account for the internal electric field
at the hetero interfaces. Spontaneous and piezoelectric
polarizations are computed using Eq. (A.1) and (A.2),
while parameters of polarization values and piezoelectric
coefficients can be found in Table II and III, respectively
(see Appendix).

First, we test the ability of the Poisson-LL model to ac-
curately predict the energies and the spatial extension of
quantum states in QW structures. Two different types
of structures are simulated (Fig. 6). The first one is a
3 nm SQW of m-plane GaN enclosed between 50 nm bar-
riers of AlxGa1−xN, several values of Al fraction x being
computed in a range from 0.1 to 0.5. The second struc-
ture is formed of 3 QWs of c-plane GaN of 3 nm width
separated by 7 nm barriers of AlxGa1−xN, also enclosed
between 50 nm barriers of AlxGa1−xN. This allows us to
test the confinement effects in the wells in our model.

The LLs and the corresponding localization potentials
are computed from the conduction and valence bands
for both structures without external applied bias. Fig-
ure 7 displays the corresponding band structures, to-
gether with the effective potentials Wc and Wv. De-
spite the sharp boundaries of the conduction and valence
bands at the well-barrier interface, one can see that the
variations of the potentials Wc and Wv extend much fur-
ther than the width of the well. The fundamental en-

FIG. 7. Band structures for the m-plane single QW and the
c-plane 3-QW. The localization potentials Wc (blue) and Wv

(green) are superimposed over the band edges Ec (black) and
Ev (red). The integration regions Ωe and Ωh are indicated on
each frame.

ergies for electrons and holes in the well are therefore
computed from Eq. (13) on a larger integration region
than the well itself. The integration boundaries (differ-
ent for electron and hole) are represented by the dashed
lines in Fig. 7. The boundaries of the integration region
outside from the QW are first set to the inflection points
of the local effective potential W . Then the integration
boundaries are extended from these points by the char-
acteristic decay length of a wave function of energy E in
a barrier of height W , i.e., ~/

√
2m(W − E). The lighter

effective mass of electrons therefore leads to a larger in-
tegration domain than the one of the holes which have
a heavier effective mass. Eigen-energies as well as the
overlap between electron and hole fundamental states ψe
and ψh are computed on these integration regions, ψe
and ψh being approximated by ue and uh normalized on
the same region (cf. Eq. (12)).

Figures 8 and 9 display the comparisons between
the fundamental energies computed by solving the
Schrödinger equation directly, and the energies computed
using Eq. (13), for m-plane and c-plane cases with various
values of the aluminum content. In both figures, the top
frames exhibit a remarkable agreement between the two
different computations. The bottom left frames show the
differences between the electron and hole energy, in other
terms the energy of the smallest radiative transition. The
bottom right frames display the value of the overlap in-
tegral between electron and hole fundamental states (in
the case of the 3-QW structure, the states are taken in
the central quantum well) (dashed line), compared with
the estimates obtained using Eq. (11) for the wave func-
tions. The overlap region used for the calculation are the
intersections of the regions Ωe and Ωh displayed in Fig. 7.
Although one observes here a slight deviation by a few
percents of the approximated value using the landscapes,
the agreement, both in absolute value and in trend, re-
mains very good in the two structures, for all values of
the Al content.
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FIG. 8. Simulations results for the m-plane SQW (left struc-
ture in Fig. 6). The energies computed by solving directly the
Schrödinger equation are compared to the energies computed
using our Poisson-LL model. Top frames display comparisons
for electrons (left) and holes (right), respectively. Bottom left
frame displays the energy difference, i.e. the smallest energy
for a radiative transition. Bottom right frame shows the over-
lap integral between fundamental electron and hole states,
computed from the Schrödinger equations (dashed line) and
from the estimate using the LLs (plain line).

B. Density of states, overlap and absorption
computation

1. Periodic superlattice

AlGaN/GaN superlattice (SL) structures are widely
used in commercial LEDs to prevent the electron current
leakage and improve lateral current spreading.31,32 How-
ever, modeling SL structures still remains a challenge for
classical Poisson-DD solvers. In the classical picture, the
resistance experienced by carriers is determined by the
barrier height. In SLs, this leads to an overestimation
of its value. Schrödinger-based solvers can model SLs,
accounting for wave function coupling and tunneling ef-
fects. However, this approach cannot be applied in the
case of multidimensional devices to study current crowd-
ing effects of disordered systems, due to the high demand
of computation time. We show here that the LL theory
allows us to overcome this constraint.

