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We study impurity scattering in the normal and d-wave superconducting states of line nodal
semimetals and show that, due to additional scattering phase space available for impurities on the
surface, the quasiparticle interference pattern acquires an extended character instead of a discrete
collection of delta function peaks. Moreover, using the T -matrix formalism, we demonstrate that the
conventional behavior of a scalar impurity in a d-wave superconductor breaks down on the surface
of a line nodal semimetal in the quasi flat band limit.

Introduction: A recent member to the class of topolog-
ical states [1–3] of matter include line node semimetals,
in which two bands are degenerate over an extended re-
gion have gapless excitations [4]. A number of materials
have been proposed to exhibit such line node character-
istics [5–14], a list which is growing remarkably rapidly.
These proposals, in turn, have inspired numerous theo-
retical studies of novel properties of this intriguing band
structure [15–24].

Inducing proximate superconductivity in topological
states presents an intriguing playground for exotic forms
of superconducting matter [25–29]. Notably, high tem-
perature proximity-induced superconductivity has been
realized on canonical topological insulators bismuth se-
lenide and bismuth telluride, using a d-wave cuprate
superconductor [30]. Recent reports of tip-induced su-
perconductivity in point node semimetals are an excit-
ing new development in exploration of such phenom-
ena [31, 32].

At the same time, quasiparticle interference has proved
to be an important tool in establishing and character-
izing the fingerprints of topological matter. Surface
states of topological insulators have been imaged and
their spin-momentum locking has been revealed using
scanning tunneling spectroscopy [33–38]. More recently,
gapless topological phases of matter, Dirac and Weyl
semimetals, have also been studied using scanning tun-
neling microscopy, where signatures of Fermi arcs have
been found [39–43].

In this work, motivated by these advancements, we
explore the quasiparticle interference in normal and
superconducting line node semimetals focusing on both
bulk and surface properties. We show that, unlike
in conventional two dimensional metals where nodal
superconductivity yields point nodes, the surface of a
line nodal semimetal gives rise to line nodes. As a
consequence, due to the additional impurity scattering
phase space available within the area of the flat band,
the quasiparticle interference pattern on the surface of

a line nodal semimetal acquires an extended character
in the Brillouin zone instead of a collection of discrete
delta function peaks. Additionally, using the T−matrix
formalism, we examine the resonant state energy disper-
sions of a single scalar impurity on the surface of a line
nodal semimetal with d−wave pairing. Our calculations
point to a momentum averaged Green function which
contains a power law type contribution, in addition to
the logarithmic term usually found for nodal supercon-
ducting quadratic bands. Such a contribution, unlike
the case of two dimensional electrons with quadratic
bands, admits two different under-damped solutions to
the resonant state energies: the first is a broad, low
intensity mode located closer to the continuum that
disperses toward zero energy in the unitary limit; the
second is a more intense, sharp, lower energy mode that
disperses away from zero energy. We argue that first
mode may be challenging to access experimentally while
the second can be more readily observed. Our results
also signal a destruction of zero bias tunneling peaks
(in the unitarity limit) on the surface of a line nodal
semimetal with d−wave pairing and could, thereby,
motivate future scanning tunneling experiments on line
node semimetals.

Toy model for a line nodal semimetal: To begin
with, we briefly describe a slightly modified version of
the tight binding toy model put forth in Ref. [44] and
study some of its bulk and surface properties. Equipped
with a basic understanding of these properties, we go on
to study the impurity induced quasiparticle interference
patterns in both the normal and superconducting states
of the line node semimetal. We take our tight binding
Hamiltonian on a square lattice to be of the form (we use
the same notation as in Ref. [44] to make the comparison
explicit)
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FIG. 1. Zero energy local density of states for the line node
semimetal. Top row: (Left) Bulk and (right) Surface with-
out superconductivity. Bottom row: (Left) Bulk and (right)
Surface with d−wave superconductivity.
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Ĥz = (1− cos(ckz)) (Zττzσ0 + Z0τ0σ0) (2)

where τi, σi are the Pauli matrices in the orbital and
spin basis respectively and a, c are the in-plane and
out-of-plane lattice constants. The function g(~k‖)

is defined as g(~k‖) = 1 + cos(ak0) − cos(akx) −
cos(aky). We set the parameters to the following val-
ues (Zτ , Z0, a, c, k0, V0)=(0.287 eV, 0.0 eV, 8.26 Å, 6.84

Å, 0.206 Å−1, 0.043 eV) and define ν′‖ =
2ν‖ak0
sin(ak0) , ν′0 =

2ν0ak0
sin(ak0) , ḡ = 1 + cos(ak0) with (ν0, ν‖, νz)=(-0.993 eVÅ2,

4.34 eVÅ2, 2.5 eVÅ). To explore the flat band surface
states, we use open boundary conditions along one of the
directions, namely the z axis.

