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Abstract: 

 

Although chiral magnetic materials have emerged as a potential ingredient in future 

spintronic memory devices, there are few comprehensive studies of magnetic properties in 

scalably-grown thin films. We present growth, systematic physical and magnetic 

characterization, and microwave absorption spectroscopy of B20 FeGe thin films.  We also 

perform micromagnetic simulations and analytical theory to understand the dynamical 

magnetic behavior of this material. We find magnetic resonance features in both the helical and 

field-polarized magnetic states that are well explained by micromagnetic simulations and 

analytical calculations. In particular, we show the resonant enhancement of spin waves along 

the FeGe film thickness that has a wave vector matching the helical vector. Using our analytic 

model, we also describe the resonance frequency of a helical magnetic state in bulk materials 

and thin films, which depends strongly on its untwisting field. Our results pave the way for 

understanding and manipulating high frequency spin waves in thin-film chiral-magnet FeGe 

near room temperature.  

 

 

1. Introduction 

 

Understanding the static and dynamic magnetic properties of materials is a key to their 

incorporation in active spintronic devices. In the light of the recent proposals for power-

efficient spintronic memory devices based in chiral magnetism [1,2], it is increasingly important 

to characterize chiral magnetic materials in scalably grown thin-film form. Although the 
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resonant spin dynamics in chiral magnetic films are more complex than conventional 

ferromagnetic resonance in uniformly-magnetized ferromagnetic films, understanding and 

measuring chiral magnetic excitations enables physical insight into the magnetic states of these 

materials and it offers quantitative characterization of dynamical properties that are relevant to 

future magnetic technologies.  

 

The noncollinear spin texture that appears in chiral magnets is a consequence of the 

Dzyaloshinskii-Moriya interaction (DMI), which presents at interfaces and in the volume of 

noncentrosymmetric materials with broken inversion symmetry [3–6]. One class in these 

materials is cubic B20 crystalline monosilicides and monogermanides of transition magnetic 

elements, e.g. MnSi, FeCoSi, and FeGe [7]. Although they are in the same symmetry group, 

these silicides and germanides have surprising and distinctive electronic and magnetic 

properties depending on pressure, temperature, electric and magnetic fields [8–11]. 

  

Among B20 compounds, FeGe has the highest critical temperature, 278 K, for ordered 

chiral spin textures [7,12]. FeGe also has –0.6 % lattice mismatch with the Si [111] surface, 

enabling scalable thin film growth [13,14], particularly in comparison with the mismatch of –3 % 

and –6% for MnSi and FeCoSi, respectively [15,16]. Furthermore, in recent computational 

studies [17,18], thin film and nanoscale confinement of FeGe has been shown to stabilize the 

creation of a magnetic skyrmion, a two-dimensional chiral spin texture with non-trivial 

topological order. These properties make also FeGe thin films attractive for emerging spintronic 

applications with chiral magnets. 

 

Although B20 FeGe thin films have been the subject of intense theoretical and 

computational studies, experimental studies have been limited to reports of the topological 

Hall effect and polarized neutron scattering measurements [13,14,19–23]. Furthermore, recent 

Lorentz transmission electron microscopy and transport  studies of FeGe and MnSi thin films 

have brought into question the common interpretation of the topological Hall effect as arising 

solely from a skyrmion lattice phase [13,19,24,25]. These studies point out that transport 
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measurements of B20 films are hard to interpret unambiguously because electron skew 

scattering by complex helical spin structures also contributes a Hall effect signal [13,26]. These 

difficulties motivate the application of alternative characterization methods to help identify 

chiral magnetic states and quantify magnetic behavior in thin film materials.  

 

Microwave absorption spectroscopy (MAS) is a powerful tool to probe magnetization in 

both conventional ferromagnetic and complex materials [27–30]. In MAS, resonant absorption 

of a microwave magnetic field depends on the magnetic properties and configuration. For 

example, ferromagnetic resonance has been used to characterize effective magnetization, the 

damping parameter, and even magnetic anisotropies [31,32]. Moreover, MAS has been used to 

show universality of helimagnon and skyrmion excitations in bulk B20s regardless of being a 

conductor or an insulator [33]. Microwave fields are useful not only for understanding chiral 

magnets, but they can also create a giant spin-motive force in chiral magnets [34,35].  

 

Here we report an experimental, theoretical, and micromagnetic study of chiral 

magnetic excitations in FeGe thin films by waveguide MAS. First, we describe the growth of B20 

crystalline thin FeGe films via magnetron sputtering, and systematic characterization of their 

physical and magnetic properties by X-ray diffraction, electron backscattering diffraction, and 

magnetometry. Then, using parameters extracted directly from magnetic characterization, we 

study spin wave and resonant excitations in the helical and field-polarized states using 

micromagnetic simulations. With this framework to understand resonance frequencies and 

spin-wave modes, we experimentally perform temperature and magnetic field dependent MAS. 

We find that although the field-polarized magnetic resonance can be described by Kittel’s 

formula, the helical state magnetic dynamics are more complex. In particular, an important 

mode occurs when spin waves are excited along the film thickness with a wavelength that 

matches the helical period. In addition, we theoretically calculate the resonant frequencies of 

the helicoids and find that it depends strongly on the value of the critical magnetic field that 

unwraps helicoid into the field-polarized spin state.  
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 This paper is organized as follows: In Sec. 2, we describe the growth and 

characterization of the FeGe film. We report magnetometry studies in Sec. 3, and present 

micromagnetic simulations in Sec. 4. Then, we discuss experimental measurements of 

microwave absorption spectroscopy in Sec. 5. We analytically calculate resonance dynamics in 

helical magnet in Sec. 6. Finally, we conclude in Sec. 7.  

 

2. Film growth and characterization 

 

FeGe thin films are co-sputtered from Fe and Ge targets onto the surface of undoped Si 

[111] wafers and annealed post-growth at 350 ˚C for 30 minutes to create the B20 crystalline 

phase. The films are then characterized by X-ray diffraction, transmission electron microscopy 

(TEM), and electron back-scattering diffraction (EBSD). The thickness of the film we studied is 

176 nm, which was determined by cross sectional imaging with a scanning electron microscope 

[see SM].  

