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We study influence of image forces on conductance of ferroelectric tunnel junctions. We show
that the influence of image forces is twofold: i) they enhance the electro-resistance effect due to
polarization hysteresis in symmetric tunnel junctions at non-zero bias and ii) they produce the
electro-resistance effect due to hysteresis of dielectric permittivity of ferroelectric barrier. We study
dependence of ferroelectric tunnel junction conductance on temperature and show that image forces
lead to strong conductance variation with temperature.

I. INTRODUCTION

Recent progress in fabrication techniques allows cre-
ating nanometer scale ferroelectric (FE) films [1-4] and
FE tunnel junctions (FTJ) where metallic leads are sepa-
rated by tunnel barrier made of FE material [5-10]. The
most promising and important property of FTJ is the
electro-resistance (ER) effect meaning the dependence of
the FTJ linear conductance on the polarization direc-
tion of the FE layer. The ER effect can be used for
non-volatile memory applications [11-14]. Several phe-
nomena were considered to be responsible for ER ef-
fect in FTJ such as barrier thickness variation due to
strain in FE [15 and 16|, variation of band structure
of FE layer [16] and the appearance of surface charges
at the FE/metal interfaces [17 and 18]. It was demon-
strated that the last mechanism is the strongest one lead-
ing to the giant ER (GER) effect up to 1000%. ER ef-
fect linear in FE polarization appears only in asymmet-
ric FTJs with essentially different metallic leads or in
metal /FE/semiconductor structures [19 and 20].

In symmetric TJ with the leads made of the same metal
the ER effect appears for non-linear conductance at finite
bias. In this case the contribution to the conductance
contains a combination of polarization and the bias volt-
age. The magnitude of the effect is not as high as GER
in asymmetric FTJ, but may reach several tens of per-
cent [16] which is comparable to magnetoresistance effect
in magnetic tunnel junctions considered for memory ap-
plication as well. While the ER effect in symmetric FTJ
is not as high as in asymmetric junction, using of the
same material for both electrode is an advantage for fab-
rication process.

The above mentioned mechanisms deform the poten-
tial barrier height, thickness and shape leading to the
ER effect. There is however another mechanism modi-
fying the barrier in TJ, namely the image forces acting
on electron moving through the barrier. It is known that
image forces reduce the barrier height and its thickness
in TJ [21]. Tt is also known that the strength of image
forces depends on the dielectric constant of the barrier.
In FEs the dielectric constant depends on the external
parameters such as the applied voltage, temperature and
the direction of FE polarization (at non-zero bias). Thus,
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FIG. 1. (Color online) Potential barrier U(z) (Eq. (1)) as a
function of distance for symmetric FTJ at zero bias voltage.
Black like is the potential profile in the absence of surface
charges effect and image forces. Dash-dotted blue line is the
potential corrected due to the surface charges. Red solid line
is the potential profile corrected by both the image forces and
FE surface charges. Notations M and FE stand for metal and
ferroelectric, respectively. FE layer thickness is d. z1,2 is the
position where potential U(z) crosses the Fermi energy Ew
(which is the zero energy). zi1,2 defines the effective barrier
thickness deg = 22 — z1; P denotes the FE polarization and
potentials @12, hy . are introduced in the text.

one can control image forces in FE barrier with external
parameters in FTJ and therefore there is one more way to
control the barrier parameters and the tunnelling prob-
ability. In the present paper we investigate the influence
of the image forces on the conductance of the FTJ. We
will show that image forces may also produce the ER ef-
fect at non-zero bias in symmetric and asymmetric FTJ.
In strongly asymmetric junctions the image forces can be
neglected while in symmetric TJ the presence of image
forces is crucial.

Recently, the dependence of FTJ conductance on tem-
perature was investigated in asymmetric FTJ [22]. The
effect was related to the variation of polarization (surface



charges) with temperature. It exists only below the FE
Curie point. Here we show that similar effect may occur
due to the image forces. In FE the dielectric constant
strongly varies with temperature leading to variations of
image forces strength and thus to the temperature depen-
dence of the FTJ conductance. Since the dielectric con-
stant varies with temperature both below and above the
FE Curie point the dependence of the FTJ conductance
on temperature should appear in the whole temperature
range.

Recently, the influence of image forces were consid-
ered and observed in hybrid systems consisting of FE and
thin film of granular metal (GM). Image forces lead to
strong dependence of granular film conductivity on tem-
perature [23]. In a field effect transistor with granular
channel and the FE placed between the channel and the
gate electrode the image forces lead to the ER effect [24].
The dependence of the granular film conductivity on tem-
perature in FE/GM system was observed in Refs. [25 and
26]. Tt was demonstrated that image forces influence the
strength of the Coulomb blockade effect and influence the
conductivity of granular metals. In Refs. [27,28] it was
theoretically shown that the image forces are responsible
for coupling between FE substrate and magnetic granular
film (magneto-electric effect).