In Fig.1, we plot the local density of states (LDOS) in
the bulk and surface of the model described in Eq. 1 at
zero energy. The top row shows the LDOS in the bulk
(left) and surface (right) in the normal state. In the bulk,
there is a continuous contour of Dirac nodes at zero en-
ergy which acquires a toroidal structure at non-zero fre-
quencies (see Supplemental Material [45]). However, on

the surface, a nearly flat band is found which “fills” the
bulk contour, the so-called “drumhead states”. In our
discussions, we will be most interested in the flat band
limit of the model where the surface band dispersion is
the smallest energy scale in the problem. At non-zero en-
ergy, the flat-band behavior on the surface is absent and
there is little qualitative distinction between the surface
and the bulk [45]. It is also worthwhile to note that it is
possible to augment the Hamiltonian in Eq. 1 to include
terms which smoothly interpolate between a line nodal
semimetal and a Weyl semimetal (see Supplemental Ma-
terial [45]).

We now include proximity-induced superconductivity
in our setup (see [45] for the details). For the rest of
the paper, we will model the superconductor in the even
frequency, orbital and spin singlet pairing channel. Not-
ing that fully gapped s−wave superconductors are robust
and featureless to scalar impurities due to Anderson’s
theorem, interesting impurity effects start to appear with
nodal d−wave pairing, which will be the main focus of
this work. The effect of a d−wave form of the gap on
the bulk and surface LDOS at zero frequency is shown
in Fig. 1 (bottom row). The intensity in the bulk (Fig. 1
bottom left) is now reduced to four nodal spots corre-
sponding to the zeros of the d−wave gap function. These
nodal points are marked by arrows denoted by ~Q and ~Q′.
However, on the two dimensional surface (Fig. 1 bottom
right) a d−wave gap gives rise to line nodes instead of
point nodes− a novel feature of the “drumhead” surface
state that does not occur in usual two dimensional su-
perconductors. This would lead to an anomalous scaling
of measurable quantities, like the specific heat, leading
to a striking difference which could be readily tested in
future experiments.

At non-zero energies, the four nodal points that
existed in the bulk become slightly extended in mo-
mentum space (see Supplemental Material [45]) along
the diagonals of the Brillouin zone due to the toroidal
Fermi surface. On the surface, however, when the
induced superconducting gap (∆µν) is larger than the
chosen energy (ω = 0.1 eV and ∆µν > 0.1 eV), then all
the surface bands become gapped except those states
along the Brillouin zone diagonal. These states then
converge down to the Fermi level to form line nodes
at zero energy, while at non zero energy (less than the
maximum value of superconducting gap) they form a
“petal” like structure.

Impurity scattering: With the analysis of LDOS in
the normal and superconducting phases at hand, we
are now in a position to examine the effect of impurity
scattering on line node semimetals. In the presence of
impurities, the electrons in states with high density at
the same energy can scatter between these states. This
gives rise to interference patterns which can be measured
using scanning tunneling methods. Joint density of
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FIG. 2. Joint density of states at ω = 0 (panels a,b,c,d) and ω = 0.1eV (panels e,f,g,h). Panels on the left half (a,b,e,f) are in
the normal state and the right half (c,d,g,h) are in the d−wave superconducting state. Panels a,e,c and g correspond to the
bulk JDOS and b,f,d,h correspond to the surface JDOS. The qx and qy axes on the left half of the figure have the same range
as panels on the right half.

states (JDOS) has proved to be a useful quantity to
compare to experimentally obtained quasiparticle inter-
ference patterns and to analyze the possible scattering
processes [33]. It can be obtained in a straightforward

manner by JDOS(~q, z) =
∫

DOS(~k, z)DOS(~k + ~q, z)d2~k.
The simplicity of the computation then allows a detailed
analysis of the obtained interference pattern.

