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Abstract

Shear transformation (ST) plays a decisive role in determining the mechanical behavior of metal-

lic glasses, which is believed to be a stress-assisted thermally activated process. Understanding the

dependence in its activation energy on the stress imposed on the material is of central importance

to model the deformation process of metallic glasses and other amorphous solids. Here a theo-

retical model is proposed to predict the variation of the minimum energy path (MEP) associated

with a particular ST event upon further deformation. Verification based on atomistic simulations

and calculations are also conducted. The proposed model reproduces the MEP and activation

energy of an ST event under different imposed macroscopic strains based on a known MEP at a

reference strain. Moreover, an analytical approach is proposed based on the atomistic calculations,

which works well when the stress varies linearity along the MEP. These findings provide necessary

background for understanding the activation processes and, in turn, the mechanical behavior of

metallic glasses.
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I. INTRODUCTION

Metallic glasses, which exhibit unique mechanical properties, have attracted substantial

research efforts since their discovery in 1959 [1]. Nonetheless many mysteries still remain to

be uncovered. One such mystery relates to the mechanical behavior of metallic glasses: the

lack of dislocation-like defects in the amorphous structure makes it difficult to characterize

their plastic deformation mechanism. In this regard, many theoretical models [2–9] have

been developed to describe the dominant deformation mechanism. One of the key issues in

these models is the stress or strain dependence of the activation energies for the shear trans-

formation (ST) events (also sometimes referred to as inelastic events, flow defects, and local

inelastic transformations). The Erying model [10], which assumes a linear dependence of

the activation energy on the macroscopic stress, has been widely used in the development of

theories and the application of kinetic Monte Carlo simulations to study the mechanical be-

havior of metallic glasses [4, 11–13]. This linear dependence is appropriate when describing

the variation of activation energy upon small stress changes, since it is equivalent to consid-

ering only the first term in the Taylor expansion of the activation energy with respect to the

macroscopic stress. When the stress changes are large, however a nonlinear dependence is

often observed in simulations [14–16]. To describe such nonlinear behavior, the catastrophe

theory was proposed that predicts a scaling law of Q ∼ (σc − σ)
3

2 (here Q is the activation

energy, σc is the critical stress at which Q vanishes, and σ is the stress applied) [14]. The ac-

curacy of the catastrophe theory in describing the variation of the activation energy depends

on whether the simple Taylor expansion of the energy with respect to the reaction coordi-

nate and the macroscopic stress adequately captures the intrinsic physics of the complex

energy landscape, especially far away from the critical stress such that errors introduced by

neglecting the high-order Taylor expansion terms become nontrivial. It is also noticed that

in order to estimate the stress dependent activation energy based on the catastrophe theory,

one needs to know the critical stress a prior as well as other characteristics of the energy

landscape which make it impractical to predict the activation energy at arbitrary strain

before an event is triggered. As such, the intrinsic mechanism governing the influence of

stress on the activation energy change is still not clear. To resolve this issue, we re-examine

this problem by analyzing how macroscopic strain changes the local energy landscape, i.e.,

the minimum energy path (MEP) associated with a particular ST event subjected to dif-
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ferent macroscopic strains. A theoretical model without any fitting parameters is proposed

to describe the macroscopic strain dependence of the activation energy of a local ST event

based on its known MEP at a referential macroscopic strain level. This methodology is seen

to work reasonably well in predicting the macroscopic strain dependence of the activation

energies of local ST events identified in a Cu-Zr metallic glass.

This paper is organized as follows. First, the theoretical model which describes the

variation of an activation energy against macroscopic strains is described, followed by the

computational methods employed and the simulation details adopted to verify the proposed

theoretical model. Then, a simplified analytical approach is also proposed based on two

assumptions inspired by the simulation results. In the final section we draw some general

conclusions.

II. THEORY

Exploring the energy landscape has been an indispensable way to understand the me-

chanical behavior of metallic glasses [17–22]. We will examine here how macroscopic strains

(stresses) affect one dimension of the complex energy landscape, i.e. the MEP of a particu-

lar ST event. By evaluating the energy difference between the corresponding configurations

along the MEPs at different imposed macroscopic strains, we will be able to quantify the

macroscopic strain dependence on the activation energy of the ST event.

