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Abstract

We model a single layer of heavily electron-doped FeSe by spin-1/2 moments over a square

lattice of iron atoms that include the 3dxz and 3dyz orbitals, at strong on-site Coulomb repulsion.

Above half filling, we find emergent hole bands below the Fermi level at the center of the one-iron

Brillouin zone in a half metal state characterized by hidden magnetic order and by electron-type

Fermi surface pockets at wavenumbers that double the unit cell along the principal axes. “Replicas”

of the emergent hole bands exist at lower energy in the two-iron Brillouin zone. Exact calculations

with two mobile electrons find evidence for isotropic Cooper pairs that alternate in sign between

the electron bands and the emergent hole bands.
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Introduction. The discovery of superconductivity in iron-pnictide materials has uncov-

ered a new path in the search for high-temperature superconductors[1]. Superconductivity

has been observed recently in a single layer of FeSe on a doped SrTiO3 (STO) substrate[2–4]

below critical temperatures as high as 100 K [5]. Electronic conduction originates from the

3d orbitals of the iron atoms, which form a square lattice. Angle-resolved photo-emission

spectroscopy(ARPES), in particular, reveals circular electron-type Fermi surface pockets

centered at wave numbers (π/a)x̂ and (π/a)ŷ that lie along the principal axes of the iron

lattice, where a is the lattice constant[6, 7]. Unlike the case of most iron-pnictide mate-

rials, however, ARPES also finds that hole bands centered at zero two-dimensional (2D)

momentum lie well below the Fermi level in the case of single-layer FeSe/STO. At low tem-

perature, it also finds an isotropic gap at the electron Fermi surface pockets[8, 9], which is

confirmed by scanning tunneling microscopy (STM)[10]. The same set of phenomena have

been recently observed below critical temperatures in the range 40-50 K at the surfaces of

intercalated FeSe[11–13], of alkali-metal dosed FeSe[14–17], and of voltage-gate tuned thin

films of FeSe[18, 19]. Comparison with bulk FeSe, which has a much lower critical tempera-

ture of 8 K, strongly suggests that the high-temperature superconductivity exhibited above

is due to a new 2D groundstate that appears after heavy electron doping.

Calculations based on the independent-electron approximation[20] fail to describe the

Fermi surfaces in single-layer FeSe/STO. In particular, density-functional theory (DFT)

typically predicts that the hole bands centered at zero 2D momentum cross the Fermi level[8,

11, 21]. DFT also fails to account for a nearby Mott insulator phase at low electron doping

in voltage-gate tuned thin films of FeSe and in single-layer FeSe/STO[19, 22]. The previous

suggests that the limit of strong electron-electron interactions[23, 24] is a better starting

point to describe superconductivity in heavily electron-doped FeSe.

Below, we propose that the hole bands observed by ARPES below the Fermi level at the

Brillouin zone center in a surface layer of FeSe are examples of emergent phenomena. The

latter is revealed by both mean-field and exact calculations of the one-electron spectrum in

a two-orbital t-J model that includes only degenerate dxz and dyz electron bands centered at

wavenumbers (π/a)ŷ and (π/a)x̂, respectively, in the one-iron Brillouin zone. Local spin-

1/2 moments live on d(x±iy)z orbitals, on the other hand, which yields isotropic magnetism.

Emergent hole bands approach the Fermi level at zero 2D momentum as Hund coupling

increases inside of a half metal phase that is characterized by hidden Néel order per d(x±iy)z
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orbital and by electron-type Fermi surface pockets (inset to Fig. 1b). Emergent hole bands

at wavenumber (π/a)(x̂ + ŷ) in the one-iron Brillouin zone are also predicted, but they lie

below the former ones in energy. It is important to point out that one-electron tight-binding

models that include dxz, dyz, and up to dxy iron orbitals are unable to account for buried

hole bands at the center and at the corner of the one-iron Brillouin zone. (Cf. refs. [25]

and [26].) Last, exact calculations of two mobile electrons in the two-orbital t-J model find

evidence for isotropic Cooper pairs on both the electron pockets and on the emergent hole

bands below the Fermi level as Hund coupling approaches a quantum critical point (QCP)

at which commensurate spin-density wave (cSDW) nesting begins. The sign of the Cooper

pair wavefunction notably alternates between the electron and hole bands[27, 28].