Fig. 2 shows the JDOS at ω = 0 (Fig. 2 panels a-d )
and ω = 0.1eV (Fig. 2 panels e-h ) in the normal (pan-
els a,b,e,f) and superconducting states (panels c,d,g,h).
For ω = 0 in the normal state, both the bulk (panel
a) and surface (panel b) JDOS show dominant peaks
at the Brillouin zone center corresponding to impurity
scattering with zero momentum. The ’radius’ of the re-
gion with non-zero JDOS intensity for both the cases
is about twice that of the vectors ~Q and ~Q′, as is ex-
pected from scattering between these states. However,
there are some important features that distinguish the
surface and the bulk JDOS even without induced super-
conductivity. First, the intensity of the JDOS is much
larger on the surface than in the bulk (at zero energy)
due to the surface flat band. Second, the JDOS profile
in the bulk (Fig. 2(a) ) is quasi-flat away from zero mo-
mentum transfer and peaks steeply at zero momentum.
On the other hand, the surface JDOS (Fig. 2(b) ) has
a thick cone like feature. This difference is due to the
additional impurity scattering contributions originating
from all the momenta within the boundary of the surface
flat band which is absent in the bulk.

In the presence of induced d-wave superconductivity
(Fig 2 panels c,d,g,h) at zero energy (panels c and d), the
bulk (panel (c)) JDOS profile essentially peaks at nine
points in the Brillouin zone. These points correspond to
~q = 0,±2 ~Q,±2 ~Q′,±( ~Q+ ~Q′),±( ~Q− ~Q′) which represent
the nine different ways to connect the four nodal spots
with themselves and with the rest of the others (see
Fig. 1 bottom, left). The surface JDOS (panel (d)) in
the presence of induced superconductivity has additional
intensity within the square bounded by the momentum
vectors ±( ~Q + ~Q′),±( ~Q − ~Q′). This is entirely a conse-
quence of the fact that d−wave superconductivity yields
line nodes on the surface of a line nodal semimetal in-
stead of point nodes (as in the bulk). In such a scenario,
all the momentum vectors that lie within the square,
correspond to vectors that connect different points
on the X shaped line node (in the DOS appearing in
Fig. 1 bottom, right) with each other. This is strikingly
different from the situation in d-wave superconductivity
in materials lacking the “drumhead” states. This could
prove to be an experimentally verifiable signature of
the surface states of line node semimetals. As discussed
before, at non-zero energies, there is little difference
between the bulk (panel e) and the surface (panel f) in
the absence of superconductivity; in fact, the surface
has a smaller JDOS intensity than the bulk due to the
absence of surface states away from the Fermi level.
In the presence of d−wave superconductivity, however,
the bulk (panel g) and surface (panel h) JDOS profiles
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start to acquire broadened characteristics in accordance
with the LDOS. In such a case, the surface still has a
greater intensity than the bulk because surface states
with momenta along the diagonals disperse all the way
down to zero energy.

Impurity resonant states and T -Matrix approximation:
Next, we analyze resonant states that may arise around
the impurities in line node semimetals.To clarify the no-
tation, we briefly outline the T−matrix approximation
(for further details refer to [46]). The total electron Green
function is written as

Ĝ(~k,~k′, ω) = Ĝ0(~k, ω)δ~k,~k′ +Ĝ0(~k, ω)T̂ (~k,~k′, ω)Ĝ0(~k′, ω),

(3)

where G(~k,~k′, ω) and G0(~k, ω) are the total interacting

and non-interacting Green functions, and T (~k,~k′, ω) is
the T−matrix which contains the physics originating
from impurity scattering. For the purposes of this arti-
cle, we confine ourselves to scalar potential scatterers;
this renders the T−matrix momentum independent and

can be written as T̂ (ω) =
[
σ̂0 − V̂ ĝ0(ω)

]−1

V̂ . Here,

we have defined ĝ0(ω) = 1
2πN0

∑
~k Ĝ0(~k, ω), with N0

being the density of states at the Fermi level, and the
scattering matrix V̂ given by 1

c τ̂3. We have also used the
parameter c = cot(N0U0) as a measure of the strength
of an isotropic scatterer, following Ref. [47], where U0

is the strength of the impurity scatterer. Therefore, the
unitarity limit (large scattering strength, N0U0 → π

2 )
corresponds to the case when c→ 0.

