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The representations of a compound, called “descriptors” or “features”, play an essential role in
constructing a machine-learning model of its physical properties. In this study, we adopt a procedure
for generating a set of descriptors from simple elemental and structural representations. First it is
applied to a large dataset composed of the cohesive energy for about 18000 compounds computed by
density functional theory (DFT) calculation. As a result, we obtain a kernel ridge prediction model
with a prediction error of 0.041 eV/atom, which is close to the “chemical accuracy” of 1 kcal/mol
(0.043 eV/atom). A prediction model with an error of 0.071 eV/atom of the cohesive energy is
obtained for the normalized prototype structures, which can be used for a practical purpose to search
as-yet-unknown structures. The procedure is also applied to two smaller datasets, i.e., a dataset
of the lattice thermal conductivity (LTC) for 110 compounds computed by DFT calculation and a
dataset of the experimental melting temperature for 248 compounds. We examine the performance
of the descriptor sets on the efficiency of Bayesian optimization in addition to the accuracy of the
kernel ridge regression models. They exhibit good predictive performances.

PACS numbers: 61.50.Ah,61.66.Fn,66.70.-f,64.70.dj

I. INTRODUCTION

A data-driven machine learning approach is expected
to be used to make prediction models of target physi-
cal properties of interest and classification models of tar-
get classes of properties. Therefore, machine-learning
techniques have been increasingly used for the explo-
ration of materials and structures from a huge number of
candidates[1–18] and/or for extracting meaningful infor-
mation and patterns from existing data such as machine-
learning interatomic potentials and so forth[19–33]. A
key factor in controlling the performance of a machine-
learning-based approach is how compounds are repre-
sented in a dataset. Representations of compounds are
called “descriptors” or “features”.
Candidate compound descriptors are quantities ob-

tained from first-principles physical properties such as
volume, cohesive energy, elastic constants, dielectric con-
stants and so forth. Although a few first-principles
databases are available, the numbers of compounds and
physical properties in the databases are still limited.
Nevertheless, if one can discover a set of descriptors that
can explain a target property well, a robust prediction
model of a target property can be derived. In addition to
first-principles properties, one can use quantities derived
from simple representations of elements and structures of
compounds as descriptors.
Many candidate elemental representations can be

found in the literature. These are intrinsic quantities
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such as atomic number and ionization energy, heuris-
tic quantities such as electronegativity[34] and ionic
radius[35] and physical properties of elemental sub-
stances such as melting and boiling points. Such ele-
mental representations have already been used in many
studies on the machine learning prediction. Other candi-
dates are the chemical composition or a binary digit rep-
resenting the presence of each element in a compound[5].
Also, an elemental or ionic similarity defined by crystal
structure database entries has been proposed[36]. Many
structural representations that are not generally intended
for application to machine learning have also been pro-
posed in the literature. They include the simple coor-
dination number, Voronoi polyhedron of a central atom,
angular distribution function (ADF), bond-orientational
order parameter (BOP)[37] and radial distribution func-
tion (RDF). Some of them and their extended forms have
already been applied to machine-learning predictions[38–
40]. Candidate structural representations have also been
proposed in the context of machine learning interatomic
potential[41].
Moreover, in the usual situation that a dataset cov-

ers a wide range of chemical compositions and crystal
structures, it is natural to consider a combined form of
elemental and structural representations as a descriptor.
Such descriptors have not been proposed except for the
Coulomb matrix[42], its extended forms[43], the X-ray
diffraction pattern[44] and some functions based on mul-
tiple elemental representations[23, 45], because it is not
easy to find a good descriptor derived from elemental and
structural representations. Therefore, a systematic pro-
cedure for generating a set of compound descriptors from
simple representations is strongly required.
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In this study, we demonstrate an approach to derive
a set of descriptors for a compound from atomic rep-
resentations, which can be applied not only to crys-
talline systems but also to molecular systems. This ap-
proach enables us to generate a set of descriptors com-
posed of elemental and structural representations sat-
isfying the following features. (1) Compounds with a
wide range of chemical compositions are expressed by
same-dimensional descriptors. (2) Compounds with a
wide range of crystal structures are expressed by same-
dimensional descriptors. This is an important feature
because unit cells of different crystals are not composed
of the same number of atoms. (3) A set of descriptors
satisfies translational and rotational invariance and other
invariances required for all compounds included in the
dataset.
We apply this approach to a large dataset and two

small datasets of physical properties. The large dataset
is composed of the cohesive energy for about 18000 com-
pounds computed by density functional theory (DFT)
calculation[46, 47]. The two small datasets correspond
to a dataset of the lattice thermal conductivity (LTC)
for 110 compounds computed by DFT calculation and a
dataset of the experimental melting temperature for 248
compounds. Using the datasets, we examine the per-
formance of descriptors in terms of the prediction error
for test data of the kernel ridge models and the perfor-
mance of the Bayesian optimization, which is becoming
an option for solving optimization problems in physics,
chemistry and materials science[5, 14, 18, 25].
This paper is organized as follows. Section II gives

the detail of the datasets used in this study. Section
III describes the regression methods and the procedure
for Bayesian optimization adopted in this study. Section
IV shows how to derive compound descriptors from sim-
ple elemental and structural representations. Section V
gives results for the performance of the descriptors for
kernel ridge models and Bayesian optimization. Finally,
we conclude in Sec. VI.

