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Abstract

We use a continuum method informed by transport coefficients computed using self-consistent

mean field theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near

an a
2 [11̄0](111) edge dislocation. We perform two sequential simulations: first under equilibrium

boundary conditions, and then under irradiation. The strain field around the dislocation induces

heterogeneity and anisotropy in the defect transport properties and determines the steady-state

vacancy and Si distributions. At equilibrium both vacancies and Si solutes diffuse to form Cottrell

atmospheres with vacancies accumulating in the compressive region above the dislocation core while

Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy concentration,

driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si

atoms towards the core, causing segregation to the compressive region, despite Si being an oversized

solute in Ni.
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I. INTRODUCTION

Development of creep resistant methodologies has been gathering attentions for the past

decades1,2, especially for materials in nuclear reactors3,4. One practical and promising way

to reduce or prevent creep is introducing appropriate solutes into materials5–7 as solute

precipitations, if formed, create obstacles against the motion of high-dimensional defects

like dislocations8. Experimentally, the formation of solute precipitations under irradiation

has been observed in alloys such as Si in Ni9,10. Designing alloys with improved creep

resistance requires a predictive understanding of the transport of point defects (vacancies

and self-interstitial atoms) and solutes near sinks under irradiation.

Irradiation and stress affect the diffusion of point defects and solute atoms in alloys. Irra-

diation creates collision cascades, producing a large number of Frenkel pairs and point defect

clusters in the bulk11,12. This supersaturation of point defects induces out-of-equilibrium

fluxes of vacancies and self-interstitials, which can drag solute atoms towards or away from

sinks, depending on the kinetic correlations between solutes and point defects13. The stress

fields generated by sinks such as dislocations or grain boundaries can also modify the dif-

fusion properties of point defects and solutes14. Dederichs et al.15 showed that stress can

break the symmetry of the saddle-point configurations, causing anisotropy in the transport

coefficients. Heterogeneous stress also modifies the driving forces, which are given by the

gradients of chemical potentials16,17.

Accurate modeling of defect diffusion requires a multiscale approach, with data from

smaller length-scale models informing larger length-scale models. Modern density func-

tional theory, can provide energy barriers and vibrational frequencies required to compute

transition rates for atomic jump events. Atomistic methods, like molecular dynamics and

kinetic Monte Carlo simulations, can directly model atomic transport processes18. Purge et

al. studied the self-diffusion in the cores of screw and edge dislocations in aluminum using

molecular dynamics, and showed that at high temperatures dislocation cores become effec-

tive sources or sinks for point defects and the effect of pre-existing defects on the dislocation

mobility diminishes19. Sivak et al. used kinetic Monte Carlo to model diffusion of point

defects in dislocation strain fields in body-centered cubic iron and vanadium, and found

that the dislocations are more efficient sinks for self-interstitial atoms than for vacancies20.

However, atomistic simulations are typically limited to modeling systems with nanometer
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length-scales over picosecond time-scales, which prevents them from simulating diffusion in

mesoscale systems over long times. The self-consistent mean field (SCMF) method21,22 or

a Green function approach23 can compute the corresponding transport coefficients from the

atomic jump rates to bridge the gap between microscopic atomic processes and macroscopic

species transport. Phase field models24,25 informed with pre-computed transport coefficients

can simulate diffusion processes with length-scales up to millimeters over a time-scale of

days. Geslin et al.26 and Ke et al.27 used phase field methods to model dislocation climb

based on vacancy diffusion. Both of these studies explicitly computed the climb rate as a

function of external stress and showed the applicability of phase field methods to model

creep, however they did not consider the effects of solutes. We use a related mesoscale

method to model the coupled diffusion of vacancies and solute atoms, and focus on how the

dislocation strain field and irradiation modify the configuration of the solute segregation.