We model a 20-pairs n-type m-plane Al0.4Ga0.6N/GaN
SL structure with flat band conditions at both ends, as
shown in Fig. 10(a), to analyze the electron transport
behavior. Two structures with different periodicities,
5 nm/5 nm and 1 nm/1 nm QW/barrier thickness, are
simulated. A nonpolar m-plane orientation is considered
at first to study the intrinsic transport properties of SLs
as described by the landscape model. In the thicker SL
(5 nm/5 nm), quantum effects are weaker and Wc devi-
ates only slightly from Ec, as shown in Fig. 10(b). In con-
trast, in the thinner SL (1 nm/1 nm) Wc is significantly
different from Ec, as shown in Fig. 10(c). This difference

FIG. 9. Simulations results for the c-plane 3-QW (right struc-
ture in Fig. 6). The energies computed by solving directly the
Schrödinger equation are compared to the energies computed
using our Poisson-LL model. Top frames display comparisons
for electrons (left) and holes (right), respectively. Bottom
left frame displays the energy difference, i.e. the smallest en-
ergy for a radiative transition. Bottom right frame shows the
overlap integral between fundamental electron and hole states
of the central well, computed from the Schrödinger equations
(dashed line) and from the estimate using the LLs (plain line).

is a manifestation of the coupling between wells when the
barriers are thin, and expresses how the effective poten-
tial is able to translates quantum tunneling into a shift
of the effective conduction band edges.

To evaluate the effective barrier seen by carriers in
a complicated structure such as SLs, Weyl’s asymptotic
formula is used18 to obtain the 1D LIDOS [see Eq. (21)],n
which then integrated over the entire system:

IDOS(E) =
2

π

∫ L

0

√
2m∗e(E−Wc(z))

~2
dz (38)

where IDOS(E) is the integrated density of available
states. As seen in Section II A, Wc(z) = 1/ue(z) can
be understood as the effective conduction band edge.

For large SL barrier and QW thicknesses, quantum ef-
fects are weak and classical. Therefore original potential-
and landscape-based models give very similar estimates
of the real IDOS (blue and black lines), as displayed in
Fig. 11(a). One can observe that the take-off energy is
better approximated by the landscape model (continu-
ous black line) when compared to the computation from
Schrödinger equation (red dashed line). In this situa-
tion of very weak coupling between wells, the similarity
of all wells (no disorder here) induces a strong energy
degeneracy which appears in the real IDOS. This IDOS
increases through large steps of height 20 (the number of
wells) which underlines the discrete nature of the spec-
trum, while the landscape-based (or Wc-based) approxi-
mation shows a continuous line following these steps.
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FIG. 10. (a) Schematic structure of 20-period
Al0.4Ga0.6N/GaN SLs. (b) and (c) are the conduction
band potential (Ec) and effective quantum confining
potential (Wc) for 5 nm/5 nm and 1 nm/1 nm SLs.

As the SL thicknesses of QWs and barriers becomes
smaller, wells become coupled, the degeneracy is lifted,
creating subbands in the entire structure, and the cor-
responding IDOS (red dashed line) proceeds by smaller
steps of height 1 which are almost invisible at the scale of
the figure. The landscape-based IDOS (Wc-based Weyls
law) shows here an excellent agreement with the exact
calculation from the Schrödinger equation [Fig. 11(b)],
showing that it takes well into account the coupling be-
tween wells, in other words the tunneling phenomenon.
The approximation based on the original potential Ec,
however, falls very far off the true IDOS, especially for
lower energy states. Going into finer detail, one can also
observe that in this last case, the W -approximation of
the IDOS becomes positive about 50 meV earlier than
the actual IDOS of the Schrödinger equation. This slight
discrepancy comes from the fact that, by definition, the
W-approximation of the IDOS is continuous while the
actual IDOS is step-wise. Therefore, to reach a value
close to 1 at an energy corresponding to the fundamental

FIG. 11. (a) and (b) are the counted states for 5 nm/5 nm
and 1 nm/1 nm SLs.

FIG. 12. (a) and (c) are the conduction band potential (Ec)
and effective quantum confining potential (Wc) for m-plane
(top) and c-plane (bottom) double period SLs. (b) and (d)
display the corresponding integrated density of states, IDOS.

energy of the system, the approximate IDOS has to take
off and be positive at a smaller energy.