 

In Fig. 1a, we first present our X-ray diffraction measurements of the film using a Bruker 

General Area Detector Diffraction System, which produces a wide range of ߠ and χ angles in 

one measurement, enabling a survey of the crystal properties. The presence of sharp peaks 

instead of rings indicates both good crystallinity and epitaxy of the FeGe film with the 

underlying Si substrate.  Next, to quantify crystal properties more carefully, we acquire ߠ െ  ߠ2

measurements of the film using an Rigaku SmartLab X-Ray Diffractometer. In Fig 1b, we first 

plot X-ray ߠ െ  measurement at χ = 0°, i.e. the film plane is placed perpendicular to the X-ray ߠ2

incidence plane. From the diffraction peak of FeGe [111], we first find that the spacing between 

the atomic layers d111 along [111]–out-of-plane direction is 2.7045 ± 0.0001 Å. This value is 

calibrated against the known lattice constant of Si substrate, 5.431 Å [36]. The diagonal length 

of FeGe unit cell along the [111] axis is then found 3d111 = 8.1135 ± 0.0003 Å, which is 0.32 % 

shorter than the bulk value of 8.13977 Å [37]. Secondly, we measure X-ray diffraction of the 

[400] lattice spacing of both Si and FeGe at χ = 54.74°. Initially, we find the Si [400] peak and 

calibrate the instrument again by the known Si lattice constant, then rotate the angle φ by 30° 
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and perform ߠ െ  scan for FeGe [400] peak (Fig. 1c). By fitting the FeGe [400] peak, we find ߠ2

the spacing d400 = 1.1777 ± 0.0002 Å. Previous studies reported a slight distortion of the cubic 

unit cell to a rhombohedral unit cell in MnSi films grown on Si [111] [36,38]; we observe a 

qualitatively similar effect in FeGe. By using the calculated lattice spacing d111 = 2.7045 Å and 

d400 = 1.1777 Å of FeGe from Fig. 1b and 1c and the rhombohedral lattice spacing formula from 

Ref. [39][see SM], we find that the angle, the lattice constant, and the longer diagonal length of 

the rhombohedral unit cell are 89.678°, 4.7109 Å, and 8.2053 Å, respectively (Fig. 1d). As a 

result, our films have –0.32 % compressive strain along [111] out-of-plane axis and 0.8 % tensile 

strain in the plane. This large in-plane tensile strain in a thick film is surprising because the 

lattice mismatch between Si and bulk FeGe is only 0.08 % — ten times smaller than our 

observation. In addition, our ߳ୄ = –0.0032 compressive and  ߳0.008 = צ tensile strains and 

previous ߳ୄreports in FeGe films [13,14,23] are very similar to the strains measured in MnSi 

thin films [36,38], even though FeGe has a forty times closer lattice match with the Si [111] 

substrate than MnSi [40]. Indeed, MnSi films that are as thick as our film have been recently 

shown to release the substrate stress [41], which suggests differences between the two B20 

systems and which will further investigation.  

 

To understand induced stress and magnetic anisotropy in our films, we analyze the 

measured strains and model the distortion of the FeGe unit cell from a cubic to a rhombohedral 

shape. This distortion is characterized by the ratio ߳ୄ/2߳צ, which we calculate is –0.2 using the 

values above. This ratio can be also theoretically calculated by the elastic constants of FeGe 

using 
ఢ఼ଶఢצ ൌ – ଷ఑ିଶ௖రరଷ఑ାସ௖రర, where ߢ is the bulk modulus and ܿସସ is the shear modulus [36,42]. The 

theoretical expectation for this ratio is –0.18, which is in very close agreement with our 

experimentally measured value. Karhu et al. also reported a slightly larger values for MnSi films 

for thinner films, which was attributed to softening of ܿସସ values in the thin films [36]. 

Furthermore, using the derivation in Ref. [42] and above strains, we calculate the lateral and 

the perpendicular stress in FeGe as 2.6 GPa and 5.0 GPa, respectively [See SM]. Recent studies 

of single-crystal bulk MnSi reported that a change in the uniaxial magnetic anisotropy and a 

collapse of the stable skyrmion phase was induced by applying and ~100 MPa stress along the 
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[111] axis. In contrast, the helical phase was robust to such stresses [43,44]. Although a 

complete understanding of the magnetic phase diagram of thin film FeGe under stress requires 

more comprehensive experimental and theoretical study, our analysis suggests that the stress-

induced rhombohedral distortion creates uniaxial–easy plane anisotropy in the film and 

facilitates the helical and field polarized states in our films. This conclusion is consistent with 

the magnetometry measurements presented in the next section and with previous studies on 

B20 thin films [13,15,19,21,26].  

 

 Next we characterize the FeGe grains using plane-view transmission electron 

microscopy and EBSD. The transmission electron micrograph shown in Fig. 1e was taken using a 

Tecnai-F20 at 200 kV electron energy. It shows that our films have both ordered and disordered 

grains. We further investigate the nanoscale crystal configuration of the grains with EBSD (Figs. 

1f-1i). The top image in Fig. 1f shows the scanning electron micrograph of an 8 x 4 μm2 region of 

the sample. The second EBSD micrograph (Fig. 1g) shows a crystalline phase map of the same 

region, confirming that 99% of the grains have the B20 phase. In addition, we show the EBSD 

crystalline orientation map along the out-of-plane orientation (Fig. 1h). The inverse pole figure 

map next to the EBSD map shows the crystallographic coordinate system. The grains marked 

with the blue color are aligned with the Si [111] orientation (Fig. 1h), showing the high degree 

of alignment in agreement with the X-ray diffraction data. Our in-plane orientation analysis of 

grains (Fig. 1i) shows twinning of the FeGe grains by the light blue and purple colors, in which 

FeGe ሾ11ത0ሿ orientation is rotated either +30 or –30 degrees in the plane with respect Siሾ11ത0ሿ 

orientation. These high-quality polycrystalline films with grain sizes larger than the helical 

lattice constant of FeGe (70 nm) [45] allow us to study chiral magnetism in B20 thin film 

materials. 

 

3. Magnetic properties 

 

In this section, we characterize the magnetic properties of our FeGe thin films. First, we 

measure the magnetic moment of our film as a function of an external magnetic field, H, and 
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temperature, T, using a vibrating sample magnetometer (VSM). Our films have an easy-plane 

magnetic anisotropy evidenced by an out-of-plane magnetic saturation field that is four times 

larger than the one for in the plane, as shown in Fig. 2a and 2b. Additionally, we find that as the 

temperature decreases, the magnetic moment and the saturation magnetic field increases. We 

note that while the out-of-plane magnetic moment curves do not indicate an obvious magnetic 

phase change, the in-plane magnetization curves have a feature around 400 Oe that does not 

appear in the typical magnetic hysteresis of a conventional ferromagnetic material.  

 

To better reveal the features, we plot the derivative of the in-plane magnetization with 

respect to the applied magnetic field in Fig. 2c.  As we decrease the magnetic field from the 

large positive values at T = 255 K, there is a peak at H = 381 Oe, where the field polarized state 

wraps into a helical state.  As we continue, there is another peak at H = –297 Oe, where the 

helix unwraps again into the field polarized state.  We interpret these fields as the center of a 

broad wrapping/unwrapping range, not as a sharp phase boundary. In this scenario, both the 

helical and field polarized states can coexist around these fields.  Broadening of the 

wrapping/unwrapping fields is likely due to inhomogeneities in the film thickness and film 

anisotropy, and is consistent with previous studies of B20 MnSi thin films [21]. From Fig. 2c, we 

also find the saturation field at H = 730 Oe, where the susceptibility at all temperatures 

converge and approach zero for the in-plane geometry.  The saturation field for the out-of-

plane geometry is found HcOOP = 3400 Oe from Fig. 2b, which we will use to determine the easy 

plane anisotropy for the micromagnetic simulations and the analytic calculations in the 

following sections.  