We model vacancy-mediated diffusion of substitutional Si in face-centered cubic (FCC) Ni

near an a
2
[11̄0](111) edge dislocation using precomputed transport coefficient data. Previous

studies by Garnier et al. computed the atomic jump rates for Ni-Si alloys using density-

functional theory28 and obtained the corresponding transport coefficients as well as their

strain derivatives using the SCMF method informed with strain-modified jump rates14,29. In

our model we only consider the diffusion of vacancies and Si solutes because self-interstitial

atoms formed under irradiation diffuse quickly and are annihilated at sinks like disloca-

tions or grain boundaries on a short time scale, leaving behind a highly saturated vacancy

environment in the bulk crystal30. Furthermore, the self-interstitials interact weakly with

oversized substitutional solutes like Si in Ni, compared with vacancies31,32. In this paper,

we first describe the details of our mesoscale model in Section II along with the simulation

choices in Section III. We perform two sequential simulations: first at equilibrium, and

second under irradiation. Section IV presents and discusses the simulation results. Finally,

Section V provides conclusions and discusses extensions of the methodology.

II. MESOSCALE MODEL

In the framework of thermodynamics of irreversible processes17, driving forces and trans-

port coefficients determine the fluxes of species in a multicomponent system. Transport

coefficients linearly relate fluxes of each species to driving forces. For vacancy-mediated dif-
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fusion of Si in the dilute limit, gradients of chemical potentials for vacancies µV and silicon

µSi produce fluxes JV and JSi in both species,14,17

JV = −LVV∇µV − LVSi∇µSi,

JSi = −LSiV∇µV − LSiSi∇µSi.
(1)

The transport coefficients are strain-dependent second-rank tensors: LVV, LSiV = LVSi and

LSiSi. The off-diagonal term LSiV is crucial to solute transport under irradiation, when

the Si atoms are dragged by the out-of-equilibrium vacancy fluxes created by irradiation.

Consequently, Si can segregate at vacancy sinks such as dislocations, where vacancies are

annihilated but solute atoms are not.

The chemical potentials µV and µSi that provide driving forces for the diffusion depend on

the volumetric strain and also capture the interactions between species. For dilute vacancy

and Si concentrations in the small strain limit,17

µV = αVεv + kBT ln(γVcV/c
0
V),

µSi = αSiεv + kBT ln(γSicSi/c
0
Si),

(2)

where kB is the Boltzmann constant, T is the temperature, γ is the activity, c is the atomic

fraction and c0 the equilibrium concentration. Both the vacancy and Si have isotropic

elastic dipoles (derivative of energy with respect to strain), so the chemical potentials µV

and µSi vary linearly with volumetric strain εv with coefficients αV = 6.37eV and αSi =

−0.251eV28. The Si equilibrium concentration corresponds to the specific alloy, while c0
V =

exp(−Ef/kBT ) for vacancy formation energy Ef
v = 1.63eV28. The activity coefficients γV

and γSi capture solute-vacancy interaction effects on chemical potentials. We use an low-

temperature expansion for dilute concentrations33,34 for γV and γSi,

γV = 1 + cSi

∑
j

Zj
(
e−∆gj/kBT − 1

)
,

γSi = 1 + cV

∑
j

Zj
(
e−∆gj/kBT − 1

) (3)

with Zj sites in shell j with binding energy ∆gj. Silicon and nickel vacancies have interactions

out to the third shell. Garnier et al.28 found an attractive ∆g1 = −0.0996 eV (Z1 = 12), a

small ∆g2 = 0.0120 eV (Z2 = 6) and a repulsive ∆g3 = 0.0452 eV (Z3 = 24).

The strain field created by an edge dislocation induces heterogeneity and anisotropy in

defect transport coefficients. The strain tensor ε can be decomposed into volumetric strain
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εv = 1
3
εv1 (,where 1 is the identity matrix), tetragonal strain εt along cube axes 〈100〉 and

shear strain εs,

ε =
1

3
εv1 + εt + εs. (4)

For a system with cubic symmetry, the transport coefficient tensor LAB(ε) can be expanded

as14,

LAB = L0
AB1 + Lv

AB

1

3
εv1 + Lt

ABεt + Ls
ABεs, (5)

where L0
AB is the stress-free value, and Lv

AB, Lt
AB and Ls

AB are the strain derivatives15. For

the Ni-Si system, the shear strain contribution to the atomic jump frequencies is negligible

so Ls
AB ≈ 0.28 For an a

2
[11̄0](111) edge dislocation in FCC Ni, a natural coordinate system

(the dislocation frame) is formed by the Burgers vector b = a
2
[11̄0] (a is the lattice parameter

for FCC Ni), the slip plane normal n = [111] and the threading vector t = [1̄1̄2]. Garnier et

al. computed transport coefficients of the Ni-Si-vacancy system for T = 960K, 1060K, and