It is important that typical FEs have a high dielectric
constant (of order of 1000). Such FEs are not suitable for
observation of image forces effects, since the strength of
image forces is inversely proportional to the FE dielectric
susceptibility. FEs with low dielectric constant are more
suitable. There are a number of low dielectric constant
FEs such as hafnium oxide family XHfOy (where X can
be Y, Co, Zr, Si) [29-31], rare-earth manganites XMnOs3
(where X is the rare-earth element) [32], colemanite [33],
Li-doped ZnO [34], etc. There are also numerous organic
FEs with low dielectric constant [35-37]. Most FT.J up to
date were fabricated with BTO barrier having a very high
dielectric constant. One can neglect image forces in this
type of TJs. However, the low endurance and extremely
complicated fabrication process restricted applications of
oxide FEs so far. Organic FEs provide an alternative ap-
proach [5] with low cost processing and opportunities to
fabricate flexible electronic devices. Such FEs are in the
track of emerging field of organic electronics. Note that
FTJ with organic FE were fabricated and showed signif-
icant TER effect recently [5]. Organic FEs mostly have
a low dielectric constant and image forces should play a
crucial role in FTJ with organic FEs. Another important
point is that dielectric properties of FE materials weaken
with decreasing of film thickness [38]. FEs with moder-
ate dielectric constant may have a rather weak dielectric
response as they embedded as few nm thick layer in FTJ.

The paper is organized as follows. We introduce the
model and calculation procedure in Sec. II. Analytical
estimates of influence of image forces and surface charges
on the barrier parameters are given in Sec. III. In Sec. IV
we present analysis of ER effect due to image forces.

II. THE MODEL

To study tunnelling currents in FTJ we use the fol-
lowing model. Consider a FTJ with FE barrier having
polarization P, dielectric constant ¢ and thickness d (see
Fig. 1). The polarization is assumed to be uniform across
the barrier and directed perpendicular to the barrier sur-
faces. A voltage V is applied to the FTJ. The leads of the
FTJ are made of good metals with the Fermi momentum
kr1 and kpo, respectively. We assume that the Fermi en-
ergy of the leads is large enough such that the screening
lengths in these metals d; o are small, (§1,2 < d). In this
case one can use a simple picture of image forces to de-
scribe the correlation effects inside the insulating barrier.
Following Refs. [17 and 21] we describe the barrier seen
by transport (close to Fermi level) electrons measured in
Volts as follows (region 0 < z < d)
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Here e is the electron charge, ¢¢ is the vacuum dielec-
tric constant, z is the coordinate perpendicular to the
layers surfaces; hp defines the barrier height above the
Fermi level of the left lead (which is energy zero in our
model) in the absence of FE polarization, image forces
and external voltage. Potentials ¢; 2 in Eq. (1) are due to
formation of surface charges at the FE/metal interfaces.
These charges occur due to polarization of the FE layer
as well as due to screening of polarization by electrons in
metallic leads. The potentials are found using Thomas-
Fermi approximation with close circuit conditions (see
Ref. [17]).

The third term in Eq. (1) describes the influence of
the image forces. These forces appear due to the inter-
action of electron inside the barrier with image charges
occurring in metallic leads. Calculating the image forces
potential we consider metallic leads as ideal, neglecting
corrections due to finite screening length. When calcu-
lating potentials ¢y 2 the finite screening length is crucial
and can not be neglected.

The last term in Eq. (1) describes the effect of the
applied voltage.

In our model the Fermi energy of both metals is
larger than potentials @12 and V' (Je12| + [V] <
h2k3, 5/ (2mee), me is the electron mass). This means
that f)otentials created by the FE polarization together
with voltage do not produce the charge depleted layer
inside the leads. This is in contrast to the case of FTJ
having at least one lead with small Fermi energy con-
sidered in numerous papers. In such a FTJ the surface
charges turn a metal lead with small Fermi level into an



insulator in the vicinity of FE/metal interface leading to
the increase of effective barrier width.

In our model the effective barrier thickness can be de-
creased due to image forces or in the situation when
the potentials ¢12 and V exceed the barrier height
(lp1,2] + |V| > hp). This situation may easily occur if
the barrier height is less than 1 eV.

A. FE layer

We use the following model of FE layer: below the
Curie point the spontaneous FE polarization is a function
of applied voltage and has a hysteresis with the switching
voltage Vi and the saturation polarization Py. We use
the following formula capturing these peculiarities of FE
layer
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where “+” and “—” correspond to the upper and the
lower hysteresis branch respectively, AV is the width of
the transition region. For example, the polarization of
HfZrO is shown in Fig. 3 and can be approximately de-
scribed with the following parameters: Py = 30 uC/cm?,
Vi = d-10® V (with d being measured in m), and
AV, = 0.4V,. We use these values of V; and AV} in
all our calculations. The parameters were obtained by
fitting the experimental curves of Ref. [39]. TbMnOsj
which also have rather low dielectric constant can be de-
scribed with the following parameters: Py = 7.5 uC/cm?,
Vi =0.7d- 103 V, AV, = 3.5V} [40].