II. DATASETS

A. DFT cohesive energy (18093 compounds)

The first dataset contains the cohesive energy for bi-
nary and ternary compounds computed by DFT calcu-
lation. The compounds in the dataset correspond to
exhaustive arrangements of given chemical compositions
and crystal structure prototypes. Therefore, the cohe-
sive energy depends on both the elements and the crystal
structure of the compound. The chemical compositions
are generated by considering all combinations of cations
and anions listed in Table I, satisfying the charge neutral-
ity condition. Binary compounds have the compositions
of AX, AX2, AX3 and A2X3, and ternary compounds
have the compositions of ABX, ABX2, ABX3, ABX4 and
AB2X4, where elements A and B are cations and element

X is an anion. For each chemical composition, we con-
sider several crystal structure prototypes, shown in Table
I, included in the inorganic crystal structure database
(ICSD)[48]. The total number of compounds is 18093,
1575 binary and 16518 ternary compounds.
We use a definition of the cohesive energy for a binary

or ternary compound, normalized by the total number of
atoms, expressed as

Ecoh =
(nAE

atom
A + nBE

atom
B + nXE

atom
X )− Ebulk

nA + nB + nX
, (1)

where nA, nB and nX denote the numbers of atoms A,
B and X included in a simulation cell for the compound,
respectively. Ebulk is the total energy of the compound
at the equilibrium volume. Eatom

A , Eatom
B and Eatom

X are
the energies of isolated atoms A, B and X, respectively.
For all 18093 compounds, DFT calculations were per-

formed using the plane-wave basis projector augmented
wave (PAW) method[49, 50] within the Perdew–Burke–
Ernzerhof exchange-correlation functional[51] as imple-
mented in the vasp code[52, 53]. The cutoff energy was
set to 400 eV. The total energy converged to less than
10−3 meV. The atomic positions and lattice constants
were optimized until the residual forces became less than
10−2 eV/Å. To evaluate the energy of an isolated atom,
a spin-polarized calculation was performed with a large
periodic cell of 15 Å × 16 Å × 17 Å.

B. DFT lattice thermal conductivity (110
compounds)

One of the small datasets is composed of the LTC for
110 compounds computed by DFT calculation, gener-
ated by incorporating the datasets used in Refs. 5 and
54. We employed the supercell and finite-displacement
approaches to obtain second-order and third-order force
constants. LTCs were calculated from phonon lifetimes,
group velocities and mode-heat capacities solving the
phonon Boltzmann transport equation within the re-
laxation time approximation. The phonopy[55] and
phono3py[54] codes were used for these phonon calcu-
lations. Details of the theoretical background and com-
putational procedure can be found in Refs. 5 and 54.

C. Experimental melting temperature (248
compounds)

The other small dataset is composed of the experimen-
tal melting temperature for 248 binary compounds taken
from Ref. 56. This dataset is exactly the same as that
used in Ref. 25. The melting temperatures of the com-
pounds in the dataset range from room temperature to
3273 K. In addition, transition-metal compounds are not
included in the dataset to avoid complexity in the DFT
calculation. The compounds and their melting tempera-
tures can be found in the Appendix of Ref. 25.
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TABLE I. Elements and their valences included in the DFT dataset of cohesive energy. Prototype structures of compounds
included in the DFT dataset are also shown. We adopt prototype structures for which many entries are registered in the ICSD.

Valence Element

1+ Li, Na, K, Rb, Cs

2+ Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg

3+ Al, Ga, In, Sc, Y, La

1− F, Cl, Br, I

2− O, S, Se, Te

3− N, P, As, Sb

Formula Prototype structure Number of compounds

AX NaCl, ZnS, ZnO, NiAs, MnP, FeB, CsCl, TlI 608

AX2 CaF2, CaCl2, α-PbO2, CdI2, La2Sb, Rutile-TiO2, PbCl2, Pyrite-FeS2, Marcasite-FeS2 468

AX3 Cementite-Fe3C, YF3, Na3As, ReO3, BiI3 220

A2X3 Bi2Te3, La2O3, Sn2S3, Sb2S3, Bixbyite-Mn2O3 279

ABX Cu2Sb, RbAuS, Fe2P 2214

ABX2 α-LiFeO2, NaCrS2, CuFeS2, CuLaS2, AgFeO2 6497

ABX3 Perovskite-GdFeO3, Perovskite-CaTiO3, BaNiO3 2243

ABX4 ZrSiO4, CaWO4, BiWO4 2207

AB2X4 Olivine-Mg2SiO4, Spinel-MgAl2O4, K2MgF4, CaFe2O4, CrNb2Se4, Al2CdS4 3357

Since the database of melting temperatures does not
contain information of the crystal structure, we estimate
the stable crystal structure for each compound by DFT
calculation. Candidates crystal structures are taken from
the ICSD. When the ICSD database has a unique crys-
tal structure for a compound, the DFT calculation is
carried out for the unique crystal structure. When the
ICSD database contains multiple crystal structures for
the compound, the crystal structure with the lowest en-
ergy among the structures is adopted.