 

To identify the transition temperature of our FeGe films, we measure the ac magnetic 

susceptibility in a 20 Oe a DC bias field with a AC fields, that has a 10 Oe amplitude, as a 

function of T (Fig. 2d). The emergence of a peak at the critical temperature (Tc) 273 K indicates 

a magnetic phase transition, which is evidence of a transition from an out-of-plane q-axis helical 

phase to a paramagnetic phase or a precursor region. This conclusion is also consistence  with 
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the data presented in the following sections and previous polarized neutron scattering studies 

in FeGe and MnSi thin films [19,21].  

 

4. Micromagnetic simulations  

 

In this section, to identify the spin dynamics in FeGe thin films, we perform 

micromagnetic simulations using the Mumax3 software [46]. We identify the magnetic 

properties of the film as simulation parameter inputs using magnetometry measurements in 

Fig. 2 and the following relations: ܪ௞ ൌ గమଵ଺ ௞ܪ ௗ, whereܪ ൌ 450 ܱ݁ is the untwisting field and ܪௗ ൌ 730 ܱ݁ is the saturation field that is extracted from the dM/dH curve in Fig. 2c. The 

saturation field in chiral magnets is described by ܪௗ ൌ ஽మଶ஺ெೞ ൌ ଼గమ஺௅ವమ ெೞ, where D is the DMI 

constant, A is the exchange constant, Ms is the saturation magnetization, and LD = 70 nm is the 

helical period [21,24,34,47]. We find Ms is 150 kA/m from Fig. 2a by interpolating the T = 255 K 

and T = 265 K curves to T = 258 K, which is the temperature of the resonance experiment in the 

next section. Then, we find A and D are 6.8x10-13 J/m and 0.12 mJ/m2, respectively. We also 

assume that the helical period LD does not depend on the saturation magnetization or 

temperature [21]. Finally, we calculate the uniaxial anisotropy to be –3.5 kJ/m3 using HcOOP = 

3400 Oe and Eq. (6) from Ref. [38](See SM for details). We note that the determination of the 

uniaxial anisotropy has a large uncertainty due to the large variation of the magnetic properties 

near the critical temperature [48]. 

 

In the simulation, the sample dimension is 3.2x3.2x176 nm3 in the x, y, and z directions, 

and the unit cell is a 0.8x0.8x0.8 nm3 cube. We apply 16 repetitive periodic boundary conditions 

in the x and y directions to mimic the uniform film. Furthermore, we study chiral dynamics at T 

= 0 K, meaning we did not implement a fluctuating thermal field, which is necessary to 

quantitatively capture phase transitions between the helix and the field-polarized states. Thus, 

we supply this information to the simulation by initializing the magnetic states based on 

experimental magnetometry results. As a result of this initialization, our simulation does not 
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account for the resonance dynamics of mixed helical and field-polarized states, however it does 

allow us to identify resonance dynamics of each state separately.   

 

In micromagnetic simulations, we use the ringdown method to obtain dynamic 

properties. We first initialize the system in the helical state between –500 Oe and 500 Oe, and 

the field-polarized state for the rest of the magnetic fields. Then, for each field, we relax the 

system to its equilibrium state, where all torques vanish. For example, in Figs. 3b-d, we show 

these equilibrium spin configurations at H = 1750 Oe, 250 Oe, and 0 Oe applied in-plane fields. 

Next, we apply a magnetic pulse with a Gaussian profile, and record the x, y, and z components 

of the local magnetic moments at 25 ps time steps for a 20 ns duration [see SM for details].  

The Gilbert damping parameter is set to an artificially small value (α = 0.002) to capture enough 

periods of the natural oscillations so that we can identify the modes that are sustained by 

microwave driving [49,50]. We note that this small value will result in an artificially narrow 

resonance frequency relative to the experiment. To be consistent with the coordinate system 

we use for theoretical calculations in Sec. 6, we also perform a coordinate transformation of the 

magnetization components from Cartesian coordinates into spherical coordinates. The z 

component of magnetization simply becomes θ, whereas the azimuthal angle � is calculated 

from the x and y components in the plane. 

 

To calculate the natural modes and frequencies, we compute the discrete Fourier 

transform of the local magnetic deviation from equilibrium for each magnetic field. Because the 

deviation in both θ and � angles results in the same resonance frequencies and modes, we plot 

only θ in Fig. 3. Next, we compute spatially-averaged Fourier coefficients of all spins to obtain 

the power spectral density (PSD) [50]. Fig. 3a shows the PSD for frequencies between 0.5 and 7 

GHz, and in-plane H between –2000 Oe and 2000 Oe. We identify three magnetic fields (H = 

1750 Oe, 250 Oe, and 0 Oe) to explore the resonance behavior and modes. We also define 

wrapping number ς, which is ሺ߮ே െ ߮ଵሻ/2ߨ  total wrapping of spins at the equilibrium 

configuration. To reveal the modes, we plot the Fourier coefficients as a function of the 
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frequency and thickness (z direction) in Figs. 3b-d, with the spin configurations along the 

thickness shown above each plot.   

 

The first region is at H = 1750 Oe, where we observe a Kittel-type uniform resonance of 

the field-polarized state at 5 GHz (Fig. 3d.) There are also edge modes which are inversely 

proportional to the magnetic field at 3 GHz. The second region is at H = 250 Oe, where the 

wrapping number of the helical state is ς = 2.46. The resonance frequencies are located at 4.5 

GHz, 2.6 GHz, and 0.5 GHz, and the corresponding number of nodes are 4, 2, and 0, with only 

even numbers because 2ς = 4.9 < 5. On the other hand, in the third region at H = 0 Oe, the 

system is driven into ς = 2.65 times wrapping, which is slightly larger than the expected 2.51 

(176 nm /70 nm) because of the demagnetizing field of the film and the absence of an external 

field. The resonance frequencies then increase to 5.5 GHz, 3.0 GHz, and 0.8 GHz, and the 

number of nodes becomes odd–5, 3, and 1, respectively, because 2ς = 5.3 >5. These results 

show that spin waves in chiral B20 thin films are sensitive to helical wrapping – constrained by 

both the thickness and the discrete wrapping number.  

 

 

5. Experiment: Microwave absorption spectroscopy 

 

After we account for spin waves in the helical and field-polarized states, we 

experimentally perform magnetic resonance measurements by placing FeGe film on a 

broadband metallic coplanar waveguide (CPW). More details about the design and 

characteristics of the CPW can be found in Ref [51]. We apply an RF field with a signal generator 

and monitor the transmitted power with an RF diode as a function of magnetic field and 

temperature. To remove any non-magnetic signals, we lock-in to the transmitted RF power 

referenced a magnetic field modulation that we introduce using an ac field coil. Thus, we 

measure the derivative of the transmitted power, ߲ܲ/߲ܪ/ܲ߂~ܪ௔௖, as shown in Fig. 4. For each 

temperature, we vary the microwave frequency from 0.5 GHz to 7 GHz with a 0.25 GHz step 
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size, and H from 3000 Oe to –3000 Oe with a 30 Oe step size. The temperature of the sample is 

controlled by a Peltier element that allows a temperature control between T = 300 K and 255 K.  