To simplify the presentation we only consider simple shear, although all the results to

follow are easily generalizable. The reader can easily extend it to other complex deformation

modes. Suppose the MEP of an ST event at a macroscopic strain level of γ0 is known as

E(x, γ0), where x is the reaction coordinate that corresponds to a configuration along the

MEP. Its counterpart along the MEP at another macroscopic strain level of γ, can be

acquired by a macroscopic deformation from γ0 to γ, with a dominating affine displacement

field and a non-affine one [23] which is uncorrelated with the current ST event due to the fixed

reaction coordinate. Consequently, the energy difference between them could be estimated

as

E(x, γ)− E(x, γ0) = ∆Eaf(x, γ) + ∆Enaf(γ), (1)

where ∆Eaf(x, γ) is the energy difference between them due to the affine displacement, and

∆Enaf(γ) is the contribution from structural relaxations other than the current event. In
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the vicinity of the current ST event (the shear transformation zone, STZ) we assume that no

other ST events are expected to be triggered within the strain range under consideration, as

those events may lead to significant changes in the MEP. The former term, which depends

on x, can be approximated as

∆Eaf(x, γ) =

∫ γ

γ0

V · τaf(x, γ
′)dγ′, (2)

where V is the volume of the system and τaf(x, γ
′) is the macroscopic shear stress due to

affine displacement for the configuration with a reaction coordinate of x at the macroscopic

strain level of γ′. Consequently, the MEP at γ can be estimated as

E(x, γ) = E(x, γ0) +

∫ γ

γ0

V · τaf(x, γ
′)dγ′ +∆Enaf(γ). (3)

The macroscopic stress τaf depends on both x and γ, which will dominate the change in the

shape of the MEP. That is to say, it is the difference in the elastic energy changes of the

configurations along the MEP upon further deformation that leads to the MEP variation,

and in turn the variation in the activation energy. It should be noted that although the

configurations along the MEP at γ0 lie in a valley of the energy landscape, there is a chance

that upon further deformation to γ configurations along a neighboring path might present

an alternate and more favorable MEP. In this instance it would be impossible to locate the

counterpart of a configuration at γ0 by an affine deformation. Nonetheless, the new MEP

generally has a lower activation energy than that along the affinely-deformed one, and the

above estimation still serves as an upper limit. We will show that the error in predicting

the activation energy change introduced by such migration effect can be ignored in most, if

not all, of the ST events.

The stress difference between τaf(x, γ) and τ(x, γ0), however depends marginally on x

while mainly on γ, since variation in x corresponds to local structural adjustments which

do not greatly affect the affine deformation modulus [23, 24]. Thus, we have

τaf(x, γ)− τ(x, γ0) = f(γ). (4)
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As a result, the MEP at γ given by Eq. 3 will be

E(x, γ) = E(x, γ0) + V

∫ γ

γ0

[τ(x, γ0) + f(γ′)]dγ′ +∆Enaf(γ), (5)

= E(x, γ0) + V · τ(x, γ0) · (γ − γ0) + V

∫ γ

γ0

f(γ′)dγ′ +∆Enaf(γ),

= E(x, γ0) + V ·∆τ(x, γ0) · (γ − γ0) + V · τ(xm,γ0 , γ0) · (γ − γ0)

+ V

∫ γ

γ0

f(γ′)dγ′ +∆Enaf(γ),

where ∆τ(x, γ0) = τ(x, γ0)− τ(xm,γ0 , γ0) and xm,γ0 is the location of the starting minimum

energy configuration along the MEP at γ0. That is to say, the MEP for a given ST event

under a macroscopic strain level γ can be estimated provided its MEP and the corresponding

shear stress for each configuration along the MEP at a referential strain γ0 are known. In

turn, the locations of the minimum energy (xm,γ) and the saddle point (xs,γ) configurations,

as well as the activation energy (Q(γ) = E(xs,γ, γ)−E(xm,γ , γ)) can also be easily deduced.

A closer inspection of Eq. 5 reveals that the last three terms do not contribute to the

activation energy, instead, they merely set a baseline for the MEP at the macroscopic strain

level of γ with respect to that of γ0 and can therefore be ignored if only the activation energy

is of interest.