Before we move on to the superconducting state
of a line-nodal semimetal, we briefly recall known
results regarding resonant state dispersions of a
scalar impurity in d−wave superconductors from
the works of Balatsky and Hirschfeld [46–48]. We
begin by writing out the non-interacting Greens’

function given as Ĝ0(~k, ω) =
(
ωσ̂0 − Ĥsc(~k)

)−1

,

where Ĥsc(~k) = ε(~k)σ̂3 + ∆(~k)σ̂1, ε(~k) = αk2 − µ
(α is a constant and µ is the chemical potential),

and ∆(~k) = ∆0 cos 2φ~k. In general, the matrix
ĝ0(ω), can be written as ĝ0(ω) =

∑
i Gi(ω)σ̂i where

we have Gi(ω) ≡ 1
2πN0

∑
~k Gi(ω,~k), G0(ω,~k) = −ω

D~k
,

G1(ω,~k) = −∆(~k)
D~k

, G2(ω,~k) = 0, G3(ω,~k) = −ε(~k)
D~k

and

D~k = ∆(~k)2 + ε(~k)2 − ω2. Given the form of the

scattering matrix, V̂ = 1
c σ̂3, the condition for the

existence of resonant states is that the determinant of[
σ̂0 − V̂ ĝ0(ω)

]
must vanish. This translates to

G1(ω)2 − G0(ω)2 + (c− G3(ω))2 = 0. (4)

Our task now is to evaluate these functions for the case
of a d−wave superconductor with a quadratic dispersion

in two dimensions. The quantity G1(ω) is zero since the
gap function changes sign across the Brillouin zone and
the φ integral vanishes. Similiary G3(ω) is zero if we
assume particle-hole symmetric bands in two dimensions.
Keeping this in mind, we evaluate G0(ω) for quadratic
bands and, in the limit ω � ∆0, it can be shown that
[47]

G0(ω) ' −ω
π∆0

[
log

(
4∆0

ω

)
− iπ

2

]
. (5)

The condition for the existence of a resonant state (ap-
pearing in Eq. 4) with frequency Ω (whose real and imag-
inary parts are denoted by Re(Ω) and Im(Ω)) simply re-
duces to G0(Ω) = ±c. The only under-damped solution
to this equation as a function of c has two important
features to which one needs to pay attention (Fig 3 left
panel): (i) both the real and imaginary parts of Ω go to
zero in the unitarity limit (c→ 0). This implies that the
in- gap resonant state gets sharper and softer (yields a
sharp zero bias peak in the unitarity limit) as a function
of the impurity scattering strength and (ii) for a finite
range of c, the real part of Ω is slightly larger than the
imaginary part of Ω. This is the regime where the reso-
nant state is reasonably well defined, and above this value
of c, the state is heavily damped. We wish to compare
this result to the dispersive properties of an impurity on
the surface of a line nodal semimetal with a d−wave pair-
ing in the quasi-flat band limit. To do so, we choose the
normal state density of states profile as a Lorenztian of

the form ρ(ε) = γ/π
γ2+ε2 with a width γ that peaks at the

Fermi level. The energy scale γ can be chosen to be the
smallest among all other energy scales in the problem
(bandwidth W , pairing amplitude ∆0 and frequency ω).
Similar to the previous case of a quadratic dispersion, we
have G1(ω) and G3(ω) to be zero. To calculate G0(ω) for
the surface of a line nodal semimetal, we substitute for
the Lorentzian density of states profile into the momen-
tum integral. In the limit of W � ∆0 � ω � γ, we
obtain (see Supplemental material for details [45])

G0(ω)LNS ' −
2γ2ξ

∆2
0

[
1

ξ2
+

1

2
log

(
ξ

4

)
+ i

π

4

]
, (6)

where we have defined ξ ≡ ω
∆0

. This form of G0(ω)LNS
bears some similarities to the ones we derived in Eq. 5;
however, the crucial difference in Eq. 6 is the appearance
of an additional term 1