 

In Fig. 4a–c, we plot the microwave absorption spectra at T = 283 K, T = 273.5 K, and T = 

258 K, respectively (data for the full temperature range can be found in SM). At T = 283 K, the 

film is in a paramagnetic state and it shows hardly any microwave absorption (Fig. 4a).  At T = 

273.5 K, which is slightly higher than the critical temperature (Tc = 273 K) but lower than the 

Curie temperature (278 K)  [48], it shows a field-polarized magnetic resonance (Fig. 4b). After 

we further decrease the temperature below Tc to T = 258 K, we find an additional resonance in 

our FeGe film near the untwisting magnetic field (Fig. 4c). In the following we investigate these 

two resonances further to understand their nature.  

The first resonance is a Kittel-type uniform magnetic resonance of the field-polarized 

state. We fit the absorption spectra to a derivative of Lorentzian lineshape to extract the 

resonance fields, frequencies f, and the linewidths ܪ߂ [see SM]. Linewidths are proportional to 

the resonance frequencies by ܪ߂ ൌ ଴ܪ߂ ൅ ସగఈ௙ఊ೐ , where ߛ௘ is the electron’s gyromagnetic ratio 

(2.8 MHz/Oe) [52]. From the slope of the above relationship, we find the Gilbert damping 

constant α is 0.038 ± 0.005 at T = 258 K. This α is substantially lower than the recently reported 

value of 0.28 in thinner FeGe films in an out-of-plane magnetic field applied along the [111] 

orientation and at unreported temperature [50].  

 

We attribute the second resonance to a helical resonance, also known as the 

helimagnon. As we point out by a vertical arrow in Fig. 4c, the helical resonance has a narrow 

field range (400-500 Oe) but a wide frequency range (4-5.5 GHz), in contrast to the field-

polarized phase. We identify this experimental feature to the n = 4 helical spin wave resonance 

that we described in the second region of the micromagnetic simulation that appeared at f = 

4.5 GHz with four nodes (Fig. 3c). The wavelength of the 4.5 GHz spin wave matches to the 

helical period of the FeGe film (2LD < 176 nm < 3LD), which supports our interpretation that spin 

waves are explicitly filtered by the helical spin texture in B20 thin films based on the 

micromagnetic analysis in Section 3.  
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Next, we plot the linecuts at T = 258 K for different frequencies (Fig. 4d) and at 5.0 GHz 

frequency for different temperatures (Fig. 4e).  In these linecuts, we fit the helical resonance 

with a derivative of Lorentzian shape as before. At T = 258 K, between 4.5 GHz and 5.5 GHz 

frequencies, we can fit the helical resonances separately from the Kittel-type uniform mode, as 

shown by the red curves in Fig. 4d. However, at lower frequencies, the uniform mode overlaps 

strongly with the helical resonance, which makes separate fitting unsuccessful. In Fig. 4e, we 

plot f = 5 GHz MAS linecuts at different temperatures. While the uniform mode alone is an 

excellent fit to the MAS data above the critical temperatures (T = 275 K), at lower temperatures 

we clearly observe the emergence of a second helical absorption line between 400 and 500 Oe.  

 

In figure 4f, we plot MAS as a function of magnetic field and temperature at a constant 

frequency of 4.25 GHz. The helical absorption feature can be seen at both positive and negative 

magnetic fields, marked by two arrows. Although the field-polarized resonances extend to T = 

280 K, the helical resonances disappear above T = 270 K, close to the critical temperature of 

FeGe. 

 

 Between T = 270 K and 280 K, FeGe transitions from the paramagnetic state into the 

field polarized state–ferromagnetic phase. This region may include a precursor region at low 

fields, which has a complicated magnetic structure and does not show any resonance feature at 

low fields. Previously, Wilhelm et al. found this precursor region at higher temperatures, 

between 278 K and 280 K, via magnetic susceptibility measurements of the bulk FeGe [12]. 

However, from the magnetic susceptibility measurements (Fig. 2d), we find a critical 

temperature 273 K for the helical order, which is lower than the bulk crystal value of 278.2 K. 

Furthermore, Wilhelm et al. observed a skyrmion phase only between T = 273 K and 278 K [12], 

which lies above the helical ordering temperature in our films. Therefore, an open question for 

thin film chiral magnets is: does the skyrmion phase would shift to lower temperature or totally 

disappear under an in-plane magnetic field? In contrast, a recent Lorentz-TEM study showed 

that a confinement of free standing films along the applied field induces a strong surface twist 
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effect in addition to the exchange, DM, and anisotropy fields, which stabilizes skyrmion 

formation at wider range magnetic fields and temperatures [53]. This suggests that the in- and 

out-of-plane fields create substantially different magnetic phases in thin films; a point which 

needs further investigation.   

 

We note that our micromagnetic simulation predicts the n = 4 helical spin wave 

resonance in a relatively narrow frequency range but over wide field range, in contrast to the 

experimental findings. We attribute this difference to the generic shortcomings of the 

micromagnetic simulations. First, because we perform a T = 0 K simulation, we initialized the 

magnetic state, thus the simulation does not account for magnetic phase transitions or mixed 

magnetic states, as mentioned above.  Second, we used an artificially low α = 0.002 Gilbert 

damping parameter, which is forty times smaller than the experimental value α = 0.038. Third, 

the simulations do not account for frequency broadening due to thickness variations.  By 

performing separate calculations, we found that a 5% thickness variation yields 0.5 GHz 

broadening (See Fig. 5 and SM). We also expect that inhomogeneities in anisotropies and grains 

increase frequency broadening in the experimental MAS, which will be discussed in the next 

section with additional simulations and theoretical calculations. Moreover, our MAS 

experiment does not show any clear resonance peak for n = 2 mode spin waves around 2.5 GHz, 

which was shown in Fig. 3a by micromagnetic simulations. Therefore, while micromagnetic 

calculations remain a powerful tool to understand helical dynamics, the disorder present in real 

thin-film materials are not perfectly accounted for in our calculations. 

 

Another notable difference between our MAS measurements and our simulation, and 

contrary to observations by Schwarze et al. in bulk B20 materials [33], we do not observe 

microwave absorption at fields  below 400 Oe. This difference may arise from the low-field 

magnetic disorder imposed by inhomogeneous local strain associated with grains in our films 

and which we do not account for in micromagnetic simulations. We speculate that grain 

twinning introduces heterogeneity and a distribution of states with a varying number of turns 

washes out the resonance at low fields.  Larger fields, however, may help unify the collective 
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magnetic state, enabling a strong helical state resonance absorption before untwisting into the 

field-polarized state.  