III. METHODS

Since it is neither practical to examine the energy landscape of a metallic glass exper-

imentally, nor is it feasible to track the variation of the MEP pertinent to an ST event,

atomistic scale modeling is employed to confirm the above analysis. The Cu64Zr36 metallic

glass is chosen as our model system, which has a high glass forming ability and has been

extensively studied in the literature [25–29]. The interatomic interactions are described by

an Embedded Atom Method (EAM) potential parameterized by Cheng et al. [30], which

has been successfully employed to investigate various structural and energetic properties of

the Cu-Zr system [21, 28, 29, 31]. The metallic glass model was prepared by beginning with

a cubic simulation box containing 10, 000 atoms, equilibrated at 2, 500 K (which is much

higher than the equilibrium liquidus temperature of Cu64Zr36) for 10 ns to ensure chemical

and structural homogeneity. The melt was then quenched to room temperature (300 K)

at a cooling rate of 109 K/s using a Nose-Hoover thermostat and barostat to monitor the
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temperature and pressure (maintained at ∼ 1 bar), respectively. The glass model was then

relaxed to its local energy minimum using the conjugate gradient method, during which the

box size was allowed to adjust so as to maintain a pressure around zero.

To harvest the local energy landscape of ST events in a deformation process, athermal

quasi-static shear (AQS) [32] was applied to the obtained glass model until a macroscopic

shear strain of 0.15 at a step-size of 1 × 10−5, during which the Fast Inertial Relaxation

Engine (FIRE) [33] was turned on to minimize the total energy of the system. It can be

expected that when the strain is large enough, ST events will be triggered in the system.

The selection of the ST event for detailed study is however non-trivial: one should isolate the

event from others that might occur in other regions of the metallic glass, so as to avoid the

interference of the ST event under study. Here we choose the first three shear transformation

events identified from the stress-strain curve as examples for detailed analysis. The von-Mises

atomic shear strain [34] was employed to confirm the occurrence of an ST event, by detecting

when a peak value of the von-Mises atomic shear strain is observed for a cluster of atoms.

This also corresponds to a stress drop in the stress-strain curve. The following procedures

were then followed to evaluate the MEPs of each ST event at different macroscopic shear

strains, as illustrated in Fig. 1: First, the atomic configuration right after the ST was chosen

as a starting point to unload the system, reversing the shear applied to the system, until

the reverse ST occurred. The unloading prior to the reverse ST generates shear transformed

atomic configurations at different macroscopic strain levels. Secondly, configurations from

the loading and the unloading curves corresponding to a same macroscopic strain were used

as the initial and final configurations for subsequent nudged elastic band (NEB) calculations,

so as to measure the MEP of the associated ST at a given macroscopic strain level. The

NEB calculations were performed with a force tolerance of 5× 10−4 eV/Å using 32 images,

and cubic spline interpolations were employed to estimate the necessary information for

unmeasured configurations along the MEP.

IV. RESULTS AND DISCUSSIONS

The initial part of the (shear) stress-strain curve from the AQS process shown in Fig. 2

behaves roughly linearly. A closer examination however reveals many sudden stress drops

even in the “linear” region, suggesting the occurrences of ST events. The first three were
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FIG. 1. Illustration of the procedure adopted to evaluate the MEP at different macroscopic strains

for an ST event. Firstly, the triggering point of the ST event is identified, and then the recovering

point along the loading and unloading curves, respectively. Secondly, for a given macroscopic

strain in between of these two points, take the configuration on the loading curve and that on the

unloading curve as the initial and final configurations for subsequent NEB calculations to measure

the MEP at this strain level and in turn the activation energy.

observed at macroscopic shear strains of 0.0098, 0.0178, and 0.0248, respectively. We will

take the ST event triggered at γ = 0.0248 as our first example to examine the strain

dependence of its activation energy. Unloading of the transformed configuration revealed

that a negative stress is needed to recover this transformation. In order to avoid interference

with the other ST events (those that took place at 0.0098 and 0.0178, respectively), the NEB

calculations were performed at macroscopic strains of 0.0010, 0.0100, 0.0130, 0.0200, and

0.0230. Fig. 3(a) shows the MEPs and Fig. 3(b) shows the relative stresses obtained, where

the reaction coordinate x is given by the distance to the initial minimum configuration

at γ0 = 0.0010. It should be noted that for all the MEPs, the energy of the starting

configuration was shifted to zero, and the relative stresses are given by ∆τ(x, γ) = τ(x, γ)−

τ(xm,γ , γ). One sees that in general, an energy barrier is present in each MEP and the