To test further the LL model, we analyze more compli-
cated structures such as 20-pairs n-type SL with double
periods composed of 10-pairs 1 nm/1 nm and 10-pairs
2 nm/2 nm SLs, respectively, including m-plane and c-
plane cases. Figures 12(a) and 12(c) show the conduction
band edge Ec and Wc for m-plane and c-plane conditions.
Here again, the difference between Ec and Wc increases
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FIG. 13. (a) and (c) are the conduction band potential (Ec)
and effective quantum confining potential (Wc) for m-plane
(top) and c-plane (bottom) 20-pairs disordered SL. (b) and
(d) display the corresponding IDOS.

as the period become smaller, exhibiting stronger tun-
neling effects. The IDOS displayed in Figs 12(b) and
12(d) show the quality of the approximation provided by
Wc, regardless of the structure complexity. We found
the c-plane case exhibits a better agreement with the
Schrödinger model due to distinct potential energy dis-
tributions. As randomness and inter-coupling increase in
the system, the prediction of Wc becomes closer to the
solution of the Schrödinger equation. This last result was
in fact already partly demonstrated in Ref. 18 for very
random systems.

2. Disordered superlattice

To illustrate the efficiency of the landscape model in
the case of disordered systems, we compute the band
structure and the density of states in nitride m-plane
and c-plane disordered SL. Two types of SL are investi-
gated: the first is composed of 20 pairs of well/barrier
layers, while the second is composed of 200 pairs. In
both cases, wells and barriers have 1 nm thickness. The
barrier material is Al0.4Ga0.6N and the well material is
AlxGa1−xN, where x is randomly and independently de-
termined in each well, using a uniform law between 0 and
0.4.

For each type of SL, the band structure and the IDOS
are computed (Figs 13 and 14). In both cases, although
the edge of the conduction band Ec now exhibits large
fluctuations across the structure due to the compositional
disorder, the quantum coupling between wells translates
into a much smoother effective potentialWc. The value of
Wc is significantly larger than Ec and can be interpreted
as a local fundamental energy from the expression of the
local density of states in Eq. (22). Looking at the IDOS
(right column of Figs 13 and 14), we observe a very good

FIG. 14. (a) and (c) are the conduction band potential (Ec)
and effective quantum confining potential (Wc) for m-plane
(top) and c-plane (bottom) 200-pairs disordered SL. (b) and
(d) display the corresponding IDOS.

agreement between the actual couting functions and its
approximation obtained using Wc. One has to note the
same slight discrepancy of the take-off energy between
both functions that was observed in the periodic case.
This discrepancy, which comes from the different natures
of the two functions (continuous vs. stepwise), appears
to be of the same order of magnitude independently on
the number of wells in the structure.

We also use the c-plane 200-pairs disordered SL struc-
ture (bottom of Fig. 14) to test the quality of the local
integrated density of states approximation. To this end,
the SL structure is divided into 4 disjoint regions of same
length. The local integrated density of states (LIDOS)
of each region is computed in two different ways: first,
by directly solving the Schrödinger equation in the entire
system. Each quantum state is then assigned a unique
region among the 4 already defined, which is the region
where the state reaches its maximum amplitude. Sec-
ondly, by integrating the LDOS of Eq. (22) on each re-
gion. Comparisons of the two methods for all 4 regions
are presented in the 4 bottom frames of Fig. 15. Here
also one can observe the accuracy of the LIDOS com-
puted using the landscape approach.

We finally test the accuracy of the overlap and joint
density of states estimates. To this end, the absorption
spectrum between electrons and heavy holes (of respec-
tive masses 0.20 and 1.87) of both disordered SL (20 and
200 wells) are computing summing over all localization
subregions the formula of Eq. (33), and compared to ex-
act computations using the quantum states computed
by Schrödinger equation. Comparisons between the two
types of calculations are displayed in Fig. 16, both in lin-
ear and log scale. One can see that the absorption curves
obtained using the LL (plain black lines) are very close
to the ones computed using Schrödinger equation (red
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FIG. 15. Comparison of the LIDOS of a c-plane 200-pairs
disordered SL structure computed using on one hand a cou-
pled Poisson-Schrödinger approach, and on the other hand our
coupled Poisson-LL model. The structure is divided into 4 re-
gions (top frame). Comparisons of the IDOS of each region
computed using both methods are displayed in the 4 bottom
frames.

dashed lines), over almost three decades of absorption
rate, confirming the quality of the landscape approach.
Our results show that W appears as a very likely candi-
date for inserting into a model of carrier transport able
to account for quantum effects in complicated systems.

