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We suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2)
chiral spin liquids - spin-analogues of fractional non-Abelian quantum Hall states- with gapped bulk
and gapless chiral edge excitations described by the SU(2)n Wess-Zumino-Novikov-Witten conformal
field theory. The models are constructed from an array of a generalized spin-n/2 ladders with multi-
spin exchange interaction which are coupled by isolated spins. Such models allow a controllable
analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and
non-Abelian SU(2)n gapless edge excitations.

About thirty years ago Kalmeyer and Laughlin pro-
posed a spin-analogue of a fractional quantum Hall state
(FQHS) for electrically neutral quasiparticles - dubbed
Kalmeyer-Laughlin chiral spin liquid (KL CSL) state1.
This state shares basic properties of FQHS such as
gapped bulk and robust gapless edge excitations2,3. The
latter ones are described by the SU(2)1 Wess-Zumino-
Novikov-Witten (WZNW) conformal field theory3–5.
The KL CSL state is a singlet and breaks both time-
reversal and parity symmetry. It is also topologically
nontrivial with a vacuum degeneracy on compactified
spaces6.

Historically, such a state was discovered by consid-
ering lattice versions of the bosonic ν = 1/2 Laughlin
wave function as variational candidate ground-state wave
functions for the triangular lattice spin-1/2 Heisenberg
model1,2,7. There is now a numerical evidence for its
existence in the spin-1/2 Heisenberg model on kagome
lattice with the first, second and third nearest neigh-
bor interaction8–10. Another piece of numerical evidence
suggests that KL CLS exists for the spin-1/2 Heisenberg
model on kagome and triangular lattices12–15 with an ad-
ditional three-spin exchange interaction explicitly break-
ing the time-reversal symmetry. Both studies numeri-
cally demonstrate the required ground-state degeneracy
and the full characterization of the underlying topological
order for the KL CSL state.

Since numerics has its restrictions it is highly desir-
able to have microscopic models of CSLs which would
allow a controlled analytical description. At the same
time such controllable models should not be too unrealis-
tic. While exact parent lattice Hamiltonians for KL CSL
wave function have been constructed in Refs. 16,18,19,
they are very challeging to achieve experimentally since
they contain complex variables as well as long-range in-
teractions. A complementary approach is the so-called
coupled-wires construction to FQHS which starts from
an array of one-dimensional (1D) wires, coupled in such
a way that a two-dimensional (2D) gapped phase with 1D
gapless edge excitations emerges20. It opens a possibil-
ity to find microscopic models which display Abelian and

non-Abelian topologically ordered physics from arrays of
quantum spin chains21–24. For KL CSL such attempt
was made by Gorohovsky et.al.21 who suggested a model
on anisotropic triangular lattice. Unfortunately the au-
thors have found that in any realistic situation the CSL
will be destroyed by competing magnetic orders. Since
this puts them in a conflict with the numerical results of
Refs. 14,15 who presented a good evidence for CSL even
for the isotropic lattice, things are not under control.

As was suggested in17,25, the KL CLS is just one ex-
ample of spin liquid among many and CSLs with non-
Abelian statistics might be stabilized. We construct ana-
lytically tractable 2D microscopic models of non-Abelian
SU(2) CSLs where the edge modes are described by the
SU(2)n WZNW theory. For n = 2 this is an analogue
of the bosonic Pfaffian state. For general n these CSLs
correspond to the Read-Rezayi series at filling ν = n/2
with Zn parafermionic neutral states26. For n ≥ 2, these
quasiparticle excitations possess non-Abelian statistics
like those of the Pfaffian. The lattice models consist
of an array of coupled spin-n/2 generalized zigzag lad-
ders with three-spin exchange interactions which breaks
the time-reversal and parity symmetries preserving their
product. Although it looks unusual, such interaction may
be generated either as a result of spontaneous symmetry
breaking2,27 or, as was suggested in Ref. 11, emerges in
a Mott insulator as a result of a magnetic field.
Lattice spin models. The simplest lattice model

for n = 1 is depicted in Fig. 1 and the Hamiltonian
for individual ladders in this case includes only two- and
three-spin interactions:

Hladder = HJ +Hχ, (1)

HJ =
∑
n

[
JSn · Sn+2 + J ′Sn · Sn+1

]
, (2)

Hχ =
χ

2

∑
i,j,k∈∆

(
Si · [Sj × Sk]

)
, (3)

where the diagonal exchange is weaker then the exchange
along the legs: J ′ < J . For the three-spin interaction the
sum goes on all triangular plaquettes and indices i, j, k
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FIG. 1: The spin arrangement for the suggested model. Dif-
ferent link colors correspond to different exchange interac-
tions. The blue links mark the strongest isotropic exchange
J , the red ones mark weaker isotropic exchange J ′, the green
links correspond to the anisotropic interladder exchange and
the magenta ones to the Ising-like anisotropic exchange Iab

between the intermediate spins. The blue arrows denote the
three-spin exchange interactions. Since there is no static spin
order all spin orientations depicted on the figure should be
ignored.

appear in the clockwise order in each elementary triangle.
The ladder model (1) allows analytic and controllable
treatment in two cases. Either the interchain exchange
is weak J ′ << J21 or one is close to the integrable point:
χ2 = 2JJ ′28. The low-energy spectrum of the n = 1
model (1) consists of gapless bosonic modes of opposite
chirality located on different legs of the ladder21,28. This
fulfills the necessary condition for the coupled-wires con-
struction which requires that neighboring wires are cou-
pled by chiral modes of opposite chirality20. The au-
thors of Ref. 21 proceeded suggesting to couple the lad-
ders in the fashion of triangular lattice with the conclu-
sion that such coupling will destroy the CSL due to the
competing magnetic order. This competition comes from
the coupling of staggered magnetizations of the next-to-
nearest neighbor chains generated by higher order virtual
processes. On the triangular lattice this interaction is
Jnnn ∼ J ′′(J ′/J), where J ′′ is the exchange between the
ladders. On the other hand, the interaction between the
gapless modes of the neighboring ladders is marginally
relevant and the corresponding gap is exponentially small
in 1/J ′′ and hence will be suppressed by the indirect ex-
change Jnnn.

In model of Fig. 1 the ladders with three-spin interac-
tions which couple spins around triangles are separated
by localized spins. The interaction with the latter spins
is strongly anisotropic. Such arrangement allows one to
overcome the problems related to the unfrustrated in-
teractions between next-to-nearest spins discussed above
and to make the CSL more robust, still providing a possi-

bility for analytical treatment of the model Hamiltonians.
The fact that our model is formulated on a lattice allows
numerical checks of our results.

In the case of generic n, the integrable model (1) for
spins S = n/2 was found by Zvyagin29. The explicit form
of the Hamiltonian is given in Refs. 29,30 and it repre-
sents coupled integrable critical spin-S = n/2 Heisenberg
chains with extra multi-spin interactions around triangu-
lar plaquettes. The most important difference is that the
gapless chiral modes now are described by the SU(2)n
WZNW model. A 2D lattice model of non-Abelian CSL
with SU(2)n edge modes is constructed then by coupling
the generalized ladders as in Fig. 1.
The continuum limit of the individual ladder

model. To derive the effective field theory describing
the continuum limit of the ladder model one just fol-
lows the standard approach of weakly-coupled two-leg
spin ladders32,33. Alternatively at the integrable point
one may use the Bethe ansatz results of Refs. 28,29. The
continuum limit Hamiltonian is the sum of two perturbed
SU(2)n WZNW models with densities:

Heff = HR +HL + V (4)

HR =
2πv

n+ 2

[
: J2

R1 : + : J2
L2 :

]
+ 2πvgRJR1 · JL2(5)

HL =
2πv

n+ 2

[
: J2

L1 : + : J2
R2 :