MEP is asymmetric. The asymmetry is enhanced upon further deformation: the barrier
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FIG. 2. Stress-strain curve of the athermal quasi-static shear process. The inset reveals the stress

drops corresponding to the triggering of the first three STs.

for forward transformation decreases with the increasing of the macroscopic strain, while

that for the backward transformation increases. This was further manifested in Fig. 4(a):

one sees that the forward barrier approaches zero when the macroscopic strain approaches

0.0248, where the ST event occurs. One also sees from Fig. 3 and Fig. 4(b) that the location

of the starting minimum energy configuration and that of the saddle point configuration

vary with the macroscopic strain levels. With the increasing of γ, xm,γ shows a right shift,

i.e., shifts towards the saddle point configuration. Conversely, xs,γ shifts left, towards xm,γ .

They meet with each other when the ST event occurs spontaneously, corresponding to the

strain level with a zero barrier for the event.

Accompanying the MEP calculation, the stress for each image along the MEP was also

obtained. One sees from Fig. 3(b) that the stress difference ∆τ(x, γ) shows a linear decrease

with increasing the reaction coordinate x. This is however counter-intuitive, as when the

barrier is crossed, one would expect some variations in the stress as well, such as a sinusoidal

variation suggested by Schuh et al. [35]. Upon further consideration, this is quite under-

standable, as the ST event happens locally and affects only a small portion of the system. If

one divides the system into an ST region and a matrix–consisting of the remaining material,
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FIG. 3. (a) MEPs of the third ST event identified under different macroscopic strain levels from

NEB calculations (circles) and estimations starting from the one measured at γ0 = 0.0010 (lines).

(b) Stress difference (∆τ(x, γ) = τ(x, γ)− τ(xm,γ , γ)) from the NEB calculations.

similar variations can be observed in the “local” stress of the ST region, as evidenced in

Fig. 5(b). Here the ST region was identified as a spherical region with relatively large atomic

von-Mises strains, of a radius of ∼ 5.2 Å. Since the occurrence of the ST event would “relax”

the system, the stress in the matrix is partially relieved, the large volume share of the matrix

thus dominates the stress variation, a monotonic decrease in ∆τ(x, γ) with increasing the

reaction coordinate is consequently observed.

Nevertheless, with the information on both the MEP and the stress variation in hand, the

MEP at various strain levels can be deduced numerically according to Eq. 5. We therefore

begin with the MEP and the stress difference along the MEP measured at γ0 = 0.0010, and

deduce the MEPs at γ = 0.0100, 0.0130, 0.0200, and 0.0230, shown in Fig. 3(a) as lines.

One sees that the agreement with the NEB measurements is reasonably good, suggesting

that the theory derived is promising in estimating the strain dependence of the MEP and

the activation energy.
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FIG. 4. (a) Activation energies of the third ST event at different stain levels as given by

NEB calculations (black circle), numerical estimations (red solid line), analytical predictions

(blue dashed line), and catastrophe theory fitting (green dotted line, fitting NEB results with

Q(γ) = kQ(0.0248 − γ)
3

2 . 0.0248 is the triggering strain, where a stress drop occurs in AQS.). (b)

The locations of the minimum energy configuration and the saddle point configuration along the

MEP of the third ST event under different macroscopic strain levels. The red solid line is derived

by minimizing/maximizing Eq. 5 numerically based on NEB calculations at γ0 = 0.0010, and the

blue dashed line is deduced according to Eq. 15 by taking γ0 = 0.0010 as the reference.

An analytical expression will be of great help to understand the variations of the MEP,

as in the catastrophe theory [14]. In this regard, the linear dependence of τ(x, γ0) on x as

seen in Fig. 3(b) can be approximated by

τ(x, γ0) = kx+ τxm,γ0
,γ0 , (6)

setting xm,γ0 = 0, where k =
τxs,γ0−τxm,γ0

xs,γ0

, with τxs,γ0
and τxm,γ0

are the stresses of the saddle

point configuration and the initial minimum energy configuration along the MEP of γ0,

10



−0.2

0.0

0.2

∆
E

 (e
V

)

(a)

0.0 0.5 1.0 1.5 2.0
x (Å)

−800

−400

0

400

∆
τ 

(b
ar

)

