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Introducing a powerful method, the exact solutions are obtained for a Coulomb impurity in two-
dimensional infinite and finite topological insulators. The level order and zero-energy degeneracy
of the spectra are found to be quite different between topological trivial and nontrivial phases. For
quantum dots of topological insulator, the variation of the edge and Coulomb states with dot size,
Coulomb potential and magnetic field are clearly shown. It is found that for small dots the edge
states can be strongly coupled with the Coulomb states. And, for large dots the edge states are
insensitive to the Coulomb fields but sensitive to the magnetic fields.
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Introduction. The topological insulators are narrow-
gap semiconductors with topological protected edge (sur-
face) states1,2. The peculiar properties of these states
make topological insulators and their nanostructures use-
ful for future applications ranging from spintronics to
quantum computing3–8.
As doping affects transport and optical properties of

traditional semiconductors, the influence of impurities to
topological insulators has also drawn extensive attention.
Impurities in topological insulators can induce localized
states9–11, affect the transport properties12,13 and give
the quantized anomalous Hall phase14,15. So far most
theoretic works focus on the point-like, Gauss and An-
derson impurities in topological insulators, while studies
on the Coulomb impurities are rare although experimen-
tally they have been confirmed to significantly change the
surface band structures16.
In topological insulators, the difference between the

Coulomb impurity states under different topological
phases is an interesting issue. Furthermore, in topolog-
ical insulator nanostructures such as quantum dots the
edge states are much likely to interact with the impuri-
ties due to stronger spatial confinement. Knowing the
interplay between the edge states and the Coulomb im-
purities as well as their magnetic field modulations are
important for the designing of relevant nano-devices.
The low-energy physics of topological insulators obey

the modified Dirac equation17,18, where a quadratic mo-
mentum mass term is added to the Dirac equation to
distinguish different topological phases. Therefore, for
topological insulators and their nano-structures with im-
purities and external fields, one need to deal with the
eigenvalue problems of the second-order differential equa-
tion array, while a method for exact solutions is still lack
so far.
In this work, we develop our series expansion

method19,20 to the case of the modified Dirac equation,
to obtain the exact solutions of the single Coulomb impu-
rity problem in infinite two-dimensional topological insu-
lators (2DTIs), two-dimensional band insulators (2DBIs)
and their quantum dots both with and without magnetic

fields. The significant differences are shown between the
spectra of infinite 2DTIs and 2DBIs. The coupling effects
between the edge and Coulomb states are investigated in
2DTI quantum dots, and the variation of the coupling
and spectrum characteristics with dot radius, Coulomb
potential and magnetic field are in detail studied.
Method. The modified Dirac Hamiltonian with an in-

plane Coulomb potential is written as18,21:

H↑↓ = ~v(σxkx ± σyky) + (M − Pk2)σz −
~vα

r
, (1)

where v is the Fermi velocity, σx,y,z are Pauli matrixes
describing the isospins, and α is a dimensionless value
describing the Coulomb potential strength. Compared
with the gapped graphene, the Pk2 term is added to
the mass M where MP > 0 and MP < 0 are for a
2DTI and a 2DBI, respectively. In the presence of a
weak magnetic field the model is still effective22, and the

substitution ~k = −i~▽+ e ~A/~ is used with the magnetic

vector potential ~A = ~B × ~r/2 .
Due to the rotation symmetry, the angular operator

ĵz = −i~∂θ+ ~

2σz are conserved, so the eigen-functions of

H↑ can be expressed as ψ(r, θ) = (ϕ(r)eil−θ, χ(r)eil+θ)T

where l± = j± 1
2 , and the half integer j is the eigenvalue

of ĵz . Then we get the radial form of H↑:

H↑(r) =

[
M +Q− − ~vα

r S+ − i~vr
2l2

b

S− + i~vr
2l2

b

−M −Q+ − ~vα
r

]
(2)

where Q± = P ( ∂2

∂r2 + 1
r

∂
∂r − l±

2

r2 − r2

4l4
b

− l±
l2
b

), S± =

−i~v( ∂
∂r ± l±

r ) and lb =
√

~

eB is the magnetic length.