]
+ 2πvgLJL1 · JR2(6)

V = γtwn1 ·
↔
∂xn2 + γbs(JR1 · JL1 + JR2 · JL2), (7)

where JR,L are SU(2)n Kac-Moody chiral currents and
v ∼ J is the spin velocity. Operators n1,2 are staggered
magnetizations of the chains 1,2. They have scaling di-
mension d = 3/2(n+2) and are related to the 2×2 matrix
fields G1,2 of the WZNW models describing individual
chains32,33: n1,2 ∼ iTr[~σG1,2] (~σ being a vector formed
by the Pauli matrices). For n = 1 all perturbations are
marginal while for n > 1 the non-zero conformal spin per-
turbation with coupling constant γtw, dubbed twist term
in Ref. 34, is strongly relevant with a scaling dimension
dt = 1 + 3/(n+ 2). However, when the integrability con-
dition is met, (i) γtw = 0, γbs < 0 and the continuum
limit Hamiltonian (4) splits into two independent parts
and (ii) gR and gL have different signs. As a consequence
of (ii) at the integrable point one of the models HR,L be-
comes massive and the other one is massless depending of
the sign of χ with the marginally relevant dimensionless
coupling g = |gR| ∼ (J ′/2J)1/2. For g << 1 the spectral
gap for massive mode at the integrable point is exponen-
tially small: ∆ladder = Jg1/n exp(−1/g). However, the
gapless mode remains robust independently of the value
of g and hence always admits a field-theory description
even when the gap is of the order of J . The field theory
for the gapless mode is the one of the SU(2)n WZNW
models (5, 6) which has a negative coupling constant.

According to Ref. 21 who analyzed the one-loop renor-
malization group flows of model (4) with n = 1 outside
of the integrable point, the picture of the spectrum given
above remains qualitatively valid in some region outside
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of the integrable line. As a result one can be confident
that the phase diagram of the generalized zigzag spin
ladder contains a region where the right movers of (say)
chain 1 are strongly coupled to the left movers of chain 2
and the left movers of chain 1 are weakly coupled to the
right movers of chain 2. The part of the spectrum con-
taining the strongly coupled modes is gapped. Such vio-
lation of parity is, of course, a consequence of the three-
spin interaction. For n > 1 the situation is more delicate
since the twist operator is relevant. Even if the gap is

sufficiently large so that ∆ladder > γ
1/(2−dt)
tw , we have

to make sure that the twist operator does not ruin the
quantum criticality of the edge modes. In this respect,
we need to consider its projection on the low-energy sec-
tor. Since the twist operator is a spin singlet and is a sum
of two SU(2) singlet operators with Lorentz spin ±1, the
projection must generate operators with the same sym-
metry or nothing. As described in Ref. 30, we find that
the twist operator reduces to a total derivative of the
trace of the SU(2)n WZNW field (see Eq. (8) below). It
does not contribute to the effective low energy theory.

The generalized zigzag ladder is a critical spin nematic
described by one of the SU(2)n WZNW models (5, 6),
the one which has negative coupling constant. The SU(2)
WZNW matrix field U of this model is made from chi-
ral components of the fields of the different chains30. In
this theory the local operators with power law correla-
tion functions are binary products of staggered magneti-
zations from the different legs:

n1 · n2 ∼ Tr U, n1 × n2 ∼ iTr[~σU ], (8)

while two-point correlators of the staggered magnetiza-
tions decay exponentially30. In what follows we will
assume that the parameters of the lattice Hamiltonian
(1) are such that the effective couplings for the current-
current interactions on a given ladder have different signs
for different parities, as was described above.