III. REGRESSION METHODS

A. Kernel ridge regression

A way of measuring the performance of descriptors is to
estimate the prediction error of regression models. Ker-
nel ridge regression (KRR)[57] is employed in this study.
In the formalism of KRR, the observation property y of
point d is expressed by a kernel function for point d and
training data point di as

y (d) =

N
∑

i=1

αik (d,di) , (2)

where N and αi denote the number of training data and
the contribution of training data i to the prediction of the
observation property, respectively. k (d,di) is a kernel
function used to measure the similarity between point d
and training data point di. Here we introduce a radial
basis function (RBF) kernel, given by

k (di,dj) = exp

(

−
|di − dj |

2

2σ2

)

(3)

with a length scale of σ. Coefficients α =
[α1, α2, · · · , αN ]⊤ are determined from the training data
by simple matrix operations as

α = (K + λIN )−1
y, (4)

where λ and IN denote a regularization parameter and
the N -dimensional identity matrix, respectively. y de-
notes an N -dimensional vector describing the observa-
tion property of the training data. K is a symmetric
kernel matrix composed of kernel functions for all pair
arrangements of the training data, expressed as

K =













k (d1,d1) k (d1,d2) · · · k (d1,dN )

k (d2,d1) k (d2,d2) · · · k (d2,dN )
...

...
. . .

...

k (dN ,d1) k (dN ,d2) · · · k (dN ,dN )













. (5)

Finally, the prediction for point d∗ is derived as

y (d∗) = k⊤

∗
(K + λIn)

−1
y, (6)

where k∗ = [k(d∗,d1), · · · , k(d∗,dN)]
⊤

is the vector of
kernel functions for point d∗ and the training examples.
The prediction model depends on the values of σ and λ,
hence we determine them by a grid-search optimization.

B. Gaussian process regression

Another way of measuring the performance of descrip-
tors is to examine the efficiency in finding the com-
pound showing the best observation property among the
existing data whose observations are known. We em-
ploy Bayesian optimization based on a Gaussian process
(GP)[58], specified by its mean function and covariance



4

function. We adopt an RBF covariance for noise-free ob-
servation, given by

k (di,dj) = σ2
f exp

(

−
|di − dj|

2

2l2

)

, (7)

where l and σ2
f are tuning parameters controlling the

length scales for d and the observation, respectively. The
mean function µ at point d∗ and the variance function
σ2
∗
are given as

µ(d∗) = k⊤

∗ K
−1y (8)

and

σ2
∗
= k(d∗,d∗)− k⊤

∗
K−1k∗, (9)

respectively. The mean function is exactly the same as
the KRR prediction in Eqn. (6) without the regulariza-
tion term.

C. Bayesian optimization

Our procedure for Bayesian optimization is as follows.
First, a GP model is developed from two randomly se-
lected observations taken from all the data. The model is
iteratively updated by repeatedly (i) sampling the point
at which the observation property is expected to be the
best and (ii) updating the model including the observa-
tion at the sampled point. These steps are repeated until
all the data are sampled.

We have two main options when sampling a new
point[59]: we can consider the probability of improve-
ment (PI) and the expected improvement (EI). For a
minimization problem, the former involves sampling the
point at which the probability that the observation is
lower than ybest is maximized, where ybest denotes the
best observation among the observed data. Therefore,
sampling point i′ is selected by maximizing the probabil-
ity formulated as

i′ := argmax
d∗

Φ

(

ybest − µ(d∗)

σ∗

)

, (10)

where Φ (y − µ(d∗)/σ∗) denotes the cumulative distribu-
tion function of N(µ, σ2). In a similar manner, the EI is
formulated as

i′ := argmax
d∗

∫ ybest

−∞

(ybest − y)φ

(

y − µ(d∗)

σ∗

)

dy, (11)

where φ (y − µ(d∗)/σ∗) denotes the probability density
function of N(µ, σ2). We apply the two options for
Bayesian optimization to the LTC and melting tempera-
ture datasets.

IV. DESCRIPTORS

A. Representation of compounds

Here we describe a compound using descriptors d that
can be derived from only simple elemental and structural
representations. Figure 1 schematically illustrates the
procedure to generate such descriptors for compounds.
We first consider a compound as a collection of atoms
that are described by element types and neighbor en-
vironments determined by the other atoms. Suppos-
ing they are represented by Nx(ele) elemental represen-
tations and Nx(st) structural representations, each atom
is described by Nx = Nx(ele) + Nx(st) representations.
Therefore, compound ξ is expressed by a collection of

the atomic representations as an (N
(ξ)
a ×Nx)-dimensional

matrix, where N
(ξ)
a is the number of atoms included in

the unit cell of compound ξ. The representation matrix
for compound ξ, X(ξ), is written as

X(ξ) =













x
(ξ,1)
1 x

(ξ,1)
2 · · · x

(ξ,1)
Nx

x
(ξ,2)
1 x

(ξ,2)
2 · · · x

(ξ,2)
Nx

...
...