The radial form of H↓ satisfies the relation H↓(r, j, B) =
H↑(r,−j,−B). Therefore, each level is two-fold degener-
ate for B = 0 while it splits for B 6= 0.
In order to obtain the exact solutions of the eigen-

equationsH↑ψ = Eψ, we develop our method introduced
earlier19,20 with use of the theory of first-order differential
equation array23,24. To obtain the first-order equation
array, a four-component spinor w = (f1, f2, f3, f4)

T is



2

defined as f1 = ϕ
r ,f2 = dϕ

dr , f3 = iχr and f4 = idχdr . Using

f1(3)+r
df1(3)
dr = f2(4) and H↑ψ = Eψ, the equation array

are arrived:

dw

dr
=

3∑

k=−1

Akr
kw (3)

where Ak are 4 × 4 real coefficient matrixes. Then the
series form of the exact solutions in the regular (0, r0),
Taylor (ri, ri+1) with i = 0, 1...I−1 and irregular (rI ,∞)
regions for infinite 2DTIs(2DBIs) are found as follows:

w =





rρ
∞∑
k=0

akr
k r ∈ (0, r0)

∞∑
k=0

bk(r − xi)
k r ∈ (ri, ri+1)

eq(r)rη
∞∑
k=0

ckr
−k r ∈ (rI ,∞).

(4)

In the regular region, ρ = ρ1,2 with ρ1 = ρ2 + 1 = l−
for j > 0 and ρ1 = ρ2 + 1 = −l+ for j < 0, and in the
irregular region,

q(r) =

{
−λ±r for B = 0

− r2

4l2
b

for B 6= 0
(5)

where λ± = [(~v)2 − 2MP ±
√
∆]1/2/

√
2|P | with ∆ =

(~v)4−4MP (~v)2+4P 2E2 and the corresponding η = η±
can be directly determined. For B 6= 0, two η = η1,2
are determined by a quadratic equation. In each Tay-
lor regions, the expansion are made about the center
xi = (ri + ri+1)/2. The expansion coefficients ak,bk and
ck have been obtained by deducing the recurrence rela-
tions. In the appendix, we give the details of the series
expansion process.
Using the continuity of the wavefunctions and its

derivative at r = ri, the exact energy levels and then
wavefunctions for infinite 2DTIs and 2DBIs can be fixed
by exact numerical calculations. In the calculations, we
need properly choose r0,r1,· · ·,rI−1 and rI . For 2DTI
and 2DBI quantum dots with the radius R, the vacuum
boundary conditions at r = rI = R, i.e., ϕ(R) = χ(R) =
0, are used and here only solutions in the regular and
Taylor regions are needed. The method is suitable for the
eigenvalue problem of the high-order ordinary differential
equation arrays when the external fields allow series so-
lutions in the subregions. Besides topological insulators,
multi-band systems such as bilayer graphene and semi-
conductor light-heavy hole coupling are also examples
where the method can be used to get exact solutions.
The Coulomb states for H↑ and H↓ are respectively

labeled by (n, j)↑ and (n, j)↓, with the radial quantum
number n = 0, 1, 2, · · ·. Different from the general bound
states in 2DTI quantum dots, the helical edge states
are only dependent on the spins and the angular num-
bers, and can be labeled by (↑, j) and (↓, j). For conve-
nience, we use the lowercase(uppercase) letters to denote
the states with up(down) spins and the superscript ± to
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FIG. 1: The Coulomb states of H↑ as a function of α for an in-
finite 2DBI (a) and 2DTI (b). The signal a±, b± and c± stand
for the Coulomb states (0,±1/2)↑,(1,±1/2)↑ and (0,±3/2)↑,
respectively. The dash dot lines stand for the states (0, j) of
gapped graphene. The dash lines in (b) show the edge states
(↑, j) for a 2DTI quantum dot with R = 500 nm.

distinguish the states (n,±|j|). Then the denotation of
states used in this paper are a±(0,±1/2)↑, A

±(0,±1/2)↓,
b±(1,±1/2)↑,c

±(0,±3/2)↑ and d±(2,±1/2)↑. Addition-
ally, e±(↑,±1/2) and E±(↓,±1/2) are used for the edge
states in 2DTI quantum dots.