 

6. Theoretical calculations 

 

By comparing the micromagnetic simulations and experimental measurements of MAS, 

we identified the resonance frequencies and spin-wave modes in the helical and field-polarized 

states. In this section, we also analytically model excited chiral helimagnets to account for spin 

wave excitations. Our analytic model consists of two steps to find thin-film limit solution: (1) 

We treat the helical state excitations by assuming a fixed helical period but infinitely thick 

sample, which correctly predicts the bulk helical resonances. (2) An analogy to the Kittel’s mode 

described by the magnon dispersion ԰߱ ൌ ԰߱௙௠௥ ൅  ଶ, where ԰ is Planck’s constant, Ds isݍ௦ܦ

the exchange stiffness, and q is the spin wave vector.   

 

For the first part, we describe the one dimensional Hamiltonian density of a chiral 

helimagnet by ࣢ ൌ ሺܣ ௭߲࢓ሻଶ െ .ࡰ ࢓ ൈ ௭߲࢓ െ .ࡴ ࢓ െ .࢓௨ሺܭ ෝሻ૛࢔ െ ଵଶ .࢓ࡴ  (1)   , ࢓

where A is the exchange stiffness constant, D is the DM interaction constant, H is the external 

magnetic field, Ku is the anisotropy constant and Hm is the demagnetizing field due to shape of 

the sample. We use the normalized magnetization ݉ ൌ ሾsin ,ݖሺߠ ሻݐ cos ߶ሺݖ, ሻݐ , sin ,ݖሺߠ ሻݐ sin ߶ሺݖ, ሻݐ , cos ,ݖሺߠ  ሻሿ in the spherical coordinate as inݐ

the previous section [21,34,54]. The external magnetic field H includes the dc field Hx and the ac 

microwave field Hy, written as ࡴ ൌ ሾܪ௫, ௬ܪ sin ݐ߱ , 0ሿ. Next, we write down the Lagrangian 

density ࣦ, ࣦ ൌ െ ԰ ெೞ௚೐ఓಳ ሺcos ߠ െ 1ሻ߲௧߶ െ ࣢,     (2) 

where Ms is the saturation magnetization, ߤ஻ is the Bohr magnetron, and ge is the electron g-

factor. The equations of motion are constructed by expressing Eq. 1 and 2 in terms of ߠሺݖ,  ሻݐ

and ߶ሺݖ,   .ሻ coordinates [see SM]ݐ
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For the equilibrium helical state at H = 0, the solutions are simply ߠ ൌ గଶ and ߶ ൌ  ,ݖܳ

where ܳ ൌ ஽ଶ஺ is the helix wave number. Application of an external magnetic field creates a 

deviation from equilibrium by  ߠଵ and ߶ଵ as 

 ߶ሺݖ, ሻݐ ൌ ݖܳ ൅ ߶ଵሺݖሻ sin ,ݖሺߠ (3)     ,ݐ߱ ሻݐ ൌ గଶ ൅ ሻݖଵሺߠ cos  (4)      .ݐ߱

 

The distorted helix has been described by cosine expansions of the angles as in ߶ଵሺݖሻሾߠଵሺݖሻሿ ൌ ଵሿܤଵሾܣ ൅ ଶሿܤଶሾܣ cos ݖܳ ൅ ଷሿܤଷሾܣ cosଶ  where A1-3 and B1-3 are coefficients ,ݖܳ

for ߶ଵ and ߠଵ, respectively [19,21,34,55]. As the last step, we substitute Eq. 3 and 4 into the 

equations of motion using the small angle approximation [see SM]. We use the same material 

parameters obtained in the micromagnetic simulation section. Finally, we solve the eigenvalue 

problem for the resonance frequencies and modes.  

 

 In Fig. 5a, we plot the real part of the three resonance frequencies f1, f2, and f3 as 

functions of in-plane field Hx. Solid curves are calculated assuming zero uniaxial anisotropy, 

whereas the dashed curves are calculated using a uniaxial anisotropy of Ku = –3.5 kJ/m3. If we 

define a critical field Hc = 830 Oe, where the solutions to f1 and f2 become degenerate (Fig. 5a): ݉ܫሾ ଵ݂ሿ ൌ ሾ݉ܫ ଶ݂ሿ ൌ 0 and ݉ܫሾ ଷ݂ሿ ് 0, for ܪ ൏ ሾ݉ܫ ௖: whereasܪ ଵ݂ሿ ് ሾ݉ܫ ଶ݂ሿ ് 0 and ݉ܫሾ ଷ݂ሿ ൌ 0, for ܪ ൐  ௖ [see SM]. Therefore, the solutions to f1 and f2 above Hc do not supportܪ

natural oscillations. Additionally, the small angle approximation and series expansion are only 

valid at the low field (in the pink-filled region of Fig. 5a), because the phase change from the 

helical into the field-polarized state happens below the saturation field Hd = 730 Oe (Fig. 2.)  

 

At Hx = 0 and Ku = 0, the resonance frequencies become ଵ݂ ൌ ௚೐ு೏ఓ್ଶగ԰  and ଶ݂ ൌ √ଵ଴௚೐ு೏ఓ್ଶగ԰ . 

For example, Schwarze et al. found resonance frequencies 17 GHz, 4 GHz, and 2 GHz for bulk 

MnSi, FeCoSi, and Cu2OSeO3, respectively [33]. The critical fields were also reported as 6000, 

1500, and 800 Oe in Table 1 Ref. [33]. From ଵ݂ ൌ ௚೐ு೏ఓ್ଶగ԰  formula, we estimate f1= 16.8 GHz, 4.2 



 

 16

GHz, and 2.2 GHz for each materials, respectively, in close agreement with their observations. 

This relation to the critical field also coincides with the recently developed microscopic theory 

of spin waves in cubic magnets with DMI by Maleyev [56]. He found that the spin-wave stiffness ܦ௦௪ ൌ ௚೐ఓಳு೏ொమ , which we calculate is 0.105 eV Å2 for our FeGe thin film. This value is in 

agreement with the recent neutron scattering experiment on bulk FeGe at 250K [57]. 

Therefore, the first part of our theoretical approach provides a straightforward estimate of 

helimagnon frequencies in bulk B20 materials. 

 

 To obtain the frequencies for a thin-film, chiral magnet spinwave mode, we account for 

the thickness using the spinwave dispersion, ݂ ൌ ௛݂௘௟௜ ൅ ஽ೞ௛ೢ ቀగ௡௅ ቁଶ
, where h is Planck’s 

constant, L is the thickness, n is the mode number, and ௛݂௘௟௜ is the bulk helical resonance 

calculated above. Using f1 = 2.4 GHz for ௛݂௘௟௜ (Fig. 5a.dashed orange curve), we find the 

spinwave frequency ݂ ൌ 2.4 ൅ ݊ଶ0.081 GHz. Near H = 0 where the magnetic state supports 

odd spinwave modes, we find spin wave frequencies of 3.1 GHz and 4.4 GHz for n = 3 and n = 5, 

respectively. These frequencies are close to the ones we predicted via the micromagnetic 

simulations (Fig. 3d). At H = 400 Oe, f1 becomes 3 GHz and we find that the n = 4 spin wave 

mode frequency is 4.3 GHz, which is also in good agreement with both the micromagnetic 

simulation and the experimental findings.  