We introduce the dependence of dielectric permittivity
on applied voltage below the Curie temperature
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This dependence captures the basic features of dielectric
constant behavior as a function of electric field. The di-
electric permittivity has two branches corresponding to
two polarization states. In the vicinity of the switch-
ing bias the dielectric permittivity, ¢ has a peak. Note
that sometimes in the literature the following function is
used a/+/b% + (V — V;)2, where a and b are fitting pa-
rameters. There is no qualitative difference between this
formula and Eq. (4) in the range of voltages we study.
For higher voltages Eq. (4) gives a finite dielectric con-
stant which is more correct than the zero e given by
a/+/b?> + (V —V;)2. The second order phase transition
theory gives (V') diverging at V' = V;, which is also not
suitable for description of real systems.

Not much data are currently available on voltage de-
pendencies of (V') for FEs with low dielectric constants.
For example, the dielectric constant of HfZrOs can be
described using the following parameters: ey, = 35,
Ae =15 (see Fig. 2).

The dielectric constant of TbMnOg3 has a much lower
variation of dielectric constant, emin = 19, Ae = 2 [40].
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FIG. 2. (Color online) Polarization (Eq. (3)) and dielectric
constant (Eq. (4)) shown for the following parameters: Py =
30 uC/em?, Vi = 0.1 V, Ae = 30 and emin = 15. Solid
lines correspond to the upper hysteresis branch. Dash-dotted
lines stand for the lower hysteresis branch. The parameters
correspond to Hfy 5Zro.502 FE (see Ref. [39])

Therefore HfZrO- is better suited for checking our pre-
dictions.

Below we also study the temperature dependence of
FTJ conductance using experimental data on (7). We
model the temperature dependence of FE dielectric con-
stant using the following formula

A T
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This function allows to capture all peculiarities of &(T)
behavior, namely the finite height peak at T = T (where
T¢ is the FE Curie temperature), 1/(T —T¢) dependence
aside the immediate vicinity of T'= T¢ as well as asym-
metry of e(T') curve with respect to the point T = T¢.
We keep the function continuous at the point T'= T¢.

B. Calculation of resistance

We assume that the FE barrier is thin enough and the
electron transport occurs due to tunnelling. To calculate
the electric current across the barrier we use Simmon’s
formula [41 and 42]

J = Jo(U(hp)e AVUI) _T(hy + V)e  AVUIntV)y

where




the parameter A = fdeg\/2mee/h? and Jy =
(e?/hBd?%g). The integration in Eq. (7) is performed over
the region where U(z) > 0 which can differ from the re-
gion [0, d] due to surface charges and image forces effects.
The coordinates where U(z) = 0 are denoted as z; and
z9 and deg = 29 — 21 is the effective barrier thickness.
The constant § is of order of 1. Equation (6) is just the
difference between currents created by electrons in left
(the first term) and right (the second term) leads. Since
the Fermi level in the right lead is biased by the applied
voltage, the potential barrier seen by electrons in this
lead is higher (lower) by V for positive (negative) volt-
age. Therefore, the average potential in the second term
of Eq. (6) is calculated with hy, replaced by hy, + V.

Below we find the TJ resistance R*(V) and the con-
ductance G*(V)

1
RE(V)

G*(V) = (8)

We use the superscript “4” (“-”) to describe conduc-
tance and resistance corresponding to the upper (lower)
hysteresis branch of FE layer.

Also we introduce the conductance Gg for TJ in the
absence of image forces and the conductance GF which
neglects the surface charges effect.

The ER effect due to both polarization and image
forces is given by the ratio, ER = GT/G~. We use
the subscripts P or € to denote the ER effect caused by
the surface charges (ERp) or the image forces (FR.),
respectively. To calculate ERp and FR. we neglect the
third and the second term in Eq. (1), respectively.

III. TUNNELLING BARRIER AVERAGE
HEIGHT AND THICKNESS. ANALYTICAL
ESTIMATES

In this section we compare the influence of image forces
and surface charges on the average TJ barrier parame-
ters.

A. General remarks

Since the dielectric constant € at zero bias is the same
for both branches (¥ |yv—¢ = £ |v=0), the image forces
do not lead to the dependence of the linear TJ resistance
on the FE polarization state (G |v=o = G- |v=0) even
for asymmetric FTJ with §; # 6. In contrast, the FE
surface charges produce the ER effect in asymmetric FTJ
even at zero bias, G;ﬂvzo # Gp|v=0. At finite zero-bias
both mechanisms lead to the ER effect.

First, we compare the influence of the image force
mechanism and the surface charge mechanism for the
case of symmetric TJ. Second, we discuss the case of
asymmetric TJ.