In this paper, we choose ~v = 3.65 eV · Å, M =
30meV, while P = −100 eV · Å2 and P = 100 eV · Å2

are used for 2DBIs and 2DTIs, respectively. The chosen
parameters satisfy ~

2v2 > 2MP , which are in agreement
with those of the HgTe/CdTe quantum wells and in this
condition the energy gap is (−|M |, |M |).
Coulomb states in infinite case. We first investigate
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the ideal case that the 2DTIs are infinite large, where the
edge states are absent as there is not an edge. We will
focus on the states bounded near the Coulomb center,
and study their differences between 2DTI and 2DBI.
The energy spectra as a function of α are shown as

the solid lines both for an infinite 2DBI (PM < 0) and
an infinite 2DTI (PM > 0) in Fig. 1. One can see the
Coulomb states can be present in the range E2 < M2. In
fact, for E2 > M2 the index λ− in the irregular solutions
are purely imaginary, which allow the electrons to tunnel
to infinite. It is quite different from the gapped graphene
(P = 0), where the Coulomb collapse occurs25 when α2 =
j2. Due to the Pk2 term, the index ρ in the regular

solutions is independent of α rather than ρ =
√
j2 − α2

in gapped graphene, then α2 of the (0, j)↑ states at E = 0
in an infinite 2DTI (2DBI) can be much larger than j2,
as shown in Fig. 1.
Let’s note the spectra in Fig. 1 in detail. For P = 0,

the states (n+1, |j|)↑ and (n,−|j|)↑ are degenerate26. For
PM < 0, such degeneration is only conserved at E = 0.
The energy order is quite same as the case of P = 0,
which can be understand since both of them describe
topological trivial systems.
However for PM > 0, the spectra are quite different.

The energy levels can generally be grouped into differ-
ent bunches, with each bunch described by the quantum
number Nq = n+ |j|+ 1

2 . The number of states in the Nq

bunch is determined by the all possible combinations of
n and j. The energy levels do not cross between different
bunches, but cross near E = 0 within the same bunches.
By a closer look of Fig. 1(b) one can find the degeneracy
between ±j states at E = 0 are still strict, but they are
now between (n, |j|)↑ and (n,−|j|)↑ states, which is in
contrast with the case of PM < 0.
As analyzed above, the level order and zero-energy de-

generacy of the Coulomb states in 2DTIs and 2DBIs are
quite different. In fact, our calculations show that the
spectra with α 6= 0 are discontinuous when P changes
across zero, which supports that the above differences
are the manifestation of the topological phase in the
Coulomb spectra.
Edge and Coulomb states in finite case. In this section,

we consider the Coulomb impurities in 2DTI and 2DBI
quantum dots. By introducing a finite edge, the edge
states will be present in 2DTI, then an interesting prob-
lem is how the edge states are affected by the Coulomb
impurity. We will show that the edge states are insensi-
tive to the Coulomb impurity, unless the dot size is small
and the Coulomb potential strength is strong with which
the edge states can be strongly coupled to the Coulomb
states.
The levels of the edge states in a large quantum dot

with R = 500 nm are shown by the dashed lines in Fig.
1(b). A remarkable characteristic of the edge states is
that their energies decrease linearly with α. The slope
is ∂E

∂α = 〈~vr 〉, which indicates that the wavefunctions of
edge states are almost unchanged for different α. In other
words, the edge states are insensitive to the attraction of
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FIG. 2: The levels of Coulomb states a+ and edge states e+

of H↑ under different α as a function of R for 2DTI (a) and
2DBI (b). The red and blue dot lines are the levels of a+ for
gapped graphene. The radial density distribution ρr of a+

and e+ states for α = 1.2 at R = 34nm and 100 nm (c) and
at R = 44nm (d) in 2DTI quantum dots.

the Coulomb potential for a large dot size, which should
be attributed to the topological nature of these states.