 

 To validate the dispersion of the resonance frequency predicted in our analytical model, 

we also performed micromagnetic simulations in which we vary the thickness of the film at H = 

250 Oe field while holding all the other material parameters constant. In Fig. 5b, we plot the 

resonance frequencies determined from micromagnetic simulations with stars and the analytic 

formula with solid lines for n = 6, 4, and 2 modes. An in-plane applied magnetic field aligns the 

spins at the two surfaces along its direction, allowing only even modes. While we have a small 

offset between the micromagnetic simulation and the analytic model for n = 2 and 6, the n = 4 

spinwave frequencies correspond well. The small differences in the other two modes may 

originate from variations in the material parameters (e.g. saturation field, magnetization, and 

uniaxial anisotropy), which are sensitive to temperature for temperatures near to the critical 
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temperature as studied here. In addition, we calculate the resonance frequencies without the 

easy plane anisotropy by micromagnetic simulations (Fig. 5b filled circles) to show the similar 

difference found in the analytic calculation (Fig. 5a.) 

 

Our analytic calculation confirms the increase of the resonance frequency by application 

of a larger magnetic field, in agreement with micromagnetic simulations (Fig. 3a). On the other 

hand, Schwarze et al. observed the opposite trend in bulk B20, i.e. the larger the field, the 

smaller the frequency. An important difference between these works, however, is that in our 

films the magnetic field untwists the helix, while in bulk crystals the magnetic field introduces a 

conical angle to the helical phase. Therefore, an opposite dependence to the magnetic field is 

consistent with our theoretical understanding. Similarly, Kishine et al. investigated theoretically 

the unwrapping of infinitely long helicoids by an in-plane magnetic field, and also reported the 

opposite frequency vs. field trend than what we report [58]. In this case, the difference arises 

because Kishine et al. considered a continuously varied helicoid period LD as a function of 

applied field, whereas we consider the thin-film limit in which the helicoid period is nearly 

constant over some ranges of field, in agreement with micromagnetic calculation. Although our 

analytic method and micromagnetic simulations explain many important dynamics in helices 

and the effects of uniaxial anisotropy and film thickness on these dynamics, full understanding 

of spin-waves in confined chiral magnets will require further theoretical study.  

 

7. Discussion and conclusion 

 

Although the application of chiral magnetic materials to technology remains a goal for 

the future, our theoretical and experimental results establish a framework for understanding 

the excitations of chiral magnetic states.  Additionally, dynamical properties will play a crucial 

role in information storage technologies based on the spin-torque manipulation of magnetic 

skyrmions in these materials  [7,59–63], and in other applications like spin-torque oscillators 

using chiral magnetic materials [64,65]. Also relevant to these applications, we demonstrate 

that the magnetic damping coefficient in B20 FeGe is 0.038, much smaller than previously 
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reported [50].  This is good news for low-power dynamical devices based on chiral 

magnetism [66]. 

 

Our focus on chiral magnetic dynamics, and their correlation with detailed 

characterization of B20 FeGe grown on a Si substrate, is aimed at acquiring the understanding 

necessary for scalable applications. While pioneering studies of chiral magnetism in bulk, single-

crystal samples [7,33,67] have set the stage for chiral spintronics, its practical development will 

likely require integration with other materials on a substrate.  Furthermore, as discussed above, 

the magnetic properties of thin-film B20 materials are modified by substrate-induced strain, 

which has a corresponding impact on equilibrium spin textures.  Therefore, the development of 

chiral spintronics is aided by continued study of growth and dynamics of thin-film B20 

materials. 

 

To conclude, we present a comprehensive experimental and theoretical study of the 

microwave resonance dynamics in a chiral magnetic FeGe thin film. We grew FeGe films by 

magnetron sputtering and we systematically characterized their physical and magnetic 

properties. Our films are polycrystalline but have high-quality B20 crystal phase, confirmed by 

the electron backscattering diffraction. Below the critical temperature, static magnetometry 

measurements show that the film has a helical to field-polarized magnetic phase transition in 

the range of 380–500 Oe under an in-plane magnetic field. Our microwave absorption 

measurements below the critical temperature also show resonance features for the helical and 

field-polarized states. By comparing experimental measurements with micromagnetic 

simulations and analytic calculations, we demonstrate that the helical state has resonant 

microwave dynamics that are highly sensitive to the twisting spin texture. Our analytical 

calculations also show that the resonance frequencies strongly depend on the critical saturation 

magnetic field. By introducing the uniaxial anisotropy and thickness effect on the magnon 

dispersion, we achieved a good agreement with the resonance frequencies found by the 

micromagnetic simulations and the MAS experiment. These results pave the way toward 
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understanding spin wave dynamics in chiral and topological spin textures, grown as thin films 

without any limitation to scalability, thus promising for an integration of chiral spintronics. 
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FIG 1 X-ray and electron diffraction characterizations and transmission electron micrograph of 

FeGe thin film. (a) X-ray diffraction measurements made with an area detector to include χ 

angle profile. The presence of sharp peaks instead of rings indicates a high degree of epitaxy of 

FeGe film with the underlying Si substrate. θ-2θ scan of X-ray diffraction at χ = 0° (b) and χ = 

54.74° (c). (d) Illustration of the deformation of FeGe unit cell from a cubic to a rhombohedral 

and resulting lattice parameters of the rhombohedral unit cell and strains. (e) Transmission 

electron micrograph of plain-view of the film (scale bar is 100nm). (f) Scanning electron 

micrograph. (g) Crystalline phase map of the same region indicating >99 % B20 phase by the red 
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color. (h) EBSD map along out-of-plane (OOP). The color map next to the EBSD map shows the 

crystallographic coordinate system. (i) In-plane alignment of the grains. The light blue and 

purple colors show twinned grains with respect Siሾ11ത0ሿ orientation. The scale bar is 2 μm 

through (c)–(f). 