. . .
...

x
(ξ,N(ξ)

a )
1 x

(ξ,N(ξ)
a )

2 · · · x
(ξ,N(ξ)

a )
Nx













, (12)

where x
(ξ,i)
n denotes the nth representation of atom i in

compound ξ.
Since the representation matrix is only a representa-

tion for the unit cell of compound ξ, we need a proce-
dure for transforming the representation matrix into a
set of descriptors to compare different compounds. An
approach to the transformation is to regard the represen-
tation matrix as the distribution of data points in an Nx-
dimensional space, as shown in Fig. 1. To compare the
distributions themselves, we then introduce representa-
tive quantities to characterize the distribution as descrip-
tors d, such as the mean, standard deviation, skewness,
kurtosis and covariance of the distribution. The inclu-
sion of the covariance enables the interaction between
the element type and crystal structure to be considered.
In previous machine-learning predictions, a popular

approach was to use the composition average of a rep-
resentation as a descriptor (for example, Refs. 12 and
30), expressed as

d(ξ)n =
1

N
(ξ)
a

N(ξ)
a
∑

i=1

x(ξ,i)
n . (13)

In the case of constructing linearized machine-learning
interatomic potentials, the average of structural repre-
sentations is also commonly used because the internal
energy is given as the sum of the atomic contributions
to the total internal energy[22]. The above examples are
regarded as simplifications of our approach.
The performance of this procedure is dependent on the

set of elemental representations, the set of structural rep-
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FIG. 1. Schematic illustration of how to generate compound descriptors. First, each atom in a compound is characterized by
Nx representations. The collection of atoms in the compounds is written as a representation matrix X . Then the represen-
tation matrix is regarded as the data distribution in an Nx-dimensional space. To transform the distribution into descriptors,
representative quantities are introduced to characterize the data distribution such as its mean, standard deviation, skewness,
kurtosis and covariance.

resentations and the representative quantity used to char-
acterize the distribution of the elemental and structural
representations.

A universal or complete set of representations, which
can derive good prediction models for all physical prop-
erties even when using standard machine learning proce-
dures, is desired, while it is expected to be almost impos-
sible to find such a universal set of representations. On
the other hand, many elemental and structural represen-
tations have been proposed for a long time, not only in
literature on the machine learning prediction but also in
literature on the standard physics and chemistry. Using
these representations, many phenomena in physics and
chemistry have been explained. Therefore, it is a good
way for generating descriptors to make effective use of
the existing representations.

B. Atomic representations

Our set of elemental representations [56, 60] is com-
posed of the (1) atomic number, (2) atomic mass, (3)
period and (4) group in the periodic table, (5) first ion-
ization energy, (6) second ionization energy, (7) elec-
tron affinity, (8) Pauling electronegativity, (9) Allen elec-
tronegativity, (10) van der Waals radius, (11) covalent
radius, (12) atomic radius, (13) pseudopotential radius
for the s orbital, (14) pseudopotential radius for the p
orbital, (15) melting point, (16) boiling point, (17) den-
sity, (18) molar volume, (19) heat of fusion, (20) heat
of vaporization, (21) thermal conductivity and (22) spe-
cific heat. These representations can be classified into
the intrinsic quantities of elements (1)-(7), the heuristic
quantities of elements (8)-(14) and the physical proper-

ties of elemental substances (15)-(22).
We also introduce four types of structural representa-

tions x
(i)
n , i.e., histogram representations of the partial ra-

dial distribution function (PRDF), the generalized radial
distribution function (GRDF), the BOP and the angu-
lar Fourier series (AFS). The PRDF is a well-established
representation for a wide variety of structures. Although
PRDF has also been used in the context of machine-
learning prediction[38], it is difficult to apply it directly
to a dataset composed of a wide range of compounds in
the same way. Therefore, we apply a histogram repre-
sentation of the PRDF with a given bin width and cutoff
radius to the procedure in this study. The number of
counts for each bin is used as a structural representation.
The GPRF is a pairwise representation similar to the

PRDF, expressed as

GRDF(i)
n =

∑

j

gn(rij), (14)

where gn(rij) denotes a pairwise function for distance rij
between atom i and its neighbor atom j. For example, a
Gaussian pairwise function is given by

gn(rij) = exp
[

−an(rij − bn)
2
]

, (15)

where an and bn are the nth given parameters. Here,
we employ Gaussian, trigonometric and Bessel pairwise
functions as pairwise functions gn.
The GRDF can be regarded as a generalization of

the PRDF because the PRDF histogram is obtained
by using rectangular functions as pairwise functions gn.
The GRDF has been used not only as a potential func-
tion and/or function describing local environment in
pairwise interatomic potentials such as Lennard–Jones
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and embedded atom method (EAM) potentials[61–63],
but also as descriptors of machine-learning interatomic
potentials[20, 22].
The BOP is also a well-known representation for local

structures in liquid crystal and glass states[37]. The ro-
tationally invariant BOP Ql for atomic neighborhoods is
expressed by