C. Carrier distribution

To study and compare in detail the carrier distribu-
tions predicted by the different models, a 1D SQW is
simulated. The structure is composed of a 3 nm active
GaN layer, enclosed between two barriers of AlxGa1−xN,
where x = 0.2 will be the reference case. The band offsets
between GaN/AlGaN conduction bands are assumed to
be 63% of the bandgap discontinuity. The detailed band
structure parameters for GaN and AlN are provided in
Table I (see Appendix). All parameters of AlxGa1−xN
alloys are obtained by interpolation, where the bandgap
alloy bowing parameter is assumed to be 0.8 eV.

The m-plane and c-plane case (without and with the

FIG. 16. (Top) Light absorption spectra (in linear and log
scales) for the c-plane 20-pairs disordered SL of Fig. 13. The
absorption spectrum computed using the Schrödinger equa-
tion is displayed with a red dashed line while the spectrum
computed with the landscape approach is displayed with a
black continuous line. (Bottom) Light absorption spectrum
(in linear and log scales) for the c-plane 200-pairs disordered
SL of Fig. 14.

polarization charge induced at the interface) are both
discussed. The detailed dimension and material doping
level are shown in Fig. 17(a), where the electron effective
mass of Al0.2Ga0.8N and GaN is 0.214 m0 and 0.20 m0,
respectively. The doping is assumed to be fully activated
to ensure the same activation condition for comparison.

The carrier density distribution is solved through three
different methods: (1) the classical Poisson model solv-
ing Poisson equation for the charge distribution of ion-
ized donors across the QW structure; (2) self-consistent
Poisson-LL approach; and (3) self-consistent Poisson-
Schrödinger approach. Figure 17(b) displays the com-
puted carrier distribution and the potential energy for the
m-plane case with a symmetric potential energy by the
three methods. We can see that the carrier distribution
obtained from the classical Poisson equation (blue line) is
almost constant across the well and dropping sharply out-
side, not accounting for the quantum nature of the elec-
tron. The Poisson-Schrödinger solver provides a very dif-
ferent outcome: the carrier distribution is more confined
in the center of the well (red line of Fig. 17(b)) and ex-
tends smoothly outside of it, revealing the wave function
shape of the carrier. Turning to the landscape model,
the effective quantum potential Wc (black line) exhibits
a smoother behavior than the original conduction band
(blue line). The carrier density computed after replacing
the original conduction band edge Ec with Wc appears
very similar to that computed from the Schrödinger equa-
tion.

In Fig. 17(c), we evaluate the c-plane case with an
asymmetric potential profile induced by the polarization
charge. The carrier distribution computed by the clas-
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FIG. 17. (a) Schematic structure of the single
AlxGa1−xN/GaN/AlxGa1−xN QW, where x is variable. (b)
Potential energy and carrier distribution for m-plane and
x = 0.2. (c) Potential energy and carrier distribution for
c-plane and x = 0.2. (d) Potential energy and carrier distri-
bution for m-plane and x = 0.4. The blue, black, and red
lines are solved by the classical Poisson equation, Poisson-LL
model, and Poisson-Schrödinger equation, respectively. The
Fermi level is located at zero energy as the reference.

sical Poisson equation is sharp and mostly located at
the minimum of the conduction band. This does not
match the result obtained from the Poisson-Schrodinger
solver. This excessively large carrier density located at
the interface might be the reason why some numerical
studies33 using Poisson and DD solvers to study GaN-
based polar QWs adopt only ∼50% of the theoretical
polarization charge, in order to reproduce a carrier dis-
tribution consistent with the Schrödinger equation. Here

FIG. 18. Relative difference between the predictions of the
peak carrier distribution by the Poisson-LL and Poisson-
Schödinger models for various Al compositions of the
AlxGa1−xN/GaN m-plane SQW structure.

again, the Poisson-LL model results in a smoother carrier
distribution, as shown in Fig. 17(c), much closer to the
Schrödinger solution.

In the case of a deeper m-plane QW with x = 0.4,
carrier distributions computed with the Poisson-LL and
Poisson-Schrödinger models are also in good agreement,
as displayed in Fig. 17(d). To quantify this agreement,
we simulate a series of Al composition from 10% to 50%
(0.1 ≤ x ≤ 0.5). For each simulation, we compute the di-
mensionless quantity ∆ defined as the relative difference
of peak carrier densities between the Poisson-landscape
and Poisson-Schrödinger models. As displayed in Fig. 18,
∆ becomes smaller when the carriers are well localized
within a deeper potential (larger Al composition) and
almost vanishes above 40% Al composition.