1160K, which show positive, zero, and negative off-diagonal transport coefficients L0
SiV.14

The LAB tensor components in the b× n plane is14

LAB =

L0
AB + 1

3
Lv
ABεv + 1

6
Lt
ABεbb

2
3
Lt
ABεbn

2
3
Lt
ABεbn L0

AB + 1
3
Lv
ABεv

 , (6)

and the values of L0
AB, Lv

AB and Lt
AB are listed in Table I for T = 960K. Indeed, for the special

case of Ni-Si alloy, Garnier et al.28 have showed an interesting result that the derivatives of

migration barriers with respect to volumetric strain ∂Em/∂εv is a constant for all types of

atomic jumps in the system. Since the migration barriers have good linear dependences on

the volumetric strain εv in a larger strain range than that for LAB
28,29, we use the following

expression instead of Eqn. (6) to denote LAB to achieve a better accuracy,

LAB =

L0
AB · exp(−∂Em/∂εv

kBT
εv) + 1

6
Lt
ABεbb

2
3
Lt
ABεbn

2
3
Lt
ABεbn L0

AB · exp(−∂Em/∂εv
kBT

εv)

 , (7)

where the migration barrier derivatives ∂Em/∂εv ≡ −2.336 eV, which is proportional to the

ratio between ∝ Lv
AB and L0

AB.

We choose a simulation temperature T = 960K, for which L0
SiV > 0 and a positive solute-

vacancy drag is expected. In the dilute limit, LVV is proportional to cV while LSiV and LSiSi

are proportional to cVcSi. We use isotropic elasticity theory for the edge dislocation strain

field in the plane of the dislocation line: εv = −b sin θ/4πr, εbn = b(cos θ cos 3θ)/16πr, and
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εbb = −b(4 + 3 cos 2θ) sin θ/8πr, where r is the distance from the dislocation, and θ is the

angle from the slip plane. Therefore near an edge dislocation, both transport coefficients

and chemical potentials are spatially dependent, and transport coefficients are anisotropic

due to nonzero εbn and εbb. All three strain components become singular at r = 0 and decay

as r−1.

TABLE I. Transport coefficients [1/(eV Å ns)] and their derivatives with strains at T = 960K from

Ref. 14. In the dilute limit, LVV is proportional to cV while LSiV and LSiSi are proportional to

cVcSi.

AB L0
AB Lv

AB Lt
AB

VV 1.52×10−1cV 1.29×101cV −7.42×100cV

SiV 1.57×10−1cVcSi 1.33×101cVcSi −2.24×101cVcSi

SiSi 1.29×100cVcSi 1.09×102cVcSi −5.08×101cVcSi

III. SIMULATION SETUP

The simulation domain is an annular region with inner radius rin and outer radius rout in

the b× n plane. Since an edge dislocation has translational symmetry along the threading

vector t, for simplicity we project the 3D diffusion system into a 2D plane perpendicular to

t, i.e. the b×n plane. We use a polar coordinate system centered at the dislocation, which

is natural for simulating an edge dislocation due to the separability of the strain in r and θ.

The mesoscale equations are singular at r = 0 in the elastic strain components εv, εbb and

εbn. We choose an inner radius rin = 2a to exclude the dislocation core from the simulation

region, ensuring that all three strain components are below 3% to validate the small strain

approximation used in Eqn. (2) and Eqn. (7). We use an outer boundary condition to capture

the vacancy saturation due to irradiation instead of allowing vacancies to be produced or

recombined throughout the simulation region. The outer radius is chosen as rout = 14.5a

(50Å), which we find is small enough to ignore the production and annihilation of vacancies

within the simulation region, while large enough to model the irradiation-induced solute

segregation for our simulations. However, the model employed in this work is also suitable
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for larger length scale systems up to microns or even millimeters. The variation in the strain

fields and point defect distribution requires a denser distribution of small radial points

with equal spacing of angular points; we use a uniform mesh in the angular direction and

a logarithmic mesh in the radial direction. For an Nθ × Nr mesh, the grid point (ri, θj) is

located at ri = rin exp( i
Nr

ln(rout/rin)) for i = 0, 1, . . . , Nr and θj = j
Nθ

2π for j = 0, 1, . . . , Nθ,

with periodic boundary conditions for θ. We use a 100×100 mesh for the present simulations.