(b) STZ
Matrix
System

FIG. 5. (a) The variations in relative energies (∆E(x) = E(x, γ0)− E(xm,γ0 , γ0)) and (b) relative

stresses (∆τ(x) = τ(x, γ0)−τ(xm,γ0 , γ0)) as a function of reaction coordinate for the ST region (red

circle), the remaining matrix (blue square), and the whole system (green triangle) for the third ST

event at γ0 = 0.0010. For clarity, the relative energy of the whole system (green triangle) in (a) is

enlarged by a factor of 5, and the relative stresses for both the matrix (blue square) and the whole

system (green triangle) in (b) are amplified by 20 times.

respectively. With Eq. 6, Eq. 5 can be simplified as

E(x, γ) = E(x, γ0) + V · kx · (γ − γ0) + V · τxm,γ0
,γ0(γ − γ0) (7)

+ V

∫ γ

γ0

f(γ′)dγ′ +∆Enaf(γ),

= E(x, γ0) + V kx · (γ − γ0) + E ′(γ),

where E ′(γ) = V · τxm,γ0
,γ0(γ − γ0) + V

∫ γ

γ0
f(γ′)dγ′ + ∆Enaf(γ) is the contribution to

E(x, γ) that depends only on γ. This formula is quite similar to the one used to describe

the MEP variation in the catastrophe theory [14], which approximates the MEP by a third

or forth order Taylor expansion around the critical point. It should be pointed out that

all the terms in Eq. 7 can be extracted from the atomistic model, and no fitting to other

properties is needed. The similarity between these two formulae suggests that the law
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FIG. 6. (a) Activation energies of the ST event triggered at 0.0098 at different strain levels from

NEB calculations (hollow point), numerical estimations (red solid line), and analytical predictions

(blue dashed line). (b) Macroscopic shear stress-strain curves during loading (red) and unloading

(blue) for the first identified ST event. The event was reversed at a strain of 0.0033.

derived in the catastrophe theory is valid only when the stress varies linearly (Eq. 6). It is

however noticed that the linearity assumption does not always hold. For example, for the

third ST event another component σxz (τ = σxy in Fig. 3(b)) along MEP did not follow

the linearity assumption. Thus, it may be unreliable to predict the activation energy under

shear deformation along XZ direction with the analytical formula (Eq. 7). In the appendix,

we will show an example where a linear variation of the shear stress as a function of the

reaction coordinate is not followed, leading to an incorrect prediction of the activation energy

for such event. Nonetheless, even under such conditions, the present model based on Eq. 5

still works in a wide strain range up to strain 0.08, except that the simplification of Eq. 7

does not hold any more. Consequently, care should be taken when one relies on the assumed

linearity in applying the catastrophe theory or our analytical formula (Eq. 7), especially for

regions far away from the referential critical point.
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FIG. 7. (a) Activation energies of the ST event triggered at 0.0178 at different strain levels from

NEB calculations (hollow point), numerical estimations (red solid line), and analytical predictions

(blue dashed line). (b) Macroscopic shear stress-strain curves during loading (red) and unloading

(blue) for the second identified ST event. The event was reversed at a strain of 0.0143.

Noticing that the first half of the MEP satisfies three conditions (setting xm,γ0 = 0):

∂E(x, γ0)

∂x

∣

∣

∣

x=0
= 0, (8)

∂E(x, γ0)

∂x

∣

∣

∣

x=xs

= 0,

E(xs, γ0)− E(0, γ0) = Qγ0 ,

it can therefore be approximated by a cubic polynomial

E(x, γ0) = Ax3 +Bx2 + Cx+ E(0, γ0), (9)

and can be solved as

E(x̃, γ0) = −2Qγ0 x̃
3 + 3Qγ0 x̃

2 + E(0, γ0), (10)

where a scaled reaction coordinate is defined as x̃ = x/xs,γ0 . Inserting Eq. 10 into Eq. 7, we

arrive at an analytical expression for the MEP at γ

E(x̃, γ) = −2Qγ0 x̃
3 + 3Qγ0 x̃

2 + V x̃ ·∆τ0 · (γ − γ0) + E ′(γ), (11)
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where ∆τ0 = τx̃s,γ0
,γ0 − τ0,γ0 is the stress difference between the saddle point configuration

and the initial equilibrium configuration at γ0. By locating the first minimum and maximum

of E(x̃, γ) with respect to x̃, one obtains the locations of the starting minimum configuration