Local Moment Model. Our starting point is a two-orbital t-J model over the square

lattice, where the on-site-orbital energy cost U0 tends to infinity[29, 30]:

H =
∑

〈i,j〉[−(tα,β1 c̃†i,α,sc̃j,β,s + h.c.) + Jα,β
1 Si,α · Sj,β] +

∑

〈〈i,j〉〉 J
α,β
2 Si,α · Sj,β

+
∑

i(J0Si,d− · Si,d+ + U ′
0n̄i,d+n̄i,d−

)

. (1)

Above, Si,α is the spin operator that acts on spin s0 = 1/2 states of d− = d(x−iy)z and

d+ = d(x+iy)z orbitals α in iron atoms at sites i. Repeated orbital and spin indices in the

hopping and Heisenberg exchange terms above are summed over. Nearest neighbor and

next-nearest neighbor Heisenberg exchange across the links 〈i, j〉 and 〈〈i, j〉〉 is controlled

by exchange coupling constants Jα,β
1 and Jα,β

2 , respectively. Hopping of an electron in

orbital α to a nearest-neighbor orbital β is controlled by the matrix element tα,β1 . We adopt

the Schwinger-boson (b) slave-fermion (f) representation for the creation operator of the

correlated electron[31–33] at or above half filling: c̃†i,α,s = f †
i,αbi,α,s with the constraint

2s0 = b†i,α,↑bi,α,↑ + b†i,α,↓bi,α,↓ + f †
i,αfi,α (2)

enforced at each site-orbital to impose the U0 → ∞ limit on electrons with spin s0 = 1/2.

Finally, J0 is a ferromagnetic exchange coupling constant that imposes Hund’s Rule, while

the last term in (1) represents the additional energy cost of a fully occupied iron atom. Here

n̄i,α =
∑

s c̃
†
i,α,sc̃i,α,s−1 counts singlet pairs at site-orbitals. Last, notice that d± → e±iθd± is

equivalent to a rotation of the orbitals by an angle θ about the z axis. Spin and occupation

operators remain invariant under it. Magnetism described by the two-orbital t-J model (1)

is hence isotropic, which suppresses orbital order.
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Semi-classical calculations of the Heisenberg model that corresponds to (1) at half filling

find a QCP that separates a cSDW at strong Hund coupling from a hidden antiferromagnet

at weak Hund coupling when diagonal frustration is present[34]: e.g. J
‖
1 > 0, J⊥

1 = 0, and

J
‖
2 = J⊥

2 > 0. Here, ‖ and ⊥ represent intra-orbital (d ± d±) and inter-orbital (d ± d∓)

superscripts. The hidden-order magnet shows Néel spin order per d± orbital following the

inset to Fig. 1a. Ideal hopping of electrons within an antiferromagnetic sublattice, t
‖
1 = 0

and t⊥1 (x̂) = −t⊥1 (ŷ) > 0, leaves such hidden magnetic order intact in the semi-classical limit,

s0 → ∞. Below, we employ a mean-field approximation of (1) and (2) to study this state

near the QCP. It reveals a half metal with circular Fermi surface pockets at wavenumbers

(π/a)x̂ and (π/a)ŷ, for electrons in the dyz orbital and dxz orbital, respectively.

Spin-Fluctuations, One-Electron Spectrum. Following Arovas and Auerbach[31], we first

rotate the spins quantized along the z axis on one of the antiferromagnetic sublattices shown

in the inset to Fig. 1a by an angle π about the y axis. This decouples the up and down

spins between the two sublattices[35]. We next define mean fields that are set by the pat-

tern of antiferromagnetic versus ferromagnetic pairs of neighboring spins[31] in the hidden

magnetic order: Q0 = 〈bi,d−,sbi,d+,s〉, Q‖
1 = 〈bi,d±,sbj,d±,s〉 and Q⊥

2 = 〈bi,d±,sbj,d∓,s〉 on the anti-

ferromagnetic links versus Q⊥
1 = 〈b†i,d±,sbj,d∓,s〉 and Q

‖
2 = 〈b†i,d±,sbj,d±,s〉 on the ferromagnetic

links of the hidden Néel state. Subscripts 0, 1 and 2 represent on-site, nearest neighbor