B. Influence of the image forces

Image forces reduce both the barrier height and the
thickness. The characteristic potential associated with
image forces in TJ is given by the expression

0.795¢2 1
¢ dmegede’

(9)
This is the reduction of the initial potential barrier height
(see Eq. (1)) at the symmetry point (z = d/2, see Fig. 1)
at zero bias. For ¢ =5 and d = 1 nm we have h, = 0.25
V. The ratio of h. and hy, defines the effective barrier

thickness deg as follows

dor = dyJ1— e (10)
hy,

One can see that the influence of the image forces on the
height and the thickness increases with decreasing of FE
dielectric constant and the barrier thickness. The barrier
thickness reduction exceeds 10% only for € < 10 even for
the smallest feasible d. Therefore we can always treat
it as a small perturbation and approximate deg =~ d(1 —
he/(2hp)). In Sec. II B we introduced the average barrier
height as follows, U = ([ \/U(z)dz/deg)?. We use this
expression in our numerical calculations. For analytical
consideration of the influence of image forces it is enough
to use a simpler expression, U = [U(z)dz/degs, where
integration is over the region [z1, z2] and the term with
1,2 is neglected. The tunnelling probability is defined
by the product of potential barrier and its average height

— he 1 hy
e VT ~ dv/ho (1 o <1+§ln4hc)>' (11)

Corrections due to the image forces are defined by the
ratio h./hp. These estimates show that correction to the
resistance due to image forces increases with decreasing
of FE dielectric constant €, but is independent of the bar-
rier thickness d since the common factor d is compensated
by d=! in the factor h.. Decreasing the barrier height Ay,
also increases the influence of the image forces.

C. Influence of FE surface charges

First we consider the symmetric case, 41 = ds, in which
the potential ¢1 — (@1 —2)Z is an odd function of z—d/2
and gives a zero contribution to the average potential,
J U(2)dz/des. The effect of surface charges appears only
due to the fact that U(z) enters the tunnelling probability
in a non-linear way. Therefore in the case of surface
charges one should use the average potential calculated
in Eq. (7) to estimate its influence. Here we assume that
potentials ¢ o are smaller than the Fermi energy and the
surface charges do not change the barrier thickness. We
have

— —2d 3 3
d\/—zm(\/hb—%’l— —\/hb+901).

(12)



For symmetric TJ we have @3 = —¢;. For small ¢; and
V (¢1,V < hy,) the above expression can be written as

— Vo1 (e + V)P + 8
dvU =dvhp|1l—— - ——FF—————= . 13
Vo b( h, 24 B2(2¢1 + V) (13)

The ratio ¢1/hy, defines the contribution of surface
charges to the effective barrier height. One can see that
the surface charges effect decreases faster with increasing

of hy, (as hy, 3/ ?) in comparison with the effect of image
forces. It is also important that the last term in the
brackets may change its sign.

We estimate @1 ~ dP/(2e¢q) for d < 2e6;. For
e =50, P =20 uC/cm? d = 1 nm and &; = 0.05 nm
we find ¢1 =~ 0.25 V. The potential ¢; can be increased
with increasing thickness d. Also, there are many mate-
rials with polarization larger than 20 xC/cm?. Thus, in
contrast to the case of image forces the influence of sur-
face charges can be made very strong. The influence of
surface charges decreases with decreasing of polarization
P, and thickness d. The dielectric permittivity enters
this mechanism in the same way as in the mechanisms
based on image forces. However, as we show below, the
dependencies of ER. and ERp on ¢ are different. The in-
fluence of dielectric permittivity voltage dependence on
the surface charges ER effect was studied in Ref. [43].
The potential ¢; decreases with §; for d > 261, how-
ever this regime is difficult to reach for thickness d of
about 1 nm.

D. Comparing image forces and surface charge
contributions to ER effect

The ER effect is defined by the change of the effective
barrier height and thickness under the change of FE state
(approximately ER ~ exp(degVU| p+ —degVU | p-)). For
symmetric barrier the expression in the exponent is non-
zero only for finite bias. The polarization switching leads
to the change of dielectric constant (™ |v20 # €7 |v0).
The variation of the barrier due to the image forces is
given by

= = hoet —¢~
deg VT p+ — degVT|p- ~ dv/ho e S "5 (14)
hy, ete
where hg = hele=1. The barrier variation due to the
surface charges has the form
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2ee0hi

Comparing these expressions we can estimate the ra-
tio of two mechanisms contributing to the ER effect
(6e/¢e)(e/(d?’P)) (weuse V ~ hy,). In this ratio § € is the
difference of dielectric constants for positive and negative
polarization, §¢ = €T —¢~. If this ratio is larger than
1 then the image forces define the ER effect, otherwise
the surface charges are more important. For example, for
d=1nm and (6e/¢) ~ 30 % the image forces mecha-
nism is more pronounced for P < 5 uC/cm?.
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FIG. 3. (Color online) Electro-resistance effect (main plot)
and conductance (inset) as a function of applied voltage for
the following system parameters: d = 1 nm, h, = 0.5 eV,
Py = 30 uC/cm?, 6, = 82 = 0.05 nm, Vi = 0.1 V, Ae =
15 and emin = 30. Solid line corresponds to the total ER
effect including both mechanisms related to surface charges
and image forces. Dotted line shows the ER effect due to
surface charges E'Rp. Dashed-dotted line shows the ER effect
due to the image forces ER.. ER.'p" is the value of ER. and
ERp at V = —V;. Inset: solid lines correspond to the upper
hysteresis branch. Dash-dotted lines stand for lower hysteresis
branch. Arrows show the path of hysteresis loop.