We apply appropriate boundary conditions at the inner boundary r = rin to simulate the

dislocation core interaction with vacancies and solutes. We treat the core as a perfect sink

for vacancies by assuming that vacancies diffuse fast enough near the sink to maintain the

spatially dependent equilibrium vacancy concentration cEQ
V (r) in the core and at the core

boundary. The equilibrium solution for the vacancy concentration due to the dislocation

strain field is determined by setting µV = 0 in Eqn. (2),

cEQ
V (r, θ) =

c0
V

γV

exp
(
− αVεv(r, θ)

kBT

)
, (8)

which depends on the local volumetric strain εv(r, θ). We fix the vacancy concentration cV

at the inner boundary to be the equilibrium vacancy concentration,

cV(rin, θ) = cEQ
V (rin, θ). (9)

The vacancy activity γV depends on the local Si concentration cSi so it must be computed

adaptively during the simulations. Since Si atoms cannot be absorbed or created by the

dislocation core, we fix the normal flux of Si at the inner boundary to be zero,

r̂ · JSi|r=rin = 0, (10)

where r̂ is the unit vector along the radial direction.

We perform sequential simulations of vacancy-mediated diffusion of substitutional Si in

FCC Ni near an edge dislocation: first under equilibrium boundary conditions, which pro-

vides initial conditions for the second simulation of diffusion under irradiation. We apply

the equilibrium vacancy concentration as the outer boundary condition for cV,

cV(rout, θ) = cEQ
V (rout, θ). (11)

The bulk Si concentration is 0.5% ensuring that Si is in the dilute limit,

cSi(rout, θ) = 5× 10−3 (12)
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as the outer boundary condition for cSi. For the first simulation, vacancies and Si solutes

are initially uniformly distributed and evolve towards their equilibrium distributions in the

presence of the dislocation strain field. After the system reaches equilibrium, we study how

irradiation modifies the diffusion behavior of vacancies and Si solutes. As irradiation creates

an oversaturation of vacancies in the bulk, we change the outer boundary condition for

vacancies to be

cV(rout, θ) = 10−7, (13)

which is approximately one and a half orders of magnitude larger than the equilibrium

concentration. The saturated bulk vacancy concentration can be several orders of magnitude

larger than the equilibrium value, depending on the irradiation rate35–37. The outer boundary

condition for Si is the same as in the equilibrium case. We run both simulations for two days

of simulation time, which is sufficient for both vacancies and Si to reach their steady-state.

To capture the large time scale difference between vacancy diffusion and Si diffusion, we

apply adaptive time steps in the simulation. Our simulations show that vacancies diffuse

quickly and reach their steady-state in microseconds, while Si atoms diffuse much slower and

reach their steady-state over hours. A fixed time step has difficulty with diffusion processes

over vastly different time scales; so we use an adaptive time-step scheme in which the time

step ∆t is determined by:

∆t = 10−1 ·min

{
cV

|ċV|
,
cSi

|ċSi|

}
, (14)

where ċV and ċSi are the time derivatives of the vacancy and Si concentrations and the

minimum is computed over the entire simulation domain. Eqn. (14) ensures that during

each step, the relative changes in the species concentrations do not exceed 10%, which leads

to numerically stable simulations while the time step ∆t increases with time. Initially, the

vacancy concentration changes determines ∆t, and after vacancies reach their steady-state,

the time step ∆t is dominated by the slowly changing Si concentration. All of the simulation

is have been implemented using FiPy38, a finite volume partial differential equation solver,

developed mainly for phase-field simulations.