ξ2 due to the presence of the quasi-
flat band. This power law term has important conse-
quences to the resonant state energies (see Fig. 3). Unlike
the two dimensional electron case with quadratic bands,
the condition G0(ω) = ±c admits two under-damped so-
lutions (Ω1,2), one for each sign. The real and imaginary
parts of these solutions are shown in the center panel of
Fig. 3. While Ω1 is weakly undamped only for small c,
Ω2 remains sharp for all values of c. Moreover, the real
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FIG. 3. Comparison of the real and imaginary parts of the resonant state energies obtained by solving G0(Ω) = ±c. (Left)
Without the 1

ξ2
term in Eq. 6. This is similar to the case of a d-wave superconductor with a quadratic dispersion. (Center)

The case corresponding to the quasi-flat band where there are two solutions Ω1,2 admissible. There is a regime for small c (left
shaded) where both the resonances−though well defined−are broad and have low spectral intensity; hence, they are challenging
to observe experimentally. In the opposite limit (right shaded), the Ω2 solution no longer holds due to weakening of the flat
band approximation. (Right) Corresponding DOS vs energy plots. Note that for these values of c, Ω1 is damped.

parts of Ω1 and Ω2 disperse in opposite directions in the
unitary regime. Note, however, that the dispersion of the
real part of Ω2 cannot go on to zero energy in the weak
scattering (or large c) limit. It is reasonable to expect
this as there should be no in-gap resonant states when
the scattering strength goes to zero. Our result is con-
sistent with this expectation since for large values of c
(shaded region on the right in Fig. 3, center panel), Ω2

becomes comparable to γ, and the quasi-flat band ap-
proximation weakens and eventually breaks down. On
the other hand, in the unitarity limit c <∼ 0.1 (shaded
region on the left in Fig. 3, center panel), the real parts
of both Ω1 and Ω2 approach a relatively large fraction
( Ω

∆0
∼ 0.8; compare this to the quadratic band case in

Fig. 3 left most panel, where it goes to zero energy) of
the maximum gap value. This proximity to the contin-
uum, coupled with the fact that the peak intensities go
to zero for large impurity scattering, makes it experi-
mentally challenging to observe this mode. Therefore,
there is an optimal window of the scattering strengths
where the resonance occurs predominantly due to quasi-
flat band effects and, at the same time, is experimentally
observable (see Fig. 3, right panel). Finally, there is ex-
pected to be little spatial variation of the peak intensity
on different sites close to/ at the impurity [49, 50] due to
lack of spatial dynamics in a quasi-flat band system.
Summary: To conclude, we studied the effect of nodal
d−wave pairing in the bulk and on the surface of a line
nodal semimetal, and determined the role of impurities
through the joint density of states, which could be mea-
sured via quasiparticle interference experiments. We ob-
served that, unlike conventional two-dimensional metals
where nodal superconductivity yields point nodes, the
surface of a line nodal semimetal gives rise to line nodes.
As a consequence, due to the additional impurity scatter-
ing phase space available within the area of the flat band,
the JDOS pattern on the surface of a line nodal semimetal
acquires an extended character in the Brillouin zone in-

stead of a collection of discrete delta function peaks. Us-
ing the T−matrix formalism, we also examined resonant
state energy dispersions of a single scalar impurity on the
surface of a line nodal semimetal with d−wave pairing.
Our results demonstrated that the momentum averaged
Green function contains a power law type contribution in
addition to the logarithmic term usually found for nodal
superconducting quadratic bands. Such a contribution
admits two different under-damped solutions to the res-
onant state energies, unlike the case of two dimensional
electrons with quadratic bands where there is only one
under-damped solution. The first solution is a broad, low
intensity mode located closer to the continuum that dis-
perses toward zero energy in the unitary limit; the second
is a more intense, sharp, lower energy mode that disperses
away from zero energy. We argued that first mode may
be challenging to access experimentally while the second
can be more readily observed. Our results also signal a
destruction of zero bias tunneling peaks (in the unitar-
ity limit) on the surface of a line nodal semimetal with
d−wave pairing. Looking forward, it could be interest-
ing to explore impurity effects in Josephson junctions on
line node semimetal surfaces, analogous to investigations
on helical metals [51]. We are hopeful that our findings
would motivate scanning tunneling spectroscopic experi-
ments on line node semimetals.
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[26] B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J.
Couto, E. Giannini, and A. F. Morpurgo, arXiv preprint
arXiv:1101.2352 (2011).