Coupling the ladders. When zigzag ladders are ar-
ranged in a 2D array, the critical nematic modes cou-
ple. Depending on the nature of this coupling the sys-
tem may either order as a nematic or remain a CSL. The
order prevails if the matrix order parameters Uy from
different ladders couple directly. As discussed above, one
needs to isolate the ladders from each other more thor-
oughly to stabilize a CSL state. The arrangement shown
on Fig. 1 makes it more difficult for the nematic or-
der parameters to couple. In that case the chiral gapless
modes from neighboring ladders y, y + 1 interact indi-
rectly with each other through the intermediate spins in-
teracting with a ferromagnetic Ising-like interaction. We
will demonstrate that this arrangement produces a spin
gap in the bulk. As will be shown the gap magnitude in-
creases when the exchange with the intermediate spins is
anisotropic. Meanwhile the exchange within the ladders
must remain SU(2) invariant to preserve the Kac-Moody
algebra of the currents. Taking into account that each
leg of an individual ladder contains just one chiral gap-
less mode and that the in-chain staggered magnetizations

are short-ranged fields at energies � ∆ladder, we arrive
to the following low-energy model which describes the
neighboring ladders y, y + 1 as a Kondo lattice model
with a forward scattering:

H =
2πv

n+ 2

∫
dx
[

: J2
R,y+1 : + : J2

L,y :
]

+
∑
l

ηa

[
JaL,y(xl) + JaR,y+1(xl)

]
Say+1/2(xl) (9)

−
∑
l

IabSay+1/2(xl)S
b
y+1/2(xl+1).

We will consider the case ηz >> ηx = ηy. Ac-
cording to Ref.37 where somewhat similar system was
studied, Hamiltonian (9) must be augmented by the
RKKY interaction between the localized spins generated
by the coupling to irrelevant operators. The strongest
of those is ηz∂x(nzy + nzy+1)Szy+1/2 in our anisotropic

model. Since correlation functions of the staggered mag-
netization decay exponentially, the second-order pertur-
bation theory in ηa yields the short range interaction
J abr SanS

b
n+r, where the exchange Ir decays exponentially

with distance30. This interaction is antiferromagnetic
and competes with the bare one. We will consider the
case when the net interaction Iabr = −Iabδr,1 + J abr is
small. For n = 1 model (9) with Ir = 0 was considered
in Refs. 35,36 and it was concluded that the spectrum is
gapped and has a nonlocal order parameter. Using the
Abelian bosonization approach, one can bosonize the chi-
ral SU(2)1 currents in terms of chiral bosons ΦR,L and
recast the Lagrangian density for model (9) as (from now
on we set v = 1)

L =
1

2
[(∂τΦ)2 + (∂xΦ)2] + ρs

{ i
2
Sz∂τψ +

ηz√
2π
∂xΦSz

+
η⊥

2πa0
cos(
√

2πΦ)(S+e−i
√

2πΘ + S−ei
√

2πΘ)
}

+
∑
n,r

Iabr S
a
nS

b
n+r, (10)

where we assume that the local spins can be located at ar-
bitrary points along the chains with spin density ρs, and
not necessarily in a regular fashion as depicted on Fig. 1.
Here Θ = ΦL−ΦR is the field dual to Φ = ΦL + ΦR and
S± = e±iψ sin θ, Sz = cos θ. After the transformation
ψ → ψ+

√
2πΘ the coupling in the second term changes

to ηz → ηz − 2π and the Hamiltonian becomes

H =
∑
n,r

Iabr S̃
a
nS̃

b
n+r + η⊥

∑
n

S̃xn cos(
√

2πΦn) (11)

+
ηz − 2π√

2π

∑
n

∂xΦnS̃
z
n +

1

2

∫
dx[(∂xΘ)2 + (∂xΦ)2],

The situation simplifies when ηz = 2π. As we have said,
we we will always consider the case when Ir is sufficiently
small which can be always achieved by tuning the inter-
actions. In the simplest case Ir = 0 we are left with the
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interaction term