We can conclude from this that the LL model matches
very well the solution of the Schrödinger equation when
the system is strongly localized. Even in systems with
a lower degree of localization (here, small x) the predic-
tion of the Poisson-LL model gives an acceptable agree-
ment with the exact Poisson-Schrödinger solution and
provides an overall description of the carrier distribution
much more accurate than the result of a classical Pois-
son solver. The discrepancy observed between the car-
rier distributions computed in Poisson-LL and Poisson-
Schrödinger models can be attributed to the fact that
the local DOS used in Poisson-LL does not fully describe
the exact shape of the wave function. If required, an
even more accurate approximation might be achieved by
using the effective confining potential to compute a cor-
rection to this carrier distribution without any adjustable
parameter.34,35

V. CONCLUSION

In this work, we applied the LL theory,17,18 until now
a purely mathematical framework, to build a new model
of quantum and disordered semiconductors devices. In
the LL theory, the Schrödinger equation is replaced by



16

an associated Dirichlet equation whose solution is called
the localization landscape, u. The reciprocal of this land-
scape, W = 1/u, acts as an effective quantum classical
confining potential which governs localization of quan-
tum states. Eigenfunction profiles and geometry of lo-
calization subregions can be retrieved from a direct anal-
ysis of this effective potential. Inserting W into Weyl’s
law also provides a very good approximation of the den-
sity of states, the carrier concentrations and the spatial
distributions of charges, especially in the case of strong
localization. Besides, as seen here in 1D cases, and shown
to play a decisive role in the 3D modeling of LEDs (see
LL3, Ref. 20) the LL theory simulates to an excellent
approximation two major effects of quantum mechanics,
namely the reduction of barrier heights (tunneling effect)
and the raising of energy ground states (quantum con-
finement effect).

We have presented here how to compute localized
states, energies, density of states using the landscapes,
and how to couple them to Poisson and DD equations
to model carrier transport in SL structures and car-
rier localization in nitride-based systems. In principle,
this method is not restricted to modeling nitride-based
devices (as the examples presented here or in compan-
ion papers dealing with the simulation of the absorption
edge (LL2, Ref. 19) and LEDs (LL3, Ref. 20) based on
InGaN alloy materials), but can expand to other semi-
conductor materials and to any electronic or optoelec-
tronic properties requiring the knowledge of electron and
hole quantum states. Moreover, except for the transport
and carrier distribution issues discussed in this paper,
the emission and absorption in the disordered system can
be properly modeled in terms of eigen-energy calculation
(LL2, Ref. 19). Finally, as observed in real modeling ex-
ercises (LL3, Ref. 20), the computation time using the
landscape model is considerably reduced compared to a
conventional Schrödinger solver, which makes this model
ideal for simulating and designing quantum 3D real-world
devices.

Appendix: Band structures and polarization in
AlGaN alloys

Table I displays the detailed band structure parame-
ters for GaN and AlN, respectively. The parameters of
all AlxGa1−xN alloys are obtained by interpolation, the
bandgap alloy bowing parameter being taken equal to
0.8 eV. Spontaneous and piezoelectric polarizations are
computed using Eq. (A.1) and (A.2), while parameters
of polarization values and piezoelectric coefficients are

provided in Table II and III, respectively.

P sp = a x+ b (1− x) + c x(1− x) (A.1)

P pz = [e] · [ε] =

 e15 εxz
e15 εyz

e31 (εxx + εyy) + e33 εzz

 (A.2)

Eg εr m
‖
e m⊥e mhh mlh

units (eV) (m0) (m0) (m0) (m0)

GaN 3.437 10.4 0.21 0.20 1.87 0.14

AlN 6.0 10.31 0.32 0.30 2.68 0.26

TABLE I. Band structure parameters for wurtzite GaN and
AlN alloys: bandgap, relative permittivity, effective masses.

a b c

-0.090 -0.034 0.021

TABLE II. Interpolation parameters for polarization in
AlxGa1−xN.

e33 e31 e15

units (C.cm−2) (C.cm−2) (C.cm−2)

GaN 0.73 -0.49 -0.40

AlN 1.55 -0.58 -0.48

TABLE III. Piezoelectric coefficients for wurtzite GaN and
AlN alloys.
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