[27] M. Veldhorst, M. Snelder, M. Hoek, T. Gang, V. Guduru,
X. Wang, U. Zeitler, W. Van der Wiel, A. Golubov,
H. Hilgenkamp, et al., Nature materials 11, 417 (2012).

[28] F. Yang, Y. Ding, F. Qu, J. Shen, J. Chen, Z. Wei, Z. Ji,
G. Liu, J. Fan, C. Yang, et al., Physical Review B 85,
104508 (2012).

[29] M.-X. Wang, C. Liu, J.-P. Xu, F. Yang, L. Miao, M.-Y.
Yao, C. Gao, C. Shen, X. Ma, X. Chen, et al., Science

336, 52 (2012).
[30] P. Zareapour, A. Hayat, S. Y. F. Zhao, M. Kreshchuk,

A. Jain, D. C. Kwok, N. Lee, S.-W. Cheong, Z. Xu,
A. Yang, et al., arXiv preprint arXiv:1211.0288 (2012).

[31] L. Aggarwal, A. Gaurav, G. S. Thakur, Z. Haque, A. K.
Ganguli, and G. Sheet, Nature materials 15, 32 (2016).

[32] H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X.-J.
Liu, X. Xie, J. Wei, and J. Wang, Nature materials 15,
38 (2016).

[33] P. Roushan, J. Seo, C. V. Parker, Y. Hor, D. Hsieh,
D. Qian, A. Richardella, M. Z. Hasan, R. Cava, and
A. Yazdani, Nature 460, 1106 (2009).

[34] T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X. Ma, K. He,
L. Wang, H. Zhang, X. Dai, Z. Fang, et al., Physical
Review Letters 103, 266803 (2009).

[35] Z. Alpichshev, J. Analytis, J.-H. Chu, I. R. Fisher,
Y. Chen, Z.-X. Shen, A. Fang, and A. Kapitulnik, Phys-
ical review letters 104, 016401 (2010).

[36] Y. Okada, C. Dhital, W. Zhou, E. D. Huemiller, H. Lin,
S. Basak, A. Bansil, Y.-B. Huang, H. Ding, Z. Wang,
et al., Physical Review Letters 106, 206805 (2011).

[37] Z. Alpichshev, R. R. Biswas, A. V. Balatsky, J. G. Ana-
lytis, J.-H. Chu, I. R. Fisher, and A. Kapitulnik, Physical
review letters 108, 206402 (2012).

[38] J. Honolka, A. Khajetoorians, V. Sessi, T. Wehling,
S. Stepanow, J.-L. Mi, B. B. Iversen, T. Schlenk,
J. Wiebe, N. Brookes, et al., Physical review letters 108,
256811 (2012).

[39] S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi,
A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath,
and A. Yazdani, Nature materials 13, 851 (2014).

[40] H. Inoue, A. Gyenis, Z. Wang, J. Li, S. W. Oh, S. Jiang,
N. Ni, B. A. Bernevig, and A. Yazdani, Science 351,
1184 (2016).

[41] H. Zheng, S.-Y. Xu, G. Bian, C. Guo, G. Chang,
D. S. Sanchez, I. Belopolski, C.-C. Lee, S.-M. Huang,
X. Zhang, et al., ACS nano 10, 1378 (2016).

[42] R. Batabyal, N. Morali, N. Avraham, Y. Sun,
M. Schmidt, C. Felser, A. Stern, B. Yan, and H. Bei-
denkopf, Science Advances 2, e1600709 (2016).

[43] P. Sessi, Y. Sun, T. Bathon, F. Glott, Z. Li, H. Chen,
L. Guo, X. Chen, M. Schmidt, C. Felser, et al., Physical
Review B 95, 035114 (2017).

[44] Y.-H. Chan, C.-K. Chiu, M. Chou, and A. P. Schnyder,
Physical Review B 93, 205132 (2016).

[45] “See supplemental material for a discussion of t-matrix
formalism and finite energy local and joint density of
states.”.

[46] A. Balatsky, I. Vekhter, and J.-X. Zhu, Reviews of Mod-
ern Physics 78, 373 (2006).
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