and the saddle point configuration along the MEP at the macroscopic strain of γ. And they

are found to be

x̃s =
3Qγ0 +

√

9Q2
γ0
+ 6Qγ0V∆τ0∆γ

6Qγ0

, (12)

x̃m =
3Qγ0 −

√

9Q2
γ0 + 6Qγ0V∆τ0∆γ

6Qγ0

,

where ∆γ = γ − γ0. The analytic expression for the activation energy as a function of the

macroscopic strain is accordingly given by

Q(γ) = Qγ0

(

1 +
2V∆τ0∆γ

3Qγ0

)
3

2

, (13)

and activation energy vanishes at a triggering strain of

∆γc = −

3Qγ0

2V∆τ0
. (14)

By employing Eq. 14, the critical strain for the third ST event is “predicted” to be 0.0201,

while that estimated numerically based on Eq. 5 is 0.0231, both agree reasonably well with

the AQS value of 0.0248. Comparatively, the numerical estimation has a better agree-

ment with the AQS value than the analytical one, while the latter is more convenient to

use/evaluate than the former. Inserting Eq. 14 into Eq. 13 and Eq. 12, we can obtain

Q(γ) = Qγ0

(

1−
∆γ

∆γc

)
3

2

, (15)

x̃s =
1

2
+

1

2

√

1−
∆γ

∆γc
,

x̃m =
1

2
−

1

2

√

1−
∆γ

∆γc
.

Besides an apparent strain dependence in the activation energy similar to the catastrophe

theory [14], one sees from the above expressions that in order to predict the activation energy

at a strain level of γ, it would be sufficient to know Qγ0 and the stress difference between

the saddle point configuration and the starting minimum energy configuration along the

MEP at a referential strain level of γ0. It is worth noting that a similar form of x̃m was
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proposed by Maloney et al. [23] based on normal mode analysis. The activation energies

for the third ST event under different strains were estimated according to the analytic

expression of Eq. 15 and shown in Fig. 4(a) as dashed lines. In addition, the locations of

the starting minimum energy configuration and the saddle point configuration were also

deduced according to Eq. 15, which were compared in Fig. 4(b) to those derived by finding

the minimum and maximum of Eq. 5 numerically and the NEB results. Incidentally, one

reads from Eq. 15 that Q scales to (1−∆γ/∆γc)
3/2, while seperation between x̃s

and x̃m scales to (1 − ∆γ/∆γc)
1/2, the former will converge to zero much faster

than the latter, in line with the observation in Fig. 4 where the activation energy

diminishes while the seperation between x̃s and x̃m still seems to be large in the

NEB calculations. Nonetheless, one sees from Fig. 4 that the estimations agree

reasonably well with the NEB results, suggesting that prediction based on the analytic

approximation is feasible. Its advantage over the numerical approach is that one only needs

the information of the minimum energy configuration and the saddle point configuration

along the MEP at the referential strain level, instead of those along the entire MEP. The

scaling law of Q = kQ(γc−γ)
3

2 (here γc is the triggering strain at which Q vanishes in AQS)

from the catastrophe theory [14] is also fitted as shown in Fig. 4(a) as a dotted line for

comparison.

Beginning with Eq. 13, the shear activation volume, defined as negative of the first

derivative of the activation energy with respect to the shear stress, can be given by

V ∗(γ0) = −V∆τ0
dγ

dτ

∣

∣

∣

γ=γ0
, (16)

= −

V∆τ0
G(γ0)

,

=
3Qγ0

2∆γcG(γ0)
,

V ∗(γ) = −V∆τ0

√

3Qγ0 + 2V∆τ0∆γ

3Qγ0

dγ

dτ
, (17)

=
3Qγ0

2∆γcG(γ)

√

1−
∆γ

∆γc
,

where G(γ) is the athermal shear modulus of the whole system. And if G(γ) ≈ G(γ0), then

V ∗(γ) = V ∗(γ0)

√

1−
∆γ

∆γc
. (18)

15



Incidentally, the stress change of the system upon deformation from γ0 to γ can also be

expressed by

τ(x̃m,γ , γ) = τ(0, γ) + ∆τ0 · x̃m,γ , (19)

= τ(0, γ) + ∆τ0

(

1

2
−

1

2

√

1−
∆γ

∆γc

)

.