and next-nearest neighbor links. We add to that list the mean field P⊥
1 = 1

2
〈f †

i,d±fj,d∓〉 for
nearest-neighbor hopping of electrons across the two orbitals. It has d-wave symmetry. The

corresponding mean-field approximation for the t-J model Hamiltonian (1) then has the

form Hb +Hf , where

Hb =
1

2

∑

k

∑

s

{Ωfm(k)[b
†
s(k)bs(k) + bs(−k)b†s(−k)] + Ωafm(k)[b

†
s(k)b

†
s(−k) + bs(−k)bs(k)]}

is the Hamiltonian for free Schwinger bosons, and where Hf =
∑

k εf(k)f
†(k)f(k) is the

Hamiltonian for free slave fermions. Here, k = (k0,k) is the 3-momentum for these excita-

tions, where the quantum numbers k0 = 0 and π represent even and odd superpositions of

the d− and d+ orbitals: dxz and (−i)dyz.

Enforcing the infinite-U0 constraint (2) on average over the bulk then results in ideal

Bose-Einstein condensation (BEC) of the Schwinger bosons into degenerate groundstates at

k = 0 and (π, π/a, π/a) in the zero-temperature limit: 〈bi,d±,s〉 = s
1/2
0 at large s0. (See Fig.

1a and supplemental Fig. S1.) In such case, all five mean fields among the Schwinger bosons
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therefore take on the unique value Q = s0 [35]. This results in diagonal and off-diagonal

Hamiltonian matrix elements

Ωfm(k) = (1− x)2s0(J0 + 4J
‖
1 + 4J⊥

2

−4J ′′⊥
1 [1− eik0γ1+(k)]− 4J

‖
2 [1− γ2(k)])

Ωafm(k) = −(1− x)2s0[J0e
ik0 + 4J

‖
1γ1+(k) + 4J⊥

2 e
ik0γ2(k)]

for free Schwinger bosons, and the energy eigenvalues εf(k) = −8s0t
⊥
1 (x̂)e

ik0γ1−(k) for free

slave fermions. Above, J ′′⊥
1 = J⊥

1 − 2t⊥1 (x̂)P
⊥
1 (x̂)/(1 − x)2s0, while γ1±(k) =

1
2
(cos kxa ±

cos kya) and γ2(k) =
1
2
(cos k+a + cos k−a), with k± = kx ± ky. Slave fermions in dxz and

dyz orbitals lie within circular Fermi surfaces centered at wavenumbers (π/a)ŷ and (π/a)x̂,

respectively, with Fermi wave vector kFa = (4πx)1/2 at low electron doping per iron orbital,

x ≪ 1. (See the inset to Fig. 1b.) The mean inter-orbital electron hopping amplitude is

then approximately P⊥
1 (x̂) = x/2.

The dynamical spin correlation function 〈SyS
′
y〉 is obtained directly from the above

Schwinger-boson-slave-fermion mean field theory. It is given by an Auerbach-Arovas expres-

sion at non-zero temperature that is easily evaluated in the zero-temperature limit [30, 36],

where ideal BEC of the Schwinger bosons into the degenerate groundstates at 3-momenta

k = 0 and (π, π/a, π/a) occurs. It is one half the transverse spin correlator, which under

ideal BEC and at large s0 reads

i〈S(+)S ′(−)〉|k,ω = (1− x)2s0(Ω+/Ω−)
1/2([ωb(k)− ω]−1 + [ωb(k) + ω]−1). (3)

Here, ωb = (Ω2
fm − Ω2

afm)
1/2 is the energy dispersion of the Schwinger bosons, and Ω± =

Ωfm ±Ωafm. Figure 1a depicts the imaginary part of the transverse susceptibility (3) in the

true spin channel, k0 = 0, at sub-critical Hund coupling. It reveals a spin gap at cSDW wave

numbers (π/a)x̂ and (π/a)ŷ of the form ∆cSDW = (1−x)2(2s0)(4J
⊥
2 −J0c)

1/2Re (J0−J0c)
1/2.