E. Asymmetric TJ

For asymmetric TJ the resistance at zero bias depends
on the direction of polarization. This effect appears due
to the surface charges of the FE layer in combination with
asymmetric screening of these charges. Here we compare
this ER effect at zero bias with ER at V = V; due to
image forces.

For asymmetric TJ the average potential (neglecting
image forces) is given by the expression, U ~ hy, +
dP(61—62) . = . .
TR and the relative change of dVU is given by

_dP0i=%2) g expression does not take into account
€0 6(51+52)hb

a variation of barrier thickness appearing for leads with
Fermi energy smaller than ¢, 2. Comparing the expres-
sion with the relative barrier change due to image forces
we can write the ratio (%5)(£2/4%). We can neglect
the image forces in asymmetric TJ if this ratio is larger
than 1. This is the case when BTO or PZT FE is used
in asymmetric TJ made of Pt and LSMO metals. We
note that to create the TJ with Ad/§ ~ 10% one has to
use the metals with Fermi level difference of about 40%,

. 1/4
since 6 ~ EF/ .



IV. ELECTRO-RESISTANCE EFFECT IN FTJ

In this section we compare the ER effect for symmetric
and asymmetric FTJ appearing due to image forces and
due to surface charges. We discuss the behavior of the ER
effect on system parameters such as barrier height and
thickness, saturation polarization and dielectric constant.
We calculate all curves using Eqgs. (6), (7) and (8).

A. Symmetric FTJ

The inset in Fig. 3 shows the behavior of FTJ conduc-
tance for symmetric barrier as a function of applied bias.
The curves have a hysteresis character originating from
the hysteresis of polarization P and the dielectric con-
stant . For symmetric TJ with §; = d5 the conductance
at zero bias is the same for both hysteresis branches. At
non-zero bias the symmetry of the TJ is broken due to
external field leading to difference in conductance for dif-
ferent hysteresis branches. The chosen parameters corre-
spond to Hfy 5719 502 FE material.

There are three pairs of curves in the inset in Fig. 3.
Black lines show the conductance G calculated by tak-
ing into account both the surface charge and the image
forces effects. Blue lines show the conductance calcu-
lated neglecting the image forces, Gp. The conductance
Gp has its minimum when polarization switching occurs
(V. = =V; for the upper branch and V' = V; for the
lower branch). The minimum can be understood as fol-
lows: Surface charges produce the electric field inside
the barrier leading to the linear slope of the potential
U(z) (see Fig. 1). The applied bias also creates the elec-
tric field inside the barrier. According to Eq. (12) the
stronger the total field the lower the TJ resistance. De-
pending on the sign of polarization and voltage these two
fields can enhance (co-directed) or counteract each other
(counter-directed). Consider the positive bias (V > 0).
For upper branch the fields are co-directed and the con-
ductance grows (see Eq. (12)). For lower branch the fields
are counter-directed decreasing the conductance. When
the bias reaches the switching voltage V; the FE polariza-
tion changes its sign and both fields (due to bias and due
to polarization) become co-directed for the lower branch.
Further bias increase leads to the increase of the lower
branch conductance.

Red lines in the inset in Fig. 3 are for conductance
G.. If one moves left along the upper branch (decreasing
voltage starting with large positive bias) the dielectric
constant reaches its maximum value at negative bias (at
V = —V;). The maximum dielectric constant weakens
the image forces doing the barrier higher. Thus, the con-
ductance decreases in the vicinity of V' = —V; for the
upper branch (V' = V; for the lower branch). Thus, the
change of conductance due to surface charges and image
forces behaves similarly. However, the average (over the
whole voltage region) conductance, G, exceeds the aver-
age Gp, meaning that image forces influence the conduc-

tance much stronger than the surface charges for given
parameters.

Typical dependencies of ER effect on the applied volt-
age in symmetric FTJ are shown in Fig. 3. The black
solid line shows the ER effect calculated by taking into
account both the image forces and the surface charges
(ER), the blue dotted line is for the ER effect calcu-
lated by taking into account only the surface charges
(ERp), the red dash-dotted line corresponds to the
ER effect due to image forces (ER.). The parame-
ters for which the curves were calculated correspond to
Hfy 5719505 FE. Due to the symmetry of the hysteresis
loop in Egs. (3) and (4) the ER effect obeys the relation
ER(V) = ER(—V)~!. At zero bias the conductance does
not depend on the FE state and the ER effect is absent
(ER =1). At high voltage the FE state is the same for
both branches and the ER effect is absent. The ER effect
reaches its maximum value at switching voltage. We de-
note it FR'** for ER effect due to image forces, ERp**
for ER effect due to the surface charges, and ER™** for
ER effect including both mechanisms. One can see that
for given parameters the image forces produce stronger
ER effect than the surface charges. This is in agreement
with our analytical estimates showing that image forces
are important for 1 nm thick FTJ.