Then we seek for the coupling effects between the im-
purities and the edge states under different dot size and
potential strength. Since there is no coupling between
states with different j, we will focus on states with a
fixed j below.

The levels of a+(0, 12 )↑ and e+ (↑, 12 ) as a function of
R are shown in Fig. 2. Both in 2DBI and 2DTI quan-
tum dots, the a+ states are always present, and their
levels converge quickly to the infinite case with increas-
ing R. The choice of vacuum boundary condition allows
the bound states to exist in the region E2 > M2. Due
to the bulk-boundary correspondence, the e+ states can
only exist in 2DTI quantum dots. When R → ∞, the
levels of e+ for different α always trend to zero. In Fig.
2(a) and (b), the corresponding a+ levels of the gapped
graphene dots are also shown by the dot lines, where the
infinite mass boundary condition27 is used in the calcu-
lations. It is seen that the a+ levels for P = 0, both with
and without Coulomb potentials, are lower than those for
P 6= 0 with the increasing of size confinement. Besides,
for P = 0 the edge states are absent, and when α2 > j2

the Coulomb states also disappear due to the Coulomb
collapse.

Note that for 2DTI dots the levels of states a+ at large
R fall below zero for strong Coulomb potential of α >
0.85, see Fig. 1(b). With decreasingR, the levels of states
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FIG. 3: The energy levels of Coulomb states (n, 1

2
)↑ and edge

states e+ in a 2DTI dot as a function of α with R = 50 nm
(a) and R = 30nm (b). The red dashed lines are the corre-
sponding Coulomb levels in an infinite 2DTI. (c) The values
of γ = 〈r̂〉/R for a+ and e+ as a function of α. (d) The wave-
functions of the states e+ respectively for R = 30 nm and
R = 50 nm when α = αc − 0.1, as labeled by the dots in (c).

a+ and e+ increase and decrease, respectively. The levels
of a+ and e+ have to meet at some R, but the crossings
of levels with the same j are generally avoided, and, an
anticrossing occurs as shown by the case of α = 1.2 in
Fig. 2(a). Through the anticrossing, the energy order
of the a+ and e+ states is changed. We notice that for
R = 34 nm, an additional peak near the edge (center)
on ρr for a+ (e+) arises in Fig. 2(c). It is an effect of
coupling between a+ and e+. When R is more closed to
the coupling region center Rc = 44 nm, where the two
levels are nearest, a+ and e+ will be strongly coupled.
It is hard to distinguish the edge and Coulomb states
according to their wavefunctions, as shown in Fig. 2(d).
Besides, as shown in Fig. 2(a), the larger α, the smaller
R where the coupling occurs.

To further study the coupling effects, the energy lev-
els of states (n, 12 )↑ and e+ as a function of α with fixed
R = 50 nm are shown in Fig. 3(a). The levels of a+ over-
lap with the corresponding infinite levels for α > 0.4,
and they decreases more quickly than levels of e+ with
increasing α. Therefore, the coupling between a+ and e+

is inevitable at some α, and it further occurs between e+

and b+,d+(2, 12 )↑,...with increasing α. It is found that for
a smaller dot size the level space at the coupling region
center is larger, as shown in Fig. 3(b). To understand
this, we define a dimensionless value γ = 〈r̂〉/R ∈ (0, 1)
to describe the distribution of the states, and show its
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FIG. 4: The energy levels of Coulomb and edge states in a
2DTI quantum dot with B = 1T as a function of R at fixed
α = 0.3 for j = 1

2
, H↑ (a) and j = − 1

2
, H↓ (b). The levels

as a function of α at fixed R = 50 nm for j = 1

2
, H↑ (c) and

j = − 1

2
,H↓ (d). Both levels of H↑ (black lines) and H↓ (red

lines) as a function of B at fixed R = 150 nm for α = 0.6 (e)
and α = 1.3 (f). The dashed lines are levels for B = 0 in
(a)-(d).