Ql =

[

4π

2l+ 1

l
∑

m=−l

|Qlm|2

]1/2

, (16)

where Qlm corresponds to the average spherical harmon-
ics for neighbors of atom i. The third-order invariant
BOP Wl for atomic neighborhoods is expressed by

Wl =

l
∑

m1,m2,m3=−l

(

l l l

m1 m2 m3

)

Qlm1Qlm2Qlm3 , (17)

where the coefficient written by the parentheses is the
Wigner 3j symbol, satisfying m1 +m2 +m3 = 0. A set
of both Ql and Wl up to a given maximum l is used as
structural representations.
The AFS is the most general among the four formula-

tions, which is able to include both the radial and angular
dependences of an atomic distribution[41]. The AFS is
given by

AFS
(i)
n,n′ =

∑

j,k

gn(rij)gn′(rik) cos θijk, (18)

where θijk denotes the bond angle between three atoms.
AFS also corresponds to a rotationally-invariant repre-
sentation simply derived from spherical harmonics mod-
ified by radial functions[41].

V. RESULTS AND DISCUSSION

A. Cohesive energy

To begin with, the performance of descriptors is exam-
ined by developing KRR prediction models for the DFT
cohesive energy. First, we adopt descriptor sets derived
only from elemental representations, which are expected
to be more important than structural representations in
the prediction of the cohesive energy. Since the elemental
representations are not complete for some of the elements
in the dataset, we consider only the elemental representa-
tions that are complete for all elements. We estimate the
root-mean-square error (RMSE) for test data composed
of a randomly selected 10% of the data. The random se-
lection of test data is repeated 20 times, and the average
RMSE is regarded as the prediction error.
Table II summarizes the prediction errors of KRR

models for the cohesive energy. The simplest option is
to use only the mean of each elemental representation as
a descriptor. The prediction error in this case is 0.249

TABLE II. Prediction errors of KRR models for the cohesive
energy. The first row shows the representative quantities of
the distribution of atomic representations, where SD stands
for the standard deviation. The first column shows the atomic
representations included in the models. Elemental represen-
tations are included in all models. Values in brackets in the
first column are the number of bins, number of gn, number
of Ql and Wl and number of gn for PRDF, GRDF, BOP and
AFS, respectively. For AFS, all possible pairs of gn are con-
sidered. Values in brackets in the third column are prediction
errors for models with the covariances of atomic representa-
tions. The bottom three lines show the prediction errors of
models with structural representations computed using a nor-
malized unrelaxed structure. (Unit: eV/atom)

Mean Mean + SD

No structural representation 0.249 0.244 (0.231)

Optimized structure

PRDF (10) 0.189 0.153 (0.110)

PRDF (20) 0.175 0.155 (0.106)

PRDF (40) 0.166 0.152 (0.125)

Optimized structure

GRDF (10, trigonometric) 0.158 0.104 (0.050)

GRDF (20, trigonometric) 0.158 0.094 (0.045)

GRDF (40, trigonometric) 0.149 0.093 (0.053)

GRDF (10, Gaussian) 0.170 0.108 (0.056)

GRDF (20, Gaussian) 0.166 0.101 (0.058)

GRDF (40, Gaussian) 0.157 0.100 (0.051)

GRDF (80, Gaussian) 0.156 0.099 (0.061)

GRDF (10, Bessel) 0.172 0.106 (0.055)

GRDF (20, Bessel) 0.169 0.104 (0.055)

Optimized structure

BOP (20) 0.156 0.129 (0.064)

BOP (20)
0.108 0.077 (0.041)

+ GRDF (20, trigonometric)

AFS (10, trigonometric) 0.139 0.102 (0.079)

AFS (20, trigonometric) 0.146 0.102 (0.103)

Normalized unrelaxed structure

PRDF (20) 0.166 0.162 (0.072)

PRDF (40) 0.166 0.164 (0.071)

GRDF (20 trigonometric) 0.169 0.164 (0.074)

eV/atom. When considering the means, standard devi-
ations and covariances of elemental representations, the
prediction model has a prediction error of 0.231 eV/atom.
Figure 2 (a) shows a comparison of the cohesive energy
calculated by DFT calculation and by the best KRR
model, where only the test data in one of the 20 trials are
shown. As can be seen in Fig. 2 (a), many data largely
deviate from the diagonal line representing equal DFT
and KRR energies. We also found that the skewness and
kurtosis are not important descriptors for the prediction.
Since we consider several crystal structures for each

chemical composition, all the data have an intrinsic er-
ror originating from the absence of structural represen-
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FIG. 2. Comparison of cohesive energy calculated by DFT
calculation and that calculated by the KRR prediction model.
Only one test dataset is shown. Descriptor sets are composed
of (a) the means of elemental representations, (b) the means of
elemental and PRDF representations, (c) the means, SDs and
covariances of elemental and PRDF representations and (d)
the means, SDs and covariances of elemental and 20 trigono-
metric GRDF representations. The mean of the PRDF corre-
sponds to the RDF. Structure representations are computed
from the optimized structure for each compound.