Figure 4 shows the dependence of the maximum value
of the ER effect (ERE**, ERM* and ER™®*) on the
parameters of FE barrier (saturation polarization Py,
dielectric constant variation €m,;, and Ae and the bar-
rier height hy). First, consider the left panel in the fig-
ure. When calculating the dependencies on polarization
(Fig. 4(a)) we fixed the switching voltage and the dielec-
tric constant for the upper and the lower branch. The
dotted line corresponds to the maximum ER effect due to
surface charges. At zero P, this mechanism does not lead
to the ER effect. The ER effect grows with increasing
Py. The growth regime changes at points P ». For small
polarization and ¢12 < hy the surface charges change
the average barrier height according to Eq. (12). For
1,2 > hy, the surface charges change the effective barrier
thickness (this effect is absent in Eq. (12)). This leads to
discontinuity of the derivative of ERE**. At Py = P; the
condition hy, — Vi 4+ ¢2(P) = 0 is satisfied for the lower
polarization branch. At Py = P, the same condition is
fulfilled for the upper branch.

The red dash-dotted line shows the ER effect due to the
image forces. It does not depend on the saturation polar-
ization. Comparing ER"** and ERP®* one can see that
for small polarization the image forces effect, ERI'**, ex-
ceeds the surface charge effect, FRp?**. For large satu-
ration polarization the situation is the opposite.

Interestingly that the total ER effect £ R™#* is not just
a product of ERM** and ERP** shown with black dashed
line. At low saturation polarization the total ER effect
exceeds FRI'™ x ERP® while at large polarization one
has, ER™®* < ER® x ERJ®.

Figure 4(b) shows the dependence of the maximum
ER effect on the variation of dielectric constant Ae
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FIG. 4. (Color online) Maximum value of electro-resistance effect ER™** as a function of (a) saturation polarization Py, (b)
dielectric constant variation emin and Ae, and (c) barrier height hy. The following parameters are used for all three plots:
d=1nm, d12 =0.05 nm, V = -V, = —0.1 V. Solid lines correspond to the total ER effect including effects of surface charges
and image forces ER™**. Dotted line shows the ER effect due to surface charges ERp™®*. Dashed-dotted line is the ER effect
produced by the image forces EZ***. (a) Dashed line shows ERZ® x ERp®. The barrier height hi, = 0.5 V, Ae = 15 and
€min = 30. Pp2 denotes polarization where FRp®* has a derivative gap. (b) Po = 30 ;J,C/cm27 hy = 0.5V, €min = 50 for the
main graph and Ae = 0.5 emin for the inset. The ER effect due to surface charges disappears at € = 1. (c) Po = 35 ,uC/ch,

Ae =15 and epin = 30.

(main graph) and on ep, (inset). A variation of di-
electric constant is the reason for ER effect due to image
forces according to our analytical estimates, Eq. (14).
Therefore, ERM** grows with increasing of Ae reach-
ing its maximum value when variation of dielectric con-
stant becomes of the same order as the average dielectric
constant (emin +Ae/2). Further increase of dielectric
constant variation leads to the decrease of the ER ef-
fect. According to Eq. (14) the ER effect behaves as
(et —e7)/(et 7). The numerator of this expression
grows with Ae. But the denominator grows too due to
the finite width of the transition region, AV;. According
to Eq. (4) increasing of A e leads to the increase of both
€T and . Thus at a certain value Ae the ER effect
starts decreasing. Reducing the width of the transition
region, AV;, one can increase the ER effect due to the
image forces.

In Fig. 4(b) the value of ER™** does not exceed several
tens of percent. Generally, there is no restriction on the
value of ER effect. One can expect the magnitude of
the effect of order of Ae/epmin for small width of the
transition region AV;. For ey = 10 and Ae = 50 the
magnitude of ER** can be as high as 7 (the ER effect
due to image forces is about 700%) if Vs — 0.

The contribution of surface charges simply decreases
with increasing of Ae. This effect is related to finite
width of the transition region AV;. At V' = —V; one has
Ptly—_yv, =0 and ¢;|y——_y, = 0 for the upper branch.
Therefore, only e~ and P~ enter FRp. For AV =0 we

have €~ |y=—_v, = emin and A e does not influence ERp.
For finite AV, we have €™ |y=_y, > €min and it grows
with increasing of A e leading to the decrease of the ER
effect due to surface charges.

The inset in Fig. 4(b) shows the dependence of max-
imum ER effect on the minimum dielectric permittivity
€min for variation of the dielectric constant Ae scaled
with emin (Ae = 0.5emin). The maximum value of ER
effect due to the image forces decays as 1/ epin, in agree-
ment with Eq. (14). The ER effect due to surface charges
decays much faster and even changes sign at the point
Emin = €1. FOr emin < €1 the potentials ¢q 2 are mostly
governed by dependence P(V) and for epi, > &1 vari-
ation of € with V becomes more important. Figure 3
shows the case with enin < 1. In the opposite limit
the dependence of the ER effect due to surface charges
on voltage, ERp(V), is a reflected version of Fig. 3 with
respect to the point V = 0.