Here, −J0c = 2(J
‖
1 −J⊥

1 )−4J
‖
2 +(1−x)−2s−1

0 2t⊥1 (x̂)x is the critical Hund coupling at which

∆cSDW → 0. Notice that inter-orbital hopping stabilizes the hidden half metal state. The

autocorrelator of the hidden spin Si,d− − Si,d+, (3) at k0 = π, also shows the above spin

gap at cSDW momenta, ∆cSDW , in addition to a hidden-order Goldstone mode at Néel

wavenumber (π/a)(x̂+ ŷ)[35].

The electronic structure of the hidden half metal state can also be obtained directly from

the above Schwinger-boson-slave-fermion mean field theory. In particular, the one-electron
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propagator is given by the convolution of the conjugate propagator for Schwinger bosons

with the propagator for slave fermions in 3-momentum and in frequency. A summation of

Matsubara frequencies yields the expression[35]

G(k, ω) =
1

N
∑

q

[(

1
2

Ωfm

ωb

∣

∣

∣

q−k
+1

2

)

nB [ωb(q−k)]+nF [εf (q)−µ]

ω+ωb(q−k)−εf (q)+µ

+
(

1
2

Ωfm

ωb

∣

∣

∣

q−k
−1

2

)

nB [ωb(q−k)]+nF [µ−εf (q)]

ω−ωb(q−k)−εf (q)+µ

]

. (4)

Above, nB and nF denote the Bose-Einstein and the Fermi-Dirac distributions, and µ denotes

the chemical potential of the slave fermions. Ideal BEC of the Schwinger bosons at 3-

momenta q − k = 0 and (π, π/a, π/a) results in the following coherent contribution to the

electronic spectral function at zero temperature and at large s0: ImGcoh(k, ω) = s0πδ[ω+µ−
εf(k)]. It reveals degenerate electron bands for dxz and dyz orbitals centered at cSDW wave

numbers Q0 = (π/a)ŷ and Qπ = (π/a)x̂ , respectively. The electron Fermi surface pockets

at ω = 0 are depicted by the inset to Fig. 1b. At energies below the Fermi level, ω < 0, the

remaining contribution is exclusively due to the first fermion term in (4). Inspection of Fig.

1b (solid lines) yields the following expression for it in the limit near half-filling, kFa → 0,

at large t/J [37]:

ImGinc(k, ω) ∼=
∑

q0=0,π

π

2
x

[

1

2
+

1

2

Ωfm

ωb

∣

∣

∣

(q0−k0,Qq0
−k)

]

δ[ω + ǫF + ωb(q0 − k0,Qq0 − k)]. (5)

Figure 1b displays the emergent hole bands predicted above. They lie ǫF + ∆cSDW

below the Fermi level, with degenerate maxima at k = 0 and (π/a)(x̂ + ŷ). Here,

ǫF = (2s0)t
⊥
1 (x̂)(kFa)

2 is the Fermi energy. The emergent hole bands also show intrin-

sic broadening in frequency at zero temperature, which makes them incoherent. Outside the

critical region, at large t/J , the broadening is ∆ω ∼ kF |∇ωb|Q−k. It remains small at the

previous maxima[38]. Last, the emergent hole bands predicted by (5) are anisotropic: e.g.,

the dyz hole band at zero 2D momentum has mass anisotropy |mx| < |my|. (Cf. ref. [39].)
Adding intra-orbital electron hopping, t

‖
1 > 0, brings the emergent hole bands at

wavenumber (π/a)(x̂ + ŷ) down in energy below the ones at zero 2D momentum. This

is confirmed by exact calculations of the two-orbital t-J model with one electron more than

half filling over a 4 × 4 lattice of iron atoms under periodic boundary conditions. The pre-

vious Schwinger-boson-slave-fermion description (2) for spin s0 = 1/2 electrons is exploited

to impose strong on-site-orbital Coulomb repulsion. Details are given in ref. [30]. Figure
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2a shows the exact spectrum at the QCP, where ∆cSDW → 0. The t-J model parameters