plot as a function of α in Fig. 3(c). The γ values of
the upper and lower levels cross near the coupling region
center, i.e., αc = 1.14 and αc = 1.51 for R = 50 nm
and R = 30 nm, respectively. Compared with the case of
R = 50 nm, γ values for R = 30 nm change much gently
in a larger region of α. Meanwhile, it is shown in Fig.
3(d) that when α is away from αc with the same am-
plitude, the changes of the edge state wavefunctions for
R = 30 nm are obviously larger. It means that the cou-
pling is stronger for a smaller dot because the overlapping
of edge and Coulomb states is larger.
From the above discussion, the coupling of the

Coulomb and edge states manifest via the anticrossing
of the levels. Strong Coulomb potentials can make the
levels closer, and smaller dot sizes induce large wavefunc-
tion overlaps. With the changes of levels and transition
probabilities, the coupling effects in 2DTI quantum dots
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are expected to be observed experimentally.

Magnetic field effects. Now we consider the magnetic
field modulations of the edge states, Coulomb states and
their coupling in 2DTI quantum dots. The distributions
of the edge states have much larger magnetic moments
especially for the case of a large dot, and therefore edge
states will be quite sensitive to the magnetic fields. Since
H↑(r, j, B) 6= H↓(r,−j, B) for B 6= 0, we calculate both
levels of H↑ for j = 1

2 and levels of H↓ for j = − 1
2 .

It is shown in Fig. 4(a) and 4(b) that the differences
between the levels of B = 0 and B = 1T are quite small
for R < lb = 25.66 nm. With increasing R, the levels of
Coulomb states turn flat for both B = 0 and B = 1T.
However, the levels of the edge states are quite different
between B = 0 and B = 1T for R > lb. For B = 0
the levels of e+(↑, 12 ) and E−(↓,− 1

2 ) states trend to zero
with increasing R, while for B = 1T they respectively
decrease and increase quickly to out of gap. The levels
of e+ and E− states meet and couple with the positive-
energy and negative-energy states for R ≥ 131 nm and
R ≥ 97 nm, respectively. The coupling effects become
strong for largeR, leading to the missing of the edge state
characteristics. It is because the magnetic moments of
the edge states increase with R and have opposite signs
for e+ and E−. The sensitivity of the edge states to
magnetic fields for large dot size stands in contrast with
their insensitivity to Coulomb fields.

The coupling region center αc of the Coulomb and
edge states is tunable with magnetic fields which make it
convenient to observe the coupling effect experimentally.
The levels of a 2DTI quantum dot with fixed R = 50 nm
and B = 1 T are shown in Fig. 4(c) and 4(d). Compared
with the case of B = 0, the levels of e+ and E− are
respectively lowered and lifted while the levels a+(0, 12 )↑
and A−(0,− 1

2 )↓ only changes slightly. The coupling re-
gion centers are right and left moved for H↑ and H↓,
respectively.

The level order of the Coulomb and edge states can also
be modulated by magnetic fields. In Fig. 4(e) and (f), we
show the splitting of the Kramers’ pairs with B for a large
dot size. Clearly, the levels of the edge states changes
more sharply than the Coulomb states. For α = 0.6,
the level order of A− and E− states changes at B =
0.58T. When α increases to 1.3, the decreases of the
edge states (compared with α = 0.6) are much smaller
than the Coulomb states, which leads to change of the
energy order of a+ and e+ at B = 0.59T.

Under weak magnetic fields, the main difference be-
tween gapped graphene and 2DTI is the absence of edge
states such as e+ and E− in Fig.4(a) and (b) in graphene
dots. With increasing of magnetic fields, the levels of
2DTI and graphene dots will transit from the quantum
dot levels to the corresponding Landau levels. When
α = 0, the zero Landau levels28 depend linearly on B
for P 6= 0, i.e., L±

0 = ∓(M − ePB/~), while they are in-
dependent of B for P = 0, i.e., L±

0 = ∓M . When α 6= 0
the degenerate Landau levels split whereas the above de-

pendence with B can still hold approximately. This may
be the most notable differences between gapped graphene
and 2DTI dots under stronger magnetic fields.