Absence of the ER effect at e,n = €1 can be under-
stood using Eq. (13). We calculate ER™** at V = —Vj.
At this point the upper branch has zero polarization and
the lower branch has the polarization ~ —F,. The con-
ductance for the upper branch is defined by the quantity
degVU = dv/Tiy(1 = V/hi, — (1/24)(V?/h2)).  The po-
tential profile has an upward tilt due to the bias. The
conductance for the lower branch depends on ¢; # 0.
The electric field and the field due to the surface charges
inside the barrier are counter-directed. For small abso-
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FIG. 5. (Color online) Maximum value of electro-resistance
effect ER™®* (at V = —V%) as a function barrier thickness d
for the following system parameters: §1 = d2 = 0.5 nm, Py =
30 uC/cm?, Vi = 0.1 V, and hy, = 0.5 V, £min = 50, A e = 50.
Solid lines correspond to the total ER effect including effects
of surface charges and image forces. Dotted line shows the
ER effect due to the surface charges, ERp. Dashed-dotted
line is the ER effect produced by the image forces ER..

lute value of voltage the potential profile U(z) has the
downward tilt larger than the tilt of the potential profile
of the upper branch. Increasing the bias absolute value
we decrease the tilt of U(z) for lower branch and increase
the tilt of U(z) for upper branch. The point €1 (see in-
set in Fig. 4(b)) is given by the equation (1) = —V.
When this condition is satisfied the potential profiles for
the upper and the lower branches have exactly the op-
posite tilt and the value of dch/ﬁ is the same for both
branches.

The inset in Fig. 4(b) shows that the ER effect due to
image forces exceeds the surface charges effect in a wide
range of dielectric constants for symmetric FTJ.

Both contributions to the total ER effect ERI** and
ERE* depend on the barrier height. These dependencies
are shown in Fig. 4(c). One can see that increasing the
barrier height increases the importance of image forces.
For low barrier, ERE®* exceeds ERI'**, while for high
barrier the situation is the opposite. This coincides with
analytical estimates. Equation (14) shows that correc-
tions due to image forces to the average barrier height
multiplied by thickness behave as dh./v/h,. The mag-
nitude of ERM** behaves similarly. The effect of sur-

face charges decays as dp1V/ Vin® according to Eq. (15).
This difference in the behaviour appears due to the fact
that image forces produce the correction even in average
potential while the surface charges give the zero correc-
tion to the average potential. The surface charges con-
tribute to the conductance only if one takes into account

the fact that the tunnelling probability is a function of
average of square root of the barrier.

Equation (13) shows that surface charges contribution
grows with increasing of the screening length. Note that
for large enough screening length, § ~ d the approach
used in the manuscript is not valid. The contribution
due to the image forces does not depend on the screening
length in our model for § < d.

In the previous section we mentioned that the image
forces contribution becomes less important with increas-
ing of the barrier thickness. This is shown in Fig. 5. One
can see that the value ERE** grows rapidly with thick-
ness, while ERI** is almost independent of d.

To summarize this section, we show that the contri-
bution due to image forces to the ER effect exceeds
the surface charge contribution for small barrier thick-
ness and high barrier height, at small polarization and
high variation of dielectric constant. Increasing the aver-
age dielectric constant increases the importance of image
forces contribution reducing the contribution due to sur-
face charges.

B. Asymmetric FTJ

For asymmetric FTJ the surface charges produce the
ER effect even at zero bias while image forces do not
lead to the ER effect in this case (see Fig. 6). Therefore,
comparison of ER effect at V = —Vj is not a correct way
to proceed. Here we compare the ER effect due to image
forces at V = —V; (EX*) with the ER effect due to
surface charges at zero bias voltage (see inset in Fig. 6).
One can see that the effect due to surface charges grows
rapidly with increasing the asymmetry and exceeds the
ER effect due to image forces. Even 10% difference in
the screening length produces the ER effect at zero bias
of the same magnitude as the ER effect due to image
forces at V = —V;. Note however, that 10% difference in
the screening length corresponds to 50% difference in the
Fermi level of the material and d2/d; = 2 corresponds to
16 times difference of the Fermi levels. Thus, the leads
should be made out of essentially different materials to
produce a strong ER effect at zero bias.

C. Temperature dependence of conductance of FTJ

The important peculiarity of the image forces contri-
bution to the conductance is related to the fact that it
does not vanish above the ferroelectric Curie point T¢
while the surface charges are zero in this temperature re-
gion. The dielectric permittivity of FE strongly depends
on temperature above (and below) T¢. This leads to a
strong dependence of the FTJ conductance on tempera-
ture above and below the phase transition point. Such a
dependence above T¢ occurs only due to the image forces.
Using Eq. (11) one can estimate the temperature coeffi-
cient of resistance TCR = —(1/J)(dJ/dT) for symmetric
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FIG. 6. (Color online) Electro-resistance (ER) effect as a

function of applied bias for asymmetric FTJ with 61 = 0.5
nm, 62 = 0.1 nm, d = 1 nm, Py = 20 uC/cm?, V; = 0.1 V, and
hp = 0.5V, emin = 30, Ae = 15. Solid lines correspond to the
total ER effect including effects of surface charges and image
forces. Dotted line shows the ER effect due to the surface
charges EFRp. Dashed-dotted line is the ER effect produced
by the image forces, FR.. The inset shows the dependence of
the ER effect on the ratio d2/d1 at 61 = 0.05 nm for the same
parameters as in the main plot.