tations. The intrinsic standard deviation averaged over
the chemical compositions σint can be estimated as

σint =
1

Ncomp

∑

i

√

1

N
(st)
i

∑

s

(Ei,s − 〈Ei〉)
2
, (19)

where Ncomp and N
(st)
i denote the number of chemical

compositions and the number of prototype structures for
chemical composition i, respectively. Ei,s and 〈Ei〉 are
the cohesive energy for chemical composition i with pro-
totype structure s and the average cohesive energy for
chemical composition i, respectively. The intrinsic stan-
dard deviation is estimated to be 0.211 eV/atom, which
is close to the prediction error for all models, indicating
that our set of elemental representations is nearly com-
plete for the prediction of the cohesive energy.
Next, we introduce descriptors related to structural

representations. They can be computed from both the
crystal structure optimized by the DFT calculation and
the initial prototype structures. The former is only use-
ful for machine-learning prediction when an observation
is expensive. Since the optimized structure calculation
requires the same computational cost as the cohesive en-
ergy calculation, the benefit of using machine learning is
lost when using the optimized structure. Only to exam-
ine the limitation of the procedure and the atomic rep-

resentations introduced in this study, structural repre-
sentations are first computed from the optimized crystal
structure. KRR models are constructed using many de-
scriptor sets composed of elemental and structural repre-
sentations. The cutoff radius is set to 6 Å for the PRDF,
GRDF and AFS, and the cutoff radius is set to 1.2 times
the nearest-neighbor distance for the BOP, which is a
widely used definition of the nearest neighbor.

First, three sets of PRDF histogram representations
are applied. The number of histogram representations
for each set is controlled only by the bin width. Figure
2 shows a comparison of the DFT and KRR cohesive en-
ergies, where the KRR models are constructed by (b) a
set of the means of the elemental and PRDF representa-
tions and (c) a set of the means, standard deviations and
covariances of the elemental and PRDF representations.
When only considering the means of the elemental and
PRDF representations, the lowest prediction error is as
large as 0.166 eV/atom, as shown in Table II. This means
that the simple use of the PRDF does not enable a good
model for the cohesive energy to be developed. However,
by including the covariances of the elemental and PRDF
representations, a much better prediction model is ob-
tained and the prediction error significantly decreases to
0.106 eV/atom.

Table II also shows the prediction error of KRR mod-
els with descriptors obtained from the elemental and
GRDF representations. Considering only the means of
the GRDFs, we obtain prediction models with errors
of 0.149−0.172 eV/atom, which are very close to those
of the prediction models considering the means of the
PRDFs. Similarly to in the case of the PRDF, the pre-
diction model is improved by considering the SDs and
covariances of the elemental and structural representa-
tions. The best model shows a prediction error of 0.045
eV/atom, which is about half of that of the best PRDF
model. This is also approximately equal to the “chem-
ical accuracy” of 43 meV/atom (1 kcal/mol). Figure 2
(d) shows a comparison of DFT and KRR cohesive en-
ergies, where a set of the means, SDs and covariances of
the elemental and trigonometric GRDF representations
is adopted. As can be seen in Fig. 2 (d), most of the data
are located near the diagonal line. Table II also shows the
prediction error of KRR models with descriptor sets in-
cluding the angular-dependent structural representations
of the BOPs and AFSs. We obtain the best prediction
model with a prediction error of 0.041 eV/atom by con-
sidering the means, SDs and covariances of the elemental,
20 trigonometric GRDF and 20 BOP representations.

We also examine the dependence of the prediction er-
ror on the number of training data, as shown in Fig. 3.
A set of 20 trigonometric GRDFs and 20 BOPs is used as
structural representations, which derives the best model
of the cohesive energy. The prediction error gradually
decreases with increasing number of training data. Note
that the prediction error of the KRR model with the co-
variance is close to that of the KRR model without the
covariance when the number of training data is small. In
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FIG. 3. Dependence of the prediction error on the number
of training data. The standard deviation for 20 trials is also
shown. A set of 20 trigonometric GRDFs and 20 BOPs is used
as the structural representations. Open circles and closed
circles show the prediction error of the KRR model without
and with consideration of the covariances of the elemental
and structural representations, respectively. The numbers of
descriptors are 122 and 1952 in the former and latter cases,
respectively.

other words, a better prediction is expected by including
covariances only when a large training dataset is avail-
able. This may be ascribed to the fact that the inclusion
of the covariances leads to a significant increase in the
number of descriptors. The same behavior can be found
in the following sections on the predictions of the LTC
and melting temperature using other small datasets.

We used the optimized structure to calculate structural
representations. To make a practical prediction model
for the cohesive energy, however, it is necessary to use
structures that can be obtained without performing the
DFT calculation. Therefore, we apply normalized pro-
totype structures obtained without performing the DFT
calculation. The prototype structures are isotropically
normalized so that the volume per atom becomes 1 Å3.
Table II shows the prediction errors of KRR models with
descriptor sets based on the normalized prototype struc-
tural representations. Contrary to the use of the opti-
mized structure, the prediction models with trigonomet-
ric GRDFs and PRDFs have almost the same prediction
error. The prediction error of the model with the means
of the elemental and structural representations is 0.166
eV/atom, which is almost the same as those of the pre-
diction models with the optimized structural represen-
tations. At the same time, it is important to consider
the covariances of the elemental and structural repre-
sentations, which improve the prediction error to 0.071
eV/atom.