coincide with those set by Fig. 1, but with t
‖
1 = 2 J

‖
1 , and with Hund coupling tuned to

the critical value −J0 = 1.733 J
‖
1 . Red states have even parity under orbital swap, Pd,d̄,

while blue states have odd parity under it. Notice that the lowest-energy doubly-degenerate

states at wave number (π/a)(x̂ + ŷ), which are spin-1/2, lie 0.5 J
‖
1 in energy above the

doubly-degenerate spin-1/2 groundstates at zero 2D momentum. The latter states (purple)

move up in energy off the Fermi level set by the groundstates at cSDW momenta as Hund

coupling falls below the critical value, and they become nearly degenerate with the former

states in the absence of Hund’s Rule. This dependence on Hund coupling is demonstrated

by the inset to Fig. 2a and by supplemental Fig. S3. The exact low-energy spectrum at

sub-critical Hund coupling is therefore consistent with the emergent hole bands obtained

by the meanfield approximation, Fig. 1b, but with the hole bands centered at wavenumber

(π/a)(x̂ + ŷ) pulled down to lower energy. Last, Fig. 2a shows that the even parity (dxz)

and odd parity (dyz) spin-1/2 groundstates at wavenumber (π/2a)x̂ are nearly degenerate,

which suggests isotropic emergent hole bands at zero 2D momentum near the QCP.

Cooper Pairs. Figure 2b shows the spectrum of the same two-orbital t-J model (1), but

with two electrons more than half filling. A repulsive interaction has been added to the

Heisenberg exchange terms in order to reduce finite-size effects: Si,α · Sj,β → Si,α · Sj,β +

1
4
ni,αnj,β, equal to 1/2 the spin-exchange operator. Here, ni,α counts the net occupation of

holes per site-orbital. Also, the on-site repulsion between mobile electrons in the d+ and d−
orbitals, respectively, is set to a large value U ′

0 =
1
4
J0+1000 J

‖
1 . The Schwinger-boson-slave-

fermion description of the correlation electron (2) is again employed, with s0 = 1/2. Details

are given in ref. [40]. Last, the ferromagnetic Hund’s Rule exchange coupling constant

is tuned to the critical value J0 = −2.25 J
‖
1 , at which ∆cSDW → 0. This is depicted by

the dashed horizontal line in Fig. 2b, which shows the degeneracy between the cSDW

spin resonance at wavenumber (π/a)x̂ with the hidden-order spin resonance at wavenumber

(π/a)(x̂ + ŷ). The former is even (black) under swap of the orbitals, d− ↔ d+, while

latter is odd (red) under it. Notice that the groundstate and the second excited state both

lie under a continuum of states at zero net momentum. They respectively have even and

odd parity under a reflection about the x-y diagonal. We therefore assign S symmetry to

the groundstate bound pair and Dx2−y2 symmetry to the excited-state bound pair. The

dependence of the energy-splitting between these two states on Hund coupling is shown by
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the inset to Fig. 2b. It provides evidence for a true QCP in the thermodynamic limit at

−J0 = 2.30 J
‖
1 , where the s-wave and d-wave bound states become degenerate.

Figure 3 depicts the order parameters for superconductivity of the two bound pair states

shown in Fig. 2b:

iF (k0,k) = 〈ΨMott|c̃↑(k0,k)c̃↓(k0,−k)|ΨCooper〉 (6)

times
√
2, with c̃s(k0,k) = N−1/2

∑

i

∑

α=0,1 e
−i(k0α+k·ri)c̃i,α,s. Here, 〈ΨMott| denotes the

critical antiferromagnetic state of the corresponding Heisenberg model[34] at −J0c = 1.35 J
‖
1 .

(See supplemental Fig. S4.) The groundstate has S symmetry, as expected, but it also

alternates in sign between Cooper pairs at electron Fermi surface pockets versus Cooper pairs

at the emergent hole bands. (See Fig. 1b.) Figure 3 also shows that the (second) excited

state has Dx2−y2 symmetry, as expected, and that it alternates in sign in a similar way. The

present exact results therefore provide evidence for remnant pairing on the emergent hole

bands that lie below the Fermi level at zero 2D momentum.