FTJ as follows
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(16)
This quantity is independent of the barrier thickness d
and decays with increasing the barrier height hy, and the
average dielectric constant.

So far FTJ were made with only few FE materials:
most FTJs have BTO FE with rather high dielectric
constant (¢ ~ 1000). The temperature dependence of
conductance in symmetric FTJ with BTO due to im-
age forces is very weak, see Eq. (16). In a recent paper,
however the TCR of asymmetric FTJ with BTO was re-
ported. The dependence of conductance on temperature
appears due to surface charges produced by the FE layer.
The dependence of G(T') on temperature occurs below
the FE Curie point and the TCR of order 3.8% was re-
ported in this system.

To observe a strong temperature dependence of TJ
conductance due to image forces one needs to use FE with
low dielectric constant. Recently, an organic ferroelectric
P(VDF-TrFE) was used as a TJ barrier and the GER
effect was demonstrated in this system. P(VDF-TrFE)
has rather small dielectric constant depending on tem-
perature in the vicinity of the Curie point T¢ ~ 75° C.
Figure 7 shows the TCR for symmetric FT.J with P(VDF-

TCR =~ 2
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FIG. 7. (Color online) Temperature coefficient of resistance
(TCR) as a function of temperature for FTJ with P(VDF-
TrFE) barrier with thickness d = 1 nm and barrier height
hy = 0.5 V. The inset shows dependence of the dielectric
constant of P(VDF-TrFE) vs. temperature obtained using
experimental data of Ref. [4].

TrFE) barrier. We fit the experimental data of Ref. [4] on
P(VDF-TrFE) dielectric constant as a function of tem-
perature, T' (see inset in Fig. 7) with Eq. (5). The mag-
nitude of TCR reaches 3%. Note that P(VDF-TrFE) has
rather small saturation polarization (Py ~ 5 puC/cm?).
Therefore, the main contribution to the TCR is produced
by the image forces and surface charges can be neglected
below Tc. Above T¢ the temperature dependence of TJ
conductance appears only due to image forces.

There are numerous organic FEs with low dielectric
constant (¢ < 100, see review paper [36]). Usually these
FEs have a very small saturation polarization (P ~
0.1 uC/cm?). Such organic FEs can be promising candi-
dates for TJ with high TCR. These FEs have the Curie
temperature in a wide range from 50 K (TTF-BA) to a
room temperature (CaxPb(CH3CH3COO)g). In some of
these FEs the dielectric constant changes strongly (from
10 to 100) in a very narrow temperature range (AT = 25
K) leading to large TCR of order of 50%/K (for example
CayBa(CH3CH;COO)g, see Fig. 8). Some of these FEs
have a wide peak of dielectric constant around T¢ leading
to moderate TCR in a wide temperature range.

V. CONCLUSION

We studied influence of image forces on the ER ef-
fect and conductance temperature dependence in FTJs.
Image forces inside the FTJ barrier reduce the average
barrier height and strongly influence the TJ conductance.
These forces produce the ER effect at non-zero bias. The
effect appears due to dependence of the FE dielectric con-
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FIG. 8. (Color online) Temperature resistance coeffi-

cient (TCR) as function of temperature for FTJ with
SrCapSr(CH3CH2COO)g(D) barrier with thickness d =
1 nm and barrier height hy, = 0.5 V. The in-
set shows the dependence of the dielectric constant of
SrCasSr(CH3CH2COO)6(D) from Ref. [36].

stant on the applied bias. For symmetrical FTJ (with
identical metal electrodes) the ER effect due to image
forces may exceed the ER effect due to surface charges
at the FE/metal interfaces. The ER effect due to image
forces increases with decreasing the barrier height and av-
erage barrier dielectric constant and almost independent
of the barrier thickness. The importance of this mecha-
nism (in comparison to the surface charges mechanism)
grows with increasing of barrier height and decreasing of

10

saturation polarization and barrier thickness. The mag-
nitude of the effect for HfZrOo FE reaches 50%.

For strongly asymmetric barrier the contribution of im-
age forces to the ER effect is small in comparison to the
effect of surface charges. The contribution of the image
forces to the ER effect is visible only for TJ with metal-
lic leads where difference of Fermi levels does not exceed
50%.

We studied temperature dependence of the FTJ con-
ductance by taking into account the image forces. Above
the FE Curie point the image forces is the only mech-
anism for dependence of the TJ conductance on tem-
perature. Below T¢ both the surface charges and the
image forces contribute to the temperature dependence
of conductance. Large TCR can be achieved in FTJ
with FE with low dielectric constant in the vicinity of
the FE phase transition. We calculated the TCR for
FTJ with P(VDF-TrFE) barriers. The peak value of
TCR is about 3% /K which is comparable with TCR ob-
tained in asymmetric FTJ with BTO barrier. Accord-
ing to our analysis the best materials for observing the
strong temperature dependence of TJ conductance are
organic FEs. These materials have a low dielectric con-
stant with strong relative variation. For example, TJ
with SrCaySr(CH3CH2COO)g(D) barrier leads to TCR
up to 50% in the narrow temperature range.
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