IV. SIMULATION RESULTS

Figure 1 shows that under equilibrium boundary conditions vacancies diffuse to form

a Cottrell atmosphere at steady-state. Even though both species have an initial uniform
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FIG. 1. (color online) Time evolution of the vacancy distribution around an edge dislocation under

equilibrium boundary conditions. Initially vacancies are uniformly distributed with concentration

cV = c0
V = 2.77 × 10−9. The vacancy distribution evolves due to the presence of the dislocation

strain field until it reaches a steady state configuration after 20 µs. At steady-state, vacancies

accumulate in the energetically favorable compressive region and are depleted from the energetically

unfavorable tensile region region, forming a Cottrell atmosphere. We evolve the diffusion systems

for 2 days of simulation time, which allows both vacancies and Si to reach their steady-state

configurations. (Contour plots for vacancy concentrations use log scale relative to c0
V to capture

the large spacial variation near the dislocation core without losing features in the far-field area.

Vacancy concentration outside the simulation region is set at equilibrium value to help illustrate

the outer boundary condition for vacancies.)

distribution, the heterogeneous volumetric strain field created by the dislocation induces

spatial variation in the chemical potentials, driving vacancies and solutes to diffuse. For

vacancies, since αV > 0, the chemical potential gradient drives the vacancies from the tensile

region towards the compressive region, where they accumulate. At steady-state, when the

vacancy concentration profile stops evolving with time, a Cottrell atmosphere is formed

around the dislocation with vacancy segregation above the core and depletion of vacancies
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FIG. 2. (color online) Time evolution of the Si distribution around an edge dislocation under

equilibrium boundary conditions. The Si profile also starts from a uniform distribution with Si

concentration cSi = c0
Si = 0.5%, and evolves due to dislocation strain fields. The Si atoms diffuse

much slower than vacancies and reach the steady-state configuration after 10 hours. Similar to the

vacancy case, the Si atoms form a Cottrell atmosphere at steady-state segregating to the tensile

region and are depleted from the compressive region.

below the core.

Figure 2 shows that around an edge dislocation the Si concentration profile also evolves

towards a Cottrell atmosphere, but with segregation in the tensile region and depletion in the

compressive region, and that the evolution process takes longer than for vacancies. Similar

to the vacancy case, the strain dependent term in the chemical potential αSiεv influences

the steady-state Si distribution at equilibrium. However, since Si is an oversized solute in

Ni αSi < 0, the tensile region is energetically favored and therefore, the Si atoms segregate

in the tensile region and are depleted from the compressive region. The Si concentration

profile reaches its steady-state after 10 hours, which is 9 orders of magnitudes slower than

the vacancy evolution. In the dilute limit, the diffusivity DA for a species A, is related to
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the corresponding transport coefficient LAA,

DA = lim
cA→0

ΩkBT

cA
LAA, (15)

for atomic volume Ω and concentration cA; thus, the Si diffusivity is proportional to the va-

cancy concentration while the vacancy diffusivity is not. After vacancies reach their steady-

state configuration, the depleted vacancy concentration below the core slows the transport

of Si atoms; the creates the intermediate state where Si atoms are concentrated in two lobe-

shaped regions just below the slip plane on the edge of the vacancy depletion region. The

Si atoms in these lobe-shaped regions continue to diffuse slowly into the vacancy depletion

region, and by t = 10 h, have segregated below the core.

Figure 3 shows after irradiation raises the vacancy concentration in the outer boundary,

vacancies flow towards the dislocation core. At t = 0 ns, irradiation produces a highly sat-

urated vacancy environment in bulk, while vacancies within the simulation region are still

at the equilibrium distribution. Vacancies flow from the outer boundary towards the dislo-

cation core. At 20 µs vacancies reach their steady-state configuration, where the depletion

region below the core has disappeared and the entire simulation region is oversaturated with

vacancies. At steady-state, the vacancy driving force ∇µV does not vanish and vacancies

continue to flow to the core, though ċV. This is shown in Fig. 5(c) which shows that at

20 µs, there are non-zero vacancy fluxes towards the core from all directions even though

vacancies have reached their steady-state distribution.