TABLE III. Prediction errors of KRR models for LTC and
melting temperature.

Mean Mean + SD

LTC

No structural representation 0.173 0.142 (0.130)

GRDF (20) 0.179 0.108 (0.137)

BOP (20) 0.128 0.096 (0.155)

GRDF (20) + BOP (20) 0.156 0.102 (0.149)

Melting temperature

No structural representation 278 273 (236)

GRDF (20) 302 277 (301)

BOP (20) 264 238 (286)

GRDF (20) + BOP (20) 293 278 (307)

B. LTC

The amount of training data is limited for most physi-
cal properties of interest. Therefore, we believe that it is
very important to examine the performance of descrip-
tors using a small dataset when employed in physics and
materials science. Here both KRR and Bayesian opti-
mization are performed to examine the performance of
descriptors using log-scaled LTC data. Since the compu-
tational cost of obtaining the optimized DFT structure
is much smaller than that for obtaining the LTC, we use
the optimized DFT structure to compute structural rep-
resentations. The prediction error is estimated as the
RMSE for test data, which is composed of a randomly
selected 10% of the data. The random selection of the
test data is repeated 200 times, and then the average
RMSE is regarded as the prediction error.

Table III shows the prediction errors of KRR mod-
els for the LTC data. As well as achieving cohesive en-
ergy prediction, the structural representations improve
the prediction model. On the other hand, the inclusion
of the covariances reduces the accuracy of the prediction
model due to the small training dataset, as observed in
the previous section. The best model is composed of the
means and SDs of the elemental and BOP representa-
tions, having a prediction error of 0.096 for the log-scaled
LTC.

Next, the performance of Bayesian optimization is
examined. Both Bayesian optimization and random
searches are repeated 200 times and the average number
of samples required to find the compound with the lowest
LTC, i.e., PbClBr, is examined. Table IV shows the per-
formance of Bayesian optimization using the PI and EI
algorithms. The means and SDs of the representations
are considered in all models. Figure 4 shows the behavior
of the lowest LTC during Bayesian optimization in com-
parison with that in the random search. When using the
GP model with the BOP, the average number of samples
required for the optimization, Nave, is 5.0, which is ten
times smaller than that of the random search, Nave = 50.
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TABLE IV. Performance of Bayesian optimization using the
LTC data. Average numbers of samples required to find Pb-
ClBr, CuCl and LiI are shown, which have the lowest, 11th-
lowest and 12th-lowest LTCs among the 110 compounds, re-
spectively. The means and SDs of the representations are
considered in all models. + and − in the first three columns
show the representations and covariances included and not
included in the prediction models, respectively.

GRDF BOP Cov. RMSE
PbClBr CuCl LiI Average

PI EI PI EI PI EI PI EI

− − − 0.142 13.9 12.3 54.4 47.5 17.5 18.9 28.6 26.2

+ − − 0.108 7.6 7.9 40.5 41.0 48.6 49.7 32.2 32.9

− + − 0.096 5.0 5.2 15.1 15.7 9.1 9.4 9.7 10.1

+ + − 0.102 5.0 5.1 22.4 22.3 28.4 27.0 18.6 18.1

− − + 0.130 35.0 32.3 11.8 11.4 30.1 33.1 25.6 25.6

+ − + 0.137 8.8 8.7 31.8 31.7 84.5 83.9 41.7 41.4

− + + 0.155 13.7 14.2 8.9 9.0 43.4 44.2 22.0 22.5

+ + + 0.149 9.0 9.0 13.9 14.1 63.1 64.0 28.7 29.0

Random 50 55 55 −

PbClBr

Random

CuCl

BOP (Mean, SD)

LiI
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FIG. 4. Behavior of Bayesian optimization for the LTC data
in finding PbClBr, CuCl and LiI. The best LTC is shown along
with the number of samples (iterations) during the Bayesian
optimization and random search.

PbClBr is discovered much more efficiently by Bayesian
optimization than by the random search.

To evaluate the performance for finding a wide vari-
ety of low-LTC compounds, we prepare two datasets af-
ter intentionally removing some low-LTC compounds. In
these datasets, CuCl and LiI, respectively showing 11th-
lowest and 12th-lowest LTCs, are the solutions of the op-
timizations. Table IV also shows the result of Bayesian
optimization using the datasets. When using the GP
model with BOPs, the average numbers of observations
required to find CuCl and LiI are Nave = 15.1 and 9.1,
respectively, which are much smaller that those of the
random search. On the other hand, when using the GP
model with GRDFs, the average numbers of observations
required to find CuCl and LiI are Nave = 40.5 and 48.6,
respectively. The delay of the optimization may originate
from the fact that both CuCl and LiI may be outliers in
the model with GRDFs, although the model with GRDFs
has a similar RMSE to that of the model with BOPs.
These results indicate that we need to optimize a set of
descriptors by examining the performance of Bayesian

TABLE V. Performance of Bayesian optimization using the
melting temperature data. Average numbers of observations
required to find AlN, SiC and MgO are shown, which exhibit
the lowest, second-lowest and third-highest melting temper-
atures among the 248 compounds, respectively. The means
and SDs of the representations are considered in all models.
+ and − in the first three columns show the representations
and covariances included and not included in the prediction
models, respectively.