Therefore, the athermal shear modulus of the system can be derived as

G(γ) =
dτ(x̃m,γ , γ)

dγ
, (20)

=
dτ(0, γ)

dγ
+

∆τ0

4
√

∆γc(∆γc −∆γ)
,

=
dτ(0, γ)

dγ
−

1

4
√

∆γc(∆γc −∆γ)
·

V ∗(γ0)

V
·G(γ0),

where the second term is the nonlinear contribution to the modulus of the system from the

ST event. Supposing that G(γ0) is close to G(γ) and that V ∗(γ0) is insensitive to the system

size, when the system volume V is small and/or when the macroscopic strain approaches

the critical strain, the nonlinear contribution of the event becomes prominent, and one can

then predict the critical strain of the ST event by examining the modulus or stress variation

against the macroscopic strain [36–38]. This also explains why the error in the predicted

critical strain becomes large when the system volume increases [36].

All the discussions up to now have considered only the third ST event identified in the

AQS process as an example, while the theoretical framework derived should work with any

other ST event. To further confirm this, the activation energies, critical strains of the

first and the second ST events identified under different macroscopic strain levels were also

worked out following both the numerical and analytical recipes. One finds from Fig. 6 and

Fig. 7 again that both approaches give reasonable agreement with the NEB calculations.

The comparison of the critical strains shown in Table I also reveal very good agreement

between the predictions and the simulations, confirming the reliability of the underlying

theoretical model as well as the methods.

V. CONCLUSION

In summary, the stain dependence in the activation energies of local shear transforma-

tion events in metallic glasses were investigated both theoretically and computationally.
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The theoretically analysis suggests not only a dependence on the macroscopic strain in the

activation energies of local shear transformation events, but also that the dependence can

be predicted based on the information at a referential strain level. Numerical calculations

based on athermal quasi-static shear simulation and nudged elastic band calculations prove

that the proposed theory works well, and also reveal that the dependence can be expressed

analytically with reasonable approximations. The analytical approach is seen to yield com-

parable agreement to the exact NEB calculations as that of the numerical predictions. This

opens the possibility of fast algorithms that are able to infer the character of statistically

significant number of energy barriers in the glass and the evolution of their distributions

during thermal and/or mechanical processing.

It is widely accepted that the potential energy landscape provides a very useful perspec-

tive to describe the mechanical behavior of metallic glasses. Due to its hyper-dimensional

nature and complex coupling with the surrounding environment, it is unreasonable to ex-

pect that a complete characterization of the energy landscape is achievable or desirable.

Rather atomistic modeling provides a methodology by which the specific aspects of the en-

ergy landscape that are crucial for determing important material properties are identified

and characterized. The present approach, by effectively capturing the features of the po-

tential energy landscape that are most closely associated with shear induced atomic-scale

rearrangement, therefore provides a powerful tool to understand the mechanical deformation

of metallic glasses, and perhaps also the mechanical behavior of disordered systems more

generally.

TABLE I. Comparison of the triggering strains for the first three ST events determined by AQS,

numerical estimation, and analytical prediction.

ST Event AQS Numerical Analytical

1st 0.0098 0.0098 0.0106

2nd 0.0178 0.0178 0.0174

3rd 0.0248 0.0231 0.0201
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Appendix: An example not following stress linearity assumption

FIG. A1. Stress and energy information along the MEP.

In this appendix, we will illustrate an example where the shear stress does not vary

linearly as a function of the reaction coordinate, resulting in failure of the activation energy

prediction based on the analytical approach. The example was captured when we were

trying to predict the triggering strains of all the ST events identified in the Cu-Zr metallic

glass based on the Activation Relaxation Technique (ARTn) [39–41]. It turned out that the

predictions based on Eq. 7 fail for some of the events, and further analysis revealed that for
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FIG. A2. Variation of activation energy against the macroscopic strain. Points, dashed line, solid

line are results from the NEB calculation, the numerical estimation and the analytical prediction,

respectively.

such events, the variation of the shear stress as a function of the reaction coordinate does

not show a linear behavior, as is seen in Fig. A1. Nonetheless, numerical prediction based

on Eq. 5 still yields reasonable agreement with the direct calculations. It is worth to note

that since no triggering strain existed in this event, it is impractical to apply catastrophe

theory to study the strain dependence of activation energy in such situation.
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