 

 

 

 

 

FIG 2 Magnetometry measurements of our thin film FeGe. (a) M-H curves for the in-plane (IP) 

and (b) for the out-of-plane (OOP) fields. (c) The derivative of the in-plane magnetization with 

respect to the applied magnetic field to better reveal unwinding of the helical phase. (d) AC 

magnetic susceptibility with 20 Oe DC and 10 Oe AC field in the plane.  
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FIG 3 Power spectral density (PSD) and natural oscillation modes of spin waves. (a) The PSD of 

spatially summed Fourier coefficients as a function of in-plane magnetic field. The helical spin 

configuration presents between –500 Oe and 500 Oe, and the field-polarized state presents for 

H > 500 Oe and H < –500 fields. (b), (c), and (d) show the variation of spins from the equilibrium 

condition as a function of film thickness and the resonance frequency. (b) At Hx = 1750 Oe field, 

the field-polarized state has a Kittel-type uniform mode. (c) At Hx = 250 Oe field, helical state 

resonance with the wrapping number  is 2.46, which allows only even nodes (0, 2, and 4.) (d) 

At Hx = 0 Oe field, helical state resonance with the wrapping number  is 2.65, which allows 

only odd nodes (1, 3, and 5.) 
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FIG 4 Experimental measurements of microwave absorption spectroscopy (MAS) of FeGe film at 

different temperature, in-plane magnetic field, and microwave frequency. (a) MAS at 

temperature T = 283 K showing no clear absorption feature in the paramagnetic phase. (b) MAS 

slightly above the critical temperature (273.5 K > 273 K), which has only the field-polarized state 

resonance. (c) MAS below the critical temperature, which has both the helical (arrow) and the 

field polarized resonances. (d) MAS linecuts from (c) through 4.5–5.5 GHz frequencies. 

Additional Lorentzian lineshape derivatives shown by the red curves at around the untwisting 

field indicate the helical resonance. While the uniform mode follows Kittel’s formula (thick-

brown line), the helical resonance field relatively constant through the different frequencies 

(thick-red line). (e) MAS linecuts at 5 GHz and different temperatures. The helical mode shown 

by the dotted curves can be fitted by a derivative of Lorentzian lineshape at 261 and 258 K 

temperatures. (f) MAS at 4.25 GHz as the field and the temperature vary. Both H<0 and H>0 

show the helical resonance indicated by arrows. 
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FIG 5 Analytical calculation of the resonance frequencies for the infinitely thick helical phase (a) 

and comparison of analytic calculations with micromagnetic simulations (b). (a) The real parts 

of the eigenvalues of the equations of motion result in three resonance frequencies f1, f2, and 

f3. The solid and dashed lines show zero anisotropy and non-zero anisotropy calculation results, 

respectively. The inset shows the coordinate system and angle variables of spins. Because of 

non-zero imaginary parts of the eigenvalues, only the pink-filled region represents correct 

resonance feature. (b) Solid lines are analytic calculations (f1) with additional Kittel’s dispersion 

factor for the film thickness and the stars are from micromagnetic simulation for the same film 

thicknesses. n = 6, 4, and 2 represent the number of nodes of spinwaves, which are only even 

numbers because of the applied field (250 Oe) in the x-direction. The filled circles are 

micromagnetic simulations with zero anisotropy for 200-nm-thick film. While n = 4 node spin 

wave is stronger in the films thinner than 188 nm, n = 6 is stronger in the thicker films due to 

better match to the helical vector.  

 

 

 

 

 



 

 25

 

References 

[1]  A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013). 

[2]  S. Emori, U. Bauer, S. Ahn, E. Martinez, and G. S. D. Beach, Nat. Mater. 12, 611 (2013). 

[3]  I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958). 

[4]  M. L. Plumer and M. B. Walker, J. Phys. C Solid State Phys. 14, 4689 (1981). 

[5]  A. Fert, Mater. Sci. Forum 59–60, 439 (1991). 

[6]  U. K. Rössler,  a N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006). 

[7]  N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013). 

[8]  G. A. Valkovskiy, E. V Altynbaev, M. D. Kuchugura, E. G. Yashina, V. A. Dyadkin, A. V 

Tsvyashchenko, V. A. Sidorov, L. N. Fomicheva, M. Bykov, E. Bykova, L. Dubrovinsky, and 

S. V Grigoriev, J. Phys. Condens. Matter 28, 375401 (2016). 

[9]  A. E. Petrova, V. N. Krasnorussky, A. A. Shikov, W. M. Yuhasz, T. A. Lograsso, J. C. Lashley, 

and S. M. Stishov, Phys. Rev. B 82, 155124 (2010). 

[10]  S. M. Stishov, A. E. Petrova, S. Khasanov, G. K. Panova, A. A. Shikov, J. C. Lashley, D. Wu, 

and T. A. Lograsso, J. Exp. Theor. Phys. 106, 888 (2008). 

[11]  K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, 

and Y. Tokura, Nat. Nanotechnol. 8, 723 (2013). 

[12]  H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A. Leonov, and A. N. Bogdanov, 

Phys. Rev. Lett. 107, 127203 (2011). 

[13]  N. A. Porter, J. C. Gartside, and C. H. Marrows, Phys. Rev. B 90, 024403 (2014). 

[14]  S. X. Huang and C. L. Chien, Phys. Rev. Lett. 108, 267201 (2012). 

[15]  M. N. Wilson, E. A. Karhu, A. S. Quigley, U. K. Rößler, A. B. Butenko, A. N. Bogdanov, M. 

D. Robertson, and T. L. Monchesky, Phys. Rev. B 86, 144420 (2012). 

[16]  P. Sinha, N. A. Porter, and C. H. Marrows, Phys. Rev. B 89, 134426 (2014). 

[17]  M. Beg, R. Carey, W. Wang, D. Cortés-Ortuño, M. Vousden, M.-A. Bisotti, M. Albert, D. 

Chernyshenko, O. Hovorka, R. L. Stamps, and H. Fangohr, Sci. Rep. 5, 17137 (2015). 

[18]  M. Vousden, M. Albert, M. Beg, M.-A. Bisotti, R. Carey, D. Chernyshenko, D. Cortés-

Ortuño, W. Wang, O. Hovorka, C. H. Marrows, and H. Fangohr, Appl. Phys. Lett. 108, 



 

 26

132406 (2016). 

[19]  N. A. Porter, C. S. Spencer, R. C. Temple, C. J. Kinane, T. R. Charlton, S. Langridge, and C. 

H. Marrows, Phys. Rev. B 92, 144402 (2015). 

[20]  N. Kanazawa, M. Kubota, A. Tsukazaki, Y. Kozuka, K. S. Takahashi, M. Kawasaki, M. 

Ichikawa, F. Kagawa, and Y. Tokura, Phys. Rev. B 91, 041122(R) (2015). 

[21]  M. N. Wilson, E. A. Karhu, D. P. Lake, A. S. Quigley, S. Meynell, A. N. Bogdanov, H. 

Fritzsche, U. K. Rößler, and T. L. Monchesky, Phys. Rev. B 88, 214420 (2013). 

[22]  M. Kugler, G. Brandl, J. Waizner, M. Janoschek, R. Georgii, A. Bauer, K. Seemann, A. 

Rosch, C. Pfleiderer, P. Boni, and M. Garst, Phys. Rev. Lett. 115, 097203 (2015). 

[23]  J. C. Gallagher, K. Y. Meng, J. T. Brangham, H. L. Wang, B. D. Esser, D. W. McComb, and F. 

Y. Yang, arXiv:1604.06684 1 (2016). 

[24]  M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L. Monchesky, Phys. Rev. B 89, 

094411 (2014). 