Summary. Developing our series expansion method,
the exact spectra of Coulomb impurities in infinite 2DTIs
and 2DBIs are obtained and compared. For 2DBIs,
the level order of Coulomb states are similar to those
of gapped graphene, while for 2DTIs the spectra show
bunchy structures. The degeneracies at E = 0 are quite
different between 2DBIs and 2DTIs.

In 2DTI quantum dots, the edge states can be cou-
pled to the Coulomb states in strong Coulomb potentials.
Aside the coupling region center the level order of the two
kind states change while near the coupling region center
the states turn into mixtures. The coupling are stronger
for smaller dots. For larger dots, the edge states are in-
sensitive to Coulomb potentials while they are sensitive
to magnetic fields.

Finally, the mathematical method is powerful for or-
dinary differential equation arrays, which can describe
more complicated Dirac-like systems. The results deepen
the understanding of the topological phases and the prop-
erties of the edge states in the present of Coulomb im-
purities. Based on the exact energy levels and wavefunc-
tions, the related properties such as optical spectra of
2DTI quantum dots can be further explored.
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Appendix: Series expansions in different regions

We will take the H↑ block as an example to illus-
trate the series expansion methods for the modified Dirac
equation. The coefficient matrix A−1 in Eq.(3) is

A−1 =




−1 1 0 0
l2− −1 0 0
0 0 −1 1
0 0 l2+ −1


 . (A.1)

In the regular region (0, r0) the special solutions can
be expressed as

w = rρ
∞∑

n=0
anr

n. (A.2)

Substitute w into Eq.(3) and compare the coefficients, we
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get

(ρ+ n−A−1)an =

3∑

k=0

Akan−k−1 (A.3)

with n = 0, 1, 2... and we have assumed an = 0 for n < 0
here and after. By setting n = 0 we find that ρ have to
be the eigenvalues of A−1 and a0 are the corresponding
eigenvectors. We need the convergence solutions near
r = 0, so only two of the four eigenvalues is preserved,
which are ρ = ρ1,2 with ρ1 = ρ2 + 1 = l− for j > 0 and
ρ1 = ρ2 + 1 = −l+ for j < 0. When ρ = ρ1, an for n > 0
can be directly determined via left multiplying Eq.(A.3)
by (ρ1 + n−A−1)

−1.

It is noticeable that ρ2 < ρ1 differs by an integer with
ρ1, which means that when ρ = ρ2 one should add the

rρ2 lnr
∞∑
n=0

a′nr
n term to Eq.(A.2) to get the other inde-

pendent solution. Fortunately, we have proved that this
term is vanishing. Then Eq.(A.3) is also suitable for
ρ = ρ2. For n > 1 one can similarly left multiply Eq.(A.3)
by (ρ2 + n− A−1)

−1 to get an. For n = 1, however, the
matrix (ρ2 + 1−A−1) is singular and we obtain

a1 =

[
~vα

(2ρ2 + 3)P
,
(ρ2 + 2)~vα

(2ρ2 + 3)P
, δ, δ(ρ2 + 2)

]T
(A.4)

for j > 0 and

a1 =

[
δ, δ(ρ2 + 2),

~vα

(2ρ2 + 3)P
,
(ρ2 + 2)~vα

(2ρ2 + 3)P

]T
(A.5)

for j < 0 where δ is arbitrary. Once δ is chosen, two
linearly independent solutions corresponding to ρ1 and
ρ2 are obtained, and any different choices of δ will give
solutions linearly dependent with the obtained two.

Away from r = 0, we divide the region (r0, rI) into I
small regions (ri, ri+1) with i = 0, 1, ...I − 1. In region
(ri, ri+1), the special solutions of Eq.(3) are expanded at

xi =
ri+ri+1

2 as the Taylor series

w =

∞∑

n=0

bn(r − xi)
n. (A.6)

Substitute this expression into Eq.(3) we get the recur-
rence relations for n ≥ 1:

bn =

1
nxi

[
3∑

m=−1

m+1∑
k=0

AmC
k
m+1x

m−k+1
i bn−k−1 − (n− 1)bn−1

]
.