Discussion and Conclusions. The electronic structure in single-layer FeSe/STO is qual-

itatively described by the combination of Figs. 1b and 2a. For example, a fit of inelastic

neutron scattering data in iron-pnictide superconductors to the true linear spinwave spec-

trum Fig. 1a, but at the QCP, yields J
‖
1
∼= 110 meV, J⊥

1 = 0, and J
‖
2
∼= 40 meV ∼= J⊥

2 for

the Heisenberg exchange coupling constants[34]. Hopping parameters set in Figs. 1b and 2a

imply that the bottom of the electron bands lies ǫF ∼= 60 meV below the Fermi level. Also,

the cSDW spin gap displayed by Fig. 1a at sub-critical Hund coupling is approximately 50

meV, which therefore implies that the emergent hole bands at zero 2D momentum lie 110

meV below the Fermi. Both energy levels are roughly consistent with ARPES in single-layer

FeSe/STO[6]. Last, the mean-field and exact spectra displayed by Figs. 1b and 2a predict

that “replicas” of the dxz/dyz buried hole bands exist at the corner of the one-iron Brillouin

zone, but with orbital quantum numbers interchanged and at lower energy. A substrate

leads to two inequivalent iron atoms per hopping of electrons in dxz and dyz orbitals to

neighboring sites. Zone-folding of the “replica” bands at lower energy to the center of the

two-iron Brillouin zone possibly accounts for the “D′ replicas” of the buried hole bands that

are observed by ARPES on FeSe/STO[9].

Figure 3 predicts s-wave Cooper pairs on the electron Fermi surface pockets at cSDW

momenta. This is consistent with ARPES and with STM on heavily electron-doped sur-

faces of FeSe, which find a gap on the electron Fermi surface pockets, and no evidence for
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nodes[8, 10, 11, 13, 16, 17]. Notably absent from our local moment model (1) is the 3dxy

electron orbital of the iron atom. DFT calculations predict inner and outer electron Fermi

surface pockets at the corner of the two-iron Brillouin zone that have dxz/dyz and dxy or-

bital character, respectively[20]. In such case, the limit of strong on-site Coulomb repulsion

assumed here would require remnant s-wave pairing of opposite sign on the buried dxy band

at the center of the Brillouin zone. The spectral weight of this band is negligibly small

compared to that of the buried dxz/dyz hole bands according to high-resolution ARPES on

alkali-metal dosed FeSe[16], however. This contradiction argues that the iron 3dxy orbital

does not play an important role in high-temperature superconductivity shown at surface

layers of heavily electron-doped FeSe.

Figure 3 also predicts remnant Cooper pairs of opposite sign on the emergent hole bands

that lie below the Fermi level at zero 2D momentum. The remnant pairs are possibly a

result of the intrinsic broadening in frequency experienced by the emergent holes. (Cf. ref.

[41].) Recent quasi-particle interference patterns obtained from surface layers of intercalated

FeSe observe a feature at cSDW wavenumbers that could be accounted for by the super-

position of an electron near cSDW momenta with an Andreev reflected hole near zero 2D

momentum[13]. Remnant hole pairing can be confirmed in this way.
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FIG. 1: (a) The imaginary part of the transverse spin susceptibility, Eq. 3, in the true spin

channel and (b) the imaginary part of the one-electron propagator near half filling, Eq. 5, at

site-orbital concentration x = 0.01. Not shown in (b) is intrinsic broadening due to the incoherent

contributions in Eq. 4.
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FIG. 2: (a) Low-energy spectrum of two-orbital t-J model, Eq. (1) plus constant 3
4(NFe − 1)J0,

over a 4× 4 lattice, with one electron more than half filling. Model parameters coincide with those

listed by Fig. 1, except t
‖
1 = 2J

‖
1 and −J0 = 1.733J

‖
1 . (b) Low-energy spectrum of Eq. (1) plus

repulsive interactions (see text) plus constant 1
4(NFe − 2)J0, but with two electrons more than half

filling, with −J0 = 2.25J
‖
1 , and with U ′

0 = 1
4J0 + 1000J

‖
1 . Some points in spectra are artificially

moved slightly off their quantized values along the momentum axis for the sake of clarity.
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