GRDF BOP Cov.
RMSE AlN SiC MgO Average

(K) PI EI PI EI PI EI PI EI

− − − 273 38.9 39.1 26.0 26.6 29.4 27.7 31.4 31.1

+ − − 277 24.5 25.4 30.9 36.8 22.8 25.8 26.1 29.3

− + − 238 22.5 22.5 28.2 32.0 20.9 21.1 23.9 25.2

+ + − 278 30.4 34.3 35.4 42.6 30.7 34.0 32.2 37.0

− − + 236 27.6 27.7 52.1 53.2 28.8 28.4 36.2 36.4

+ − + 301 35.5 41.8 71.8 73.5 35.0 43.8 47.4 53.0

− + + 286 38.4 48.0 68.5 71.6 35.2 39.2 47.4 52.9

+ + + 307 50.5 68.1 69.8 84.3 41.4 48.4 53.9 66.9

Random 125 125 125 −

AlN SiC MgO

Random

No structure representation
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FIG. 5. Behavior of Bayesian optimization for the melting
temperature data in finding AlN, SiC and MgO.

optimization for a wide range of compounds to find such
outlier compounds.

C. Melting temperature

The other example of a small dataset is the experimen-
tal melting temperature of solids. KRR and Bayesian op-
timization are performed as well as the LTC prediction.
We use the optimized DFT structure to compute struc-
tural representations. Similarly to in the LTC prediction,
we use test data composed of a randomly selected 10%
of the data to estimate the average prediction error over
200 random selections of the test data. Table III shows
the prediction errors of KRR models for the melting tem-
perature dataset. In contrast to the cohesive energy and
LTC predictions, only the BOP improves the prediction
model, while the GRDF reduces its accuracy. The in-
clusion of the covariances improves the prediction model
only when considering elemental representations. This
may be ascribed to the small number of training data,
similar to in the case of the LTC. The best model is com-
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posed of the means, SDs and covariances of elemental
information and has a prediction error of 236 K.

Finally, the performance of Bayesian optimization to
find a target compound is examined. The number of ob-
servations required to find a target compound averaged
over 200 trials is evaluated for both Bayesian optimiza-
tion and a random search. Table V shows the number
of observations required to find a target compound by
Bayesian optimization compared with that for a random
search. To evaluate the performance in finding a wide
variety of high-melting-temperature compounds, we pre-
pare two datasets after intentionally removing some high-
melting-temperature compounds. In this case, SiC and
MgO with the second-highest and third-highest melting
temperatures, respectively, are the solutions of the opti-
mization.

Figure 5 shows the behavior of the highest melting tem-
perature among the samples during Bayesian optimiza-
tion to find AlN, SiC and MgO in comparison with the
random search. When using the best RMSE model, com-
posed of the mean, SD and covariances of the elemental
representations, the average numbers of samples required
to find AlN, SiC and MgO are Nave = 27.6, 52.1 and 28.8,
respectively. When using the second-best RMSE model
composed of the mean and SD of the elemental and BOP
representations, with an RMSE close to that of the best
model, the average numbers of samples required to find
AlN, SiC and MgO are Nave = 22.5, 28.2 and 20.9, re-
spectively, which are about six times smaller than the
numbers of samples required to find the targets in the
random search.

VI. CONCLUSION

In this study, we have demonstrated an approach
to generate a set of compound descriptors from simple
atomic representations. It was applied to three datasets
for the cohesive energy, LTC and experimental melting
temperature. We examined the performance of the sets
of descriptors in terms of the accuracy of the kernel ridge
models and the performance of Bayesian optimization.
For the cohesive energy dataset, we obtained the best pre-
diction model with a prediction error of 0.041 eV/atom,
which is approximately equal to the “chemical accuracy”
of 1 kcal/mol (0.043 eV/atom). A prediction model with
an error of 0.071 eV/atom of the cohesive energy is ob-
tained for the normalized prototype structures, which
can be used for a practical purpose to search as-yet-
unknown structures. Also in the predictions of the LTC
and melting temperature, the present method exhibits
good performances for both the kernel ridge models and
Bayesian optimization. Although we focused on crys-
talline compounds, the descriptors used in the present
study can be easily applied to noncrystalline or molecu-
lar compounds. The present method should therefore be
useful for searching for compounds with many different
chemical properties and applications from a wide range
of chemical and structural spaces without performing ex-
haustive DFT calculations.
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Phys. Rev. B 87, 035125 (2013).
[32] F. Zhou, W. Nielson, Y. Xia, and V. Ozoliņš, Phys. Rev.
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