[25]  T. L. Monchesky, J. C. Loudon, M. D. Robertson, and A. N. Bogdanov, Phys. Rev. Lett. 112, 

059701 (2014). 

[26]  S. A. Meynell, M. N. Wilson, J. C. Loudon, A. Spitzig, F. N. Rybakov, M. B. Johnson, and T. 

L. Monchesky, Phys. Rev. B 90, 224419 (2014). 

[27]  C. Kittel, Phys. Rev. 73, 155 (1948). 

[28]  C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). 

[29]  E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, Science (80-. ). 285, 

867 (1999). 

[30]  A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012). 

[31]  H. T. Nembach, J. M. Shaw, C. T. Boone, and T. J. Silva, Phys. Rev. Lett. 110, 117201 

(2013). 

[32]  A. A. Tulapurkar, Y. Suzuki, A. A, H. Kubota, H. Maehara, K. Tsunekawa, D. D. 

Djayaprawira, N. Watanabe, and S. Yuasa, Nature 438, 339 (2005). 

[33]  T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, and 

D. Grundler, Nat. Mater. 14, 478 (2015). 

[34]  J. I. Kishine, I. G. Bostrem, A. S. Ovchinnikov, and V. E. Sinitsyn, Phys. Rev. B 86, 214426 



 

 27

(2012). 

[35]  J. I. Kishine, I. Proskurin, I. G. Bostrem, A. S. Ovchinnikov, and V. E. Sinitsyn, Phys. Rev. B 

93, 054403 (2016). 

[36]  E. Karhu, S. Kahwaji, T. L. Monchesky, C. Parsons, M. D. Robertson, and C. Maunders, 

Phys. Rev. B 82, 184417 (2010). 

[37]  H. Wilhelm, M. Schmidt, R. Cardoso-Gil, U. Burkhardt, M. Hanfland, U. Schwarz, and L. 

Akselrud, Sci. Technol. Adv. Mater. 8, 416 (2007). 

[38]  E. A. Karhu, U. K. Rößler, A. N. Bogdanov, S. Kahwaji, B. J. Kirby, H. Fritzsche, M. D. 

Robertson, C. F. Majkrzak, and T. L. Monchesky, Phys. Rev. B 85, 094429 (2012). 

[39]  M. De Graef and M. E. McHenry, Structure of Materials: An Introduction to 

Crystallography, Diffraction, and Symmetry (Cambridge, UK�: Cambridge University 

Press, 2012). 

[40]  H. Wilhelm, M. Baenitz, M. Schmidt, C. Naylor, R. Lortz, U. K. Rößler,  a a Leonov, and  a 

N. Bogdanov, J. Phys. Condens. Matter 24, 294204 (2012). 

[41]  A. I. Figueroa, S. L. Zhang, A. A. Baker, R. Chalasani, A. Kohn, S. C. Speller, D. Gianolio, C. 

Pfleiderer, G. van der Laan, and T. Hesjedal, Phys. Rev. B 94, 174107 (2016). 

[42]  D. Sander, Reports Prog. Phys. 62, 809 (1999). 

[43]  Y. Nii, T. Nakajima, A. Kikkawa, Y. Yamasaki, K. Ohishi, J. Suzuki, Y. Taguchi, T. Arima, Y. 

Tokura, and Y. Iwasa, Nat. Commun. 6, 8539 (2015). 

[44]  A. Chacon, A. Bauer, T. Adams, F. Rucker, G. Brandl, R. Georgii, M. Garst, and C. 

Pfleiderer, Phys. Rev. Lett. 115, 267202 (2015). 

[45]  X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. 

Tokura, Nat. Mater. 10, 106 (2011). 

[46]  A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van 

Waeyenberge, AIP Adv. 4, 107133 (2014). 

[47]  D. Wei, Maxwell Equations and Landau-Lifshitz Equations, Micromagnetics and 

Recording Materials (Springer, 2012). 

[48]  L. Zhang, H. Han, M. Ge, H. Du, C. Jin, W. Wei, J. Fan, C. Zhang, L. Pi, and Y. Zhang, Sci. 

Rep. 6, 22397 (2016). 



 

 28

[49]  R. D. McMichael and M. D. Stiles, J. Appl. Phys. 97, (2005). 

[50]  M. Beg, M. Albert, M.-A. Bisotti, D. Cortés-Ortuño, W. Wang, R. Carey, M. Vousden, O. 

Hovorka, C. Ciccarelli, C. S. Spencer, C. H. Marrows, and H. Fangohr, Phys. Rev. B 95, 

014433 (2017). 

[51]  Y. Wiemann, J. Simmendinger, C. Clauss, L. Bogani, D. Bothner, D. Koelle, R. Kleiner, M. 

Dressel, and M. Scheffler, Appl. Phys. Lett. 106, 193505 (2015). 

[52]  S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and 

J. P. Nibarger, J. Appl. Phys. 99, 93909 (2006). 

[53]  A. O. Leonov, Y. Togawa, T. L. Monchesky, A. N. Bogdanov, J. Kishine, Y. Kousaka, M. 

Miyagawa, T. Koyama, J. Akimitsu, T. Koyama, K. Harada, S. Mori, D. McGrouther, R. 

Lamb, M. Krajnak, S. McVitie, R. L. Stamps, and K. Inoue, Phys. Rev. Lett. 117, 087202 

(2016). 

[54]  M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Boni, and C. Pfleiderer, 

Phys. Rev. B 87, 134407 (2013). 

[55]  Y. Togawa, Y. Kousaka, S. Nishihara, K. Inoue, J. Akimitsu, A. S. Ovchinnikov, and J. 

Kishine, Phys. Rev. Lett. 111, 197204 (2013). 

[56]  S. V. Maleyev, Phys. Rev. B 73, 174402 (2006). 

[57]  S. Siegfried, Gatchina: IV Polarized Neutron School (2015). 

[58]  J. I. Kishine and A. S. Ovchinnikov, Phys. Rev. B 79, 220405(R) (2009). 

[59]  J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4, 1463 (2013). 

[60]  W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. 

Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Science (80-. 

). 349, 283 (2015). 

[61]  F. Jonietz, S. Mulbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. 

Georgii, P. Boni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science (80-. ). 330, 

1648 (2010). 

[62]  T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz, C. Pfleiderer, K. Everschor, 

M. Garst, and A. Rosch, Nat. Phys. 8, 301 (2012). 

[63]  J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotechnol. 8, 839 (2013). 



 

 29

[64]  F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros, and J.-V. Kim, arXiv:1602.00118 (2016). 

[65]  R. H. Liu, W. L. Lim, and S. Urazhdin, Phys. Rev. Lett. 114, 137201 (2015). 

[66]  J. Iwasaki, W. Koshibae, and N. Nagaosa, Nano Lett. 14, 4432 (2014). 

[67]  Y. Onose, Y. Okamura, S. Seki, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 109, 037603 

(2012). 

 

 


