
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fast algorithm for transient current through open quantum
systems

King Tai Cheung, Bin Fu, Zhizhou Yu, and Jian Wang
Phys. Rev. B 95, 125422 — Published 16 March 2017

DOI: 10.1103/PhysRevB.95.125422

http://dx.doi.org/10.1103/PhysRevB.95.125422


Fast algorithm for transient current through open quantum systems

King Tai Cheung,1 Bin Fu,1 Zhizhou Yu,1 and Jian Wang1, ∗

1Department of Physics and the Center of Theoretical and Computational Physics,

The University of Hong Kong, Pokfulam Road, Hong Kong, China

Transient current calculation is essential to study the response time and capture the peak transient
current for preventing melt down of nano-chips in nanoelectronics. Its calculation is known to be
extremely time consuming with the best scaling TN3 where N is the dimension of the device and T
is the number of time steps. The dynamical response of the system is usually probed by sending a
step-like pulse and monitoring its transient behavior. Here, we provide a fast algorithm to study the
transient behavior due to the step-like pulse. This algorithm consists of two parts: The algorithm I
reduces the computational complexity to T 0N3 for large systems as long as T < N ; The algorithm II
employs the fast multipole technique and achieves scaling T 0N3 whenever T < N2 beyond which it
becomes T log

2
N for even longer time. Hence it is of order O(1) if T < N2. Benchmark calculation

has been done on graphene nanoribbons with N = 104 and T = 108. This new algorithm allows us to
tackle many large scale transient problems including magnetic tunneling junctions and ferroelectric
tunneling junctions that cannot be touched before.

PACS numbers: 73.63.-b,73.23.-b,71.15.Mb

I. INTRODUCTION

At the heart of growing demands for nanotechnology
is the need of ultrafast transistors whose response time is
one of the key performance indicators. The response of a
general quantum open system can be probed by sending
a step-like pulse across the system and monitored by its
transient current over times, making transient dynam-
ics a very important problem. Many experimental data
show that most of the molecular device characteristics
are closely related to material and chemical details of
the device structure. Therefore, first principles analysis,
that makes quantitative and predictive analysis of device
characteristics especially its dynamic properties without
relying on any phenomenological parameter, becomes a
central problem of nanoelectronics.
The theoretical study of transient current dates back

to twenty years ago when the exact solution in the wide-
band limit (WBL) was obtained by Wingreen et al.1.
Since then the transient current has been studied ex-
tensively using various methods2, including the scat-
tering wavefunction3,4, non-equilibrium Green’s function
(NEGF)5–8 approach, and density matrix method9. The
major obstacle of theoretical investigation on the first
principles transient current is its computational com-
plexity. Many attempts were made trying to speed up
the calculation3,4,10–14. Despite of these efforts, the best
algorithm to calculate the transient current from first
principles going beyond WBL limit scales like TN3 us-
ing complex absorbing potential (CAP)15 where T and
N are number of time steps and size of the system re-
spectively. We note that if WBL is used, the scaling
is reduced12. However, to capture the feature of band
structure of lead and the interaction between lead and
scattering region the WBL is not a good approximation
in the first principles calculation.
As a result, most of the first principles investigations

on transient dynamics were limited to small and simple

one-dimensional systems. There are a number of prob-
lems such as magnetic tunneling junctions (MTJ)17, fer-
roelectric tunneling junctions18, where the system is two
dimensional or even three dimensional in nature. For
these systems, large number of k points Nk has to be
sampled in the first Brillouin to capture accurately the
band structure of the system. For MTJ structure like
Fe-MgO-Fe, at least Nk = 104 k points must be used to
give a converged transmission coefficient19. This makes
the time consuming transient calculationNk times longer
which is an almost impossible task even with high per-
formance supercomputer. Clearly it is urgent to develop
better algorithms to reduce the computational complex-
ity.