Figure 4 shows that irradiation generates an unexpected enrichment of Si in the com-

pressive region above the core, despite the fact that Si is oversized in FCC Ni. Since both

the inner and outer boundary conditions for Si are the same as in the equilibrium case, the

evolution of Si distribution under irradiation is completely due to the out-of-equilibrium

vacancy fluxes. The positive off-diagonal transport coefficient LSiV linearly relates the Si

flux JSi to the vacancy driving force ∇µV, which drags Si solutes towards the inner core.

Since Si atoms cannot be absorbed by the core, they accumulate around the core, creating a

solute chemical potential gradient ∇µSi that drives Si away from the core. At steady-state,

both driving forces must be balanced so that there is no Si flux along the radial direction.

The vacancy fluxes JV are larger in the compressive region (as Fig. 5(c) shows), and thus

drag more Si atoms to segregate above the core.

Figure 5(a) and 5(b) show that at the beginning of the simulation under equilibrium
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FIG. 3. (color online) Time evolution of the vacancy distribution near an edge dislocation under

irradiation. At t = 0 ns, both species are at equilibrium and they evolve due to the presence of

irradiation. Irradiation produces a highly saturated vacancy environment in the far-field region,

causing a large number of vacancies to flow into the simulation region. At steady-state, the tensile

region is no longer depleted of vacancies and there is a large vacancy concentration gradient in the

radial direction pointing from the outer boundary near the bottom of the simulation region to the

inner core; c.f., Fig. 5.

conditions, the heterogeneous strain fields around an edge dislocation induce complex flow

patterns for homogeneously distributed vacancies and Si solutes. The vacancies and Si are

uniformly distributed initially. When the dislocation is introduced, the initial fluxes of both

species show heterogeneity due to spatial variation of the chemical potential created by

nonuniform volumetric strain εv(r), as well as anisotropy due to the effect of nonzero εbb and

εbn on the transport coefficients. Vacancies flow from the tensile region below the core to

the compressive region above the core, which leads to the steady-state Cottrell atmosphere

vacancy distribution shown in the last subfigure of Fig. 1. The Si solutes move in the opposite

direction, which explains that Si atoms segregate to the tensile region and are depleted from

the compressive region.
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FIG. 4. (color online) Time evolution of solute (Si) concentration profile under irradiation, starting

from the equilibrium Si distribution. Under irradiation, vacancy drag on Si atoms dominates the

Si flux field causing Si to move toward the compressive region above the core. At steady-state,

more Si atoms segregate above the core than below the core, with the maximum Si concentration

approaching twice the far field Si concentration c0
Si = 0.5%.

Figure 5(c) and 5(d) show that at 20 µs of irradiation a vacancy flux field flows into

the inner boundary, which drags Si solutes towards the dislocation core. Under irradia-

tion, vacancies reach the steady-state configuration at 20 µs while Si still appears to be

at the equilibrium distribution. Irradiation modifies the flow patterns of both vacancies

and Si. The difference between the highly saturated vacancy concentration in the far-field

region and the equilibrium vacancy concentration at the inner core leads to the steady-state

vacancy flux field directed toward the core. The vacancy fluxes have larger magnitudes

in the compressive region above the core and relatively smaller magnitudes in the tensile

region below the core. The directions and relative magnitudes of the Si fluxes are similar

to that of the vacancies, suggesting that the flow of Si atoms is dominated by the positive

vacancy drag LSiV∇µV (L0
SiV > 0). The Si atoms are dragged by vacancies towards the

sink and accumulate around the dislocation core, which explains the out-of-equilibrium Si
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(a) JV at the introduction of the dislocation
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(b) JSi at the introduction of the dislocation
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(c) JV at 20 µs of irradiation
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(d) JSi at 20 µs of irradiation

FIG. 5. (color online) Flow streams around an edge dislocation for (a) vacancies at the introduction

of the dislocation, (b) Si at the introduction of the dislocation, (c) vacancies at 20 µs after irra-

diation and (d) Si at 20 µs after irradiation. Color coding indicates the magnitude of fluxes with

units: [1/(Å
2

ns)]. At the beginning of the equilibrium simulation when both species are uniformly

distributed, vacancies flow from the tensile region below the core to the compressive region above

the core, while Si atoms move in the opposite way. The anisotropy of both fluxes comes from the

anisotropy of transport coefficients and the heterogeneity of volumetric strain which influences the

chemical potentials. At 20 µs of irradiation, vacancies reach the steady-state configuration while

Si stays at the equilibrium distribution. Irradiation creates a vacancy flux field flowing into the

core from all directions, with larger flux magnitudes in the compressive region than in the tensile

region. The Si fluxes show similar flow pattern to that of the vacancy.