(A.7)
For n = 0, b0 are completely underdetermined and can
be chosen as the column vectors of the 4× 4 unit matrix,
which correspond to four independent solutions.

In the irregular region (rI ,∞), we need treat respec-
tively the case of B = 0 and B 6= 0 as the magnetic field
changes the properties of Eq.(3) at r = ∞. We will illus-
trate the techniques of the asymptotic expansion in case
of B = 0, while the case of B 6= 0 is similar.

When B = 0, we use the transformation

ξ = Uw =




r 0 0 0
0 1 0 0
0 0 r 0
0 0 0 1


w, (A.8)

then ξ is proved to satisfy the differential equation array

dξ

dr
=

0∑

k=−2

Bkr
kξ. (A.9)

Compared with Eq.(3), the highest power of r decreases
to the lowest in Eq.(A.9). The coefficient matrix B0 is

B0 =
1

P




0 0 0 0
E −M 0 0 ~v

0 0 0 0
0 ~v −(E +M) 0


 . (A.10)

The formal solutions of Eq.(A.9) are written as

ξ = e

s∑
i=1

qir
i

rη̃
∞∑

n=0

c̃nr
−n. (A.11)

Substitute Eq.(A.11) into Eq.(A.9) and compare the co-
efficients we find s = 1 and

(B0 − q1)c̃n = (η̃ − n−B−1)c̃n−1 −B−2c̃n−2 (A.12)

By setting n = 0 in Eq.(A.12) it is seen

q1 = ±

√
(~v)2 − 2MP ±

√
(~v)4 − 4MP (~v)2 + 4P 2E2

2P 2

(A.13)
are the four eigenvalues of B0 and c̃0 are the correspond-
ing eigenvectors. When q1 > 0, Eq.(A.11) is divergent at
r = ∞, therefore we only chose the two solutions corre-
sponding to q1 = −|q1|. For determination of η̃, we need
notice that the rank of (B0 − q1) is three. It allows us to
find a matrix T so that T (B0 − q1) is in the form of row
echelon. Left multiply Eq.(A.12) by T we get

Cc̃n = Dc̃n−1 − F c̃n−2 (A.14)

where C = T (B0 − q1),D = T (η̃ − 1 − B−1) and F =
TB−2. Remember that the fourth row of the matrix C
is zero, and by setting n = 1 in Eq.(A.14) we have

row{D, 4}c̃0 = 0 (A.15)

where row{D, i} denote the row vector formed by the i’s
row of the matrix D. Eq.(A.15) fixes η̃ for each chosen
q1.

Having known c̃n−2 and c̃n−1, one can not get c̃n di-
rectly from Eq.(A.12) since (B0−q1) is singular, which is
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different from the regular and Taylor series expansions.
We again use Eq.(A.14) and take the first three rows
as three independent equations to fix c̃n. Then we set
n → n + 1 and take the fourth row of Eq.(A.14) as the
other independent equation. The above argument leads
to the following recurrence relation

c̃n =

[
row{C,1}
row{C,2}
row{C,3}
row{D,4}

]−1 {[
row{D,1}
row{D,2}
row{D,3}
row{F,4}

]
c̃n−1 −

[
row{F,1}
row{F,2}
row{F,3}

0

]
c̃n−2

}
.

(A.16)

For the asymptotic solutions, one can establish the re-
lation of Eq.(4) and Eq.(A.11) through Eq.(A.8). For
example we have λ± = −|q1| and η = η̃ − 1. Instead
of deducing ck and then calculate w(r = rI) to connect
the asymptotic solutions and the Taylor solutions, it is
more convenient to first calculate ξ(r = rI) and then use
Eq.(A.8) to obtain w(r = rI) in the numerical calcula-
tions.
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