In this paper, we develop a fast algorithm based on
NEGF-CAP formalism to calculate transient current for
step-like pulse as a function of time step T which could
be helpful in speedig up the first principles transient cal-
culation. The computational time of this algorithm is
independent of T as long as T < N2 where N is the sys-
tem size20. Hence our algorithm is order O(1) as long
as T < N2. Four important ingredients are essential
to achieve this : (1). the availability of exact solution
of transient current based on NEGF that goes beyond
WBL. (2). the use of CAP so that the transient cur-
rent can be expressed in terms of poles of Green’s func-
tion. (3). within NEGF-CAP formalism the transient
current can be calculated separately in space and time
domain making O(1) algorithm possible. At this point
the computational complexity reduces to N3 + TN2 (al-
gorithm I). (4). the exploitation of Vandermonde matrix
enables us to use fast multipole method (FMM)21,22 and
fast Fourier transform (FFT) to further reduce the scal-
ing to N3+N2 log2N for T < N2 and large N , therefore
completely independent of T (algorithm II). To verify
the computational complexity, we carry out benchmark
calculations on graphene nanoribbons using the tight-
binding model. A calculation is also done for a sys-
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tem with N = 10200 and T = 108 confirming the O(1)
scaling. This fast algorithm makes the computational
complexity of transient current calculation comparable
to that of static calculation.

II. THEORETICAL FORMALISM

For a general open quantum system with multiple leads
under a step-like bias pulse, the Hamiltonian is given by

H(t) =
∑

kα

ǫkαĉ
†
kαĉkα +

∑

n

(ǫn + Un(t))d̂
†
nd̂n

+
∑

kαn

hkαnĉ
†
kαd̂n + c.c. ,

where c† (c) denotes the electron creation (annihilation)
operator in the lead region. The first term in this equa-
tion corresponds to the Hamiltonian of leads with ǫkα

the energy of lead α which contains external bias voltage
vα(t) = Vαθ(±t). The second and third terms represent
the Hamiltonian in the central scattering region and its
coupling to leads, respectively. Here we have included the
time-dependent internal response Un(t) in the scattering
region due to the external bias23. Taking q = ~ = 1,
the time-dependent terminal current Iα(t) of lead α is
defined as15,16

Iα(t) = ReTr[Γα(2H(t)− i∂t)G
<(t, t)Γα] , (1)

where Γα is an auxiliary projection matrix which is used
for measuring the transient current passing through the
lead α. Here G< and H(t) are the lesser Green’s function
and the Hamiltonian of the central scattering region, re-
spectively. For step-like pulse an exact solution for G<

has been obtained by Maciejko et al6 which goes beyond
the WBL. Now we consider the case of upward pulse
vα(t) = Vαθ(t). In order to have the exact solution in
Ref.6, we assume that Un(t) = Un,eq+(Un,neq−Un,eq)θ(t)
where Un,eq is the equilibrium potential while Un,neq is
the non-equilibrium potential at long time limit. As a
result of this instantaneous approximation, at t = 0, the
system is in equilibrium with Hamiltonian Heq while at
t > 0 the system is in non-equilibrium state with a time-
independent Hamiltonian Hneq.
Note that our fast algorithm relies critically on this

approximation where two static potentials are needed
at: t = 0− and t = 0+. For instance, our method
fails if Un(t) = Un,eq + Un,neq cos(ωt). With this instan-
taneous assumption, our method could be extended to
the first principles calculation where only two static self-
consistent Coulomb potentials can be obtained by usual
NEGF-DFT calculation24. In terms of spectral function
Aα(ǫ, t), the lesser Green’s function G< is given by6

G<(t, t) =i
∑

α

∫

dǫ

2π
f(ǫ)Aα(ǫ, t)Γα(ǫ)A

†
α(ǫ, t) . (2)

For the upward step-like bias pulse the Aα(ǫ, t) is
6

Aα(ǫ, t) = G
r
(ǫ+∆α)−

∫

dω

2πi

e−i(ω−ǫ)tG
r
(ω +∆α)

(ω − ǫ+∆α − i0+)
×

[

∆α

(ω − ǫ− i0+)
+ ∆G̃r(ǫ)

]

≡ A1α(ǫ+∆α) +

∫

dωe−i(ω−ǫ)tA2α(ω, ǫ) ,(3)

where G
r
and G̃r are the non-equilibrium and equilib-

rium retarded Green’s function respectively, ∆α is the
amplitude of external bias −Vα, and ∆ = Uneq − Ueq

is a matrix where the subscript ’neq’ and ’eq’ refer to
non-equilibrium and equilibrium potentials, respectively.