14



segregation. More Si atoms segregate to the compressive region where the vacancy fluxes

have larger magnitudes than to the tensile region, despite the fact that they are oversized

in Ni.

V. CONCLUSIONS

We use a mesoscale model to simulate vacancy-mediated diffusion of substitutional Si

solutes in FCC Ni near a [11̄0](111) edge dislocation: first under equilibrium conditions and

then under irradiation. The dislocation strain field and irradiation play crucial roles in de-

termining point defect and solute diffusion behavior. Near the edge dislocation, the spatial

variation of volumetric strain εv causes heterogeneity in the defect transport coefficients and

chemical potentials, with the transport coefficients also being anisotropic due to non-zero

εbb and εbn. These effects create complex vacancy and Si fluxes even though both species

are uniformly distributed at the beginning of the simulation, and determine the equilibrium

distributions. In the presence of the dislocation strain field, both vacancies and Si solutes

diffuse to form a Cottrell atmosphere with vacancies segregating to the compressive region

above the core and Si segregating to the tensile region below the core. Irradiation raises the

bulk vacancy concentration, driving vacancies to flow into the dislocation core, at which the

equilibrium vacancy concentration is imposed (perfect sink assumption). Although irradi-

ation does not directly modify the solute distribution, the out-of-equilibrium steady-state

vacancy flux drags Si atoms towards the dislocation core due to the positive coupling be-

tween Si and vacancies at the simulation temperature T = 960K. This results in segregation

in the compressive region, despite the fact that Si is an oversized solute in Ni.

Several approximations have been used in the current study. First of all, we assume both

species are in the dilute limit, at which only vacancy-solute pairs are considered in the cluster

expansion and the SCMF solution is exact14,22. In our system, the vacancy concentration

cV is below 10−7 and the Si concentration cSi is around 0.5%, in which scenario we can

estimate the contribution from three or more-body vacancy-Si clusters is roughly 1% of

that from vacancy-Si pairs. Second, we use a small strain limit to validate the linearities

in Eqn. (2) and Eqn. (7). In our simulation region, the inner radius is picked so that the

volumetric strain is below 3% and the tetragonal component along cube axes 〈100〉 is below
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1%, which guarantees that the migration barrier Em and transport coefficients LAB have

good linear dependences on strains28,29. Last, we apply inner boundary conditions for both

species instead of explicitly simulate the dislocation core region (r < rin). It is partly due

to the inaccuracy of using the current mesoscale method to model the highly distorted

core region. On the other hand, we believe that these boundary conditions are reasonable

approximations. The equilibrium boundary condition for vacancy is equivalent to treating

the dislocation as a perfect sink, which have been used in prior works26,27 and proven to be

valid. The zero normal-flux boundary condition is to maintain the conservation law of Si

atoms, considering the fact that Si atoms cannot be created or be annihilated at an isolated

dislocation. This model ignore the effects from pipe diffusion and dislocation motion. To

cover all these effects, an improvement can be done by developing an atomistic model, more

accurate by sacrificing the efficiency, to explicitly simulate the dislocation core, and being

coupled with the present mesoscale simulation at the core boundary.

In this study we have focused on a specific diffusion process that leads to irradiation-

driven Si segregation around an edge dislocation in Ni, but the multiscale methodology has

other applications. The Onsager transport equations (Eqn. (1)) as well as the expressions for

species chemical potentials (Eqn. (2)) and transport coefficients (Eqn. (5)) can be applied to

describe diffusion in other defect systems such as free surfaces or grain boundaries. Moreover,

the continuum model can be extended to model systems with larger length scales up to

millimeters, and simulate more complex diffusion processes, such as solutes segregating to

extended defects including dislocation loops, grain boundaries, and interfaces.
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