V =
η⊥ρs
2πa0

cos(
√

2πΦ)S̃x, (12)

where S̃a are transformed spin components which in-
cludes the staggered factor35,36. Then since the oper-
ators S̃x(x) commute with the Hamiltonian, they can
be replaced by constants. The ground state configura-
tion corresponds to all S̃x(x) being equal. In this sec-
tor model (12) is reduced to the integrable sine-Gordon
model with a spectral gap ∆ ∼ (ρsη⊥)2/3. The dimen-
sional analysis indicates that for general ηz >> η⊥ the

gap is ∆ ∼ η
4π/3ηz
⊥ . So the bulk excitations are gapped

and the boundary chiral modes are gapless as is expected
for a FQHS. The latter ones are described by the SU(2)1

WZNW theory. A similar Toulouse approach can be per-
formed in the general n > 1 case, as described in Ref. 30,
with the emergence of a bulk gapped phase with gapless
edge excitations described by the SU(2)n WZNW con-
formal field theory.

The gap ∆ provides us with the window of tolerance
for the magnitude of Ir: this exchange interaction should
not exceed ∆. We find it interesting to take a closer look
at the bulk excitations in the n = 1 case. At the inter-
grable point ηz = 2π, Ir = 0 model (11) has two kinds
of excitations: the massive mobile sine-Gordon triplet
modes and immobile defects corresponding to flips of S̃x.
Away from this point the latter defects become mobile
solitons; each soliton carries spin 1/2 from the ladders
and a zero Majorana mode from the interladder spins.
To see this we need to consider a perturbation around
ηz = 2π. Integrating out the massive Φ modes in the
leading order in δη = ηz − 2π changes Ir by the amount
δIr ∼ (δη/v)2(∆/v) exp(−∆|r|/v). Treating the expo-
nentially decaying Ising exchange as the nearest neigh-
bor interaction we arrive to the Ising model in a trans-
verse dynamical field. The Jordan-Wigner transforma-
tion brings us to the model of Majorana fermions which
mass term changes sign when cos(

√
2πΦ) does. Such

model has been considered in Ref. 38 and in the limit
when the Majoranas are slower than kinks possesses rich
physics. It certainly has Majorana zero modes riding on
kinks. There are also traces of the two-channel Kondo
physics suggested for this case in Ref. 12 in the sense
that the Majorana zero modes on kinks are similar to
static Majorana zero modes on isolated spins in the two-
channel Kondo effect31. So we see that the bulk of our
model is gapped and the excitations are nontrivial. A half
of the spinon modes of the ladders are gapped inside of
each ladder. These are spin-1/2 solitons. The remaining
half are gapped due to the interladder coupling through

the intermediate spins. These are non-Abelian kinks (vi-
sons?). Such fractionalized excitations cannot propagate
in the transverse direction. However, there are proba-
bly their bound states with integer quantum numbers
and these ones can. If the applied magnetic field exceeds
the bulk gap we expect the bulk to become gapless with
central charge c = 3/2 and the velocity v ∼M (the mag-
netization). This may lead to interesting T/M scaling in
the thermodynamics.

In order to demonstrate the robustness of the described
state we have to consider a possibility of interladder cou-
plings other than the ones already described. In the
low-energy theory such couplings are generated by high
energy virtual processes and their magnitudes are pro-
portional to powers of the couplings of the bare lattice
Hamiltonian39. In the given case one has to expect,
for instance, the appearance of the effective interactions
between the local (or Kondo) spins from different rows
which may lead to their ordering. This process competes
with the Kondo screening preventing the gap formation.
Such unwanted interactions constitute a general problem
for all quantum Hall constructions based on coupling of
wires. Starting from the original idea by Teo and Kane20

all these scenaria envisage that the original lattice model
can at low energy be reduced to 1D critical models cou-
pled by marginally relevant current-current interactions.
The difficulty is that the gaps generated by the marginal
interactions are exponentially small in the direct interwire
exchange and the ones generated by high energy virtual
processes have power law dependence on the same cou-
plings of the lattice model. In the model with the inter-
mediate spin we suggest this difficulty is avoided since
the spin currents from neighboring ladders are not cou-
pled directly which would generate exponentially small
gap, but via the anisotropic exchange with intermediate
spins.
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