Despite the simplification from the conventional dou-
ble time G<(t, t′) to single time G<(t, t) used in Eq.(1),
the computational cost to obtain G< remains very de-
manding due to the following reasons. (1) Consider
Aα(ǫ, t) with a matrix size of N , matrix multiplications

G
r
(ω+∆α) and G̃

r(ǫ) in the integrand of Eq.(3) requires
computational complexity of O(N3) for each time step.
As a result, the total computational cost over a period of
time is at least O(TN3) where T is the number of time
steps. (2) Double integrations in energy space are re-
quired for G<. The presence of numerous quasi-resonant
states whose energies are close to real energy axis makes
the energy integration in Aα extremely difficult to con-
verge. This problem can be overcome using the CAP
method25. The essence of CAP method is to replace each
semi-infinite lead by a finite region of CAP while keeping
transmission coefficient of the system unchanged. In ad-
dition, it has been demonstrated in Ref.15 that the first
principles result of transient current for molecular junc-
tions obtained from the exact numerical method (non-
WBL) and the CAP method are exactly the same. Us-
ing the CAP method, the poles of the Green’s function
can be obtained easily and the spectral function can be
calculated analytically using the residue theorem. Ex-
panding Fermi function using Pade spectrum decompo-
sition (PSD)26 further allows us to calculate the transient
current separately in space and time domain making the
O(T 0N3) algorithm possible.

Now we illustrate how to achieve our algorithm for
the transient current calculation, i.e., Iα(tj) for j =
1, 2, ..., T . Substituting Eq.(3) to Eq.(2), G<(t, t) can
be written as

G<(t, t) = (i/π)[B1 +

∫

dωdω′e−i(ω−ω′)tB2(ω, ω
′)

+
∑

α

∫

dǫdω′ei(ω
′−ǫ)tf(ǫ)A1αWαA

†
2α + c.c.] ,(4)

where B1 =
∫

dǫf(ǫ)
∑

αA1αWαA
†
1α, B2(ω, ω

′) =
∫

dǫf(ǫ)
∑

αA2α(ω, ǫ)WαA
†
2α(ω

′, ǫ), and Wα is the CAP
matrix. In terms of poles of Green’s function and Fermi
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distribution function, we have (see Appendix A)

G<(t, t) = (i/π)

[

B1 +
∑

nm

e−i(ǫn−ǫ∗
m
)tB̄2(ǫn, ǫ

∗
m)+

+
∑

α

∑

lm

e−i(ǫ̃l−ǫ∗
m
+∆α)tf̄(ǫ̃l)B̄3α(ǫ̃l, ǫ

∗
m) + c.c.

+
∑

α

∑

nm

e−i(ǫn−ǫ∗
m
)tf(ǫn −∆α)B̄4α(ǫn, ǫ

∗
m) + c.c.

]

,(5)

where ǫn and ǫm (n = 1, 2, ...N) is the complex energy
spectrum of Hneq−i

∑

αWα in the lower half plane while
ǫ̃l being the poles of f(E) using PSD with l = 1, ...Nf ; Nf

is the total number of those poles for the adopted Pade
approximant; other parameters in Eq.(5) are given as

B̄2 = −4π2 [B2(ω, ω
′)(ω − ǫn)(ω

′ − ǫ∗m)]

∣

∣

∣

∣

∣

ω=ǫn,ω′=ǫ∗
m

,

(6)

B̄3α = −2πiA1α(ǫ̃l)Wα

[

A†
2α(ω

′, ǫ̃l)(ω
′ − ǫ∗m)

]

∣

∣

∣

∣

∣

ω′=ǫ∗
m

,

(7)

B̄4α = −4π2
[

A1α(ǫ)WαA
†
2α(ω

′, ǫ)(ω′ − ǫ∗m) ×

(ǫ− ǫn +∆α)]

∣

∣

∣

∣

∣

ǫ=ǫn−∆α,ω′=ǫ∗
m

, (8)

and

f̄ = 2πi(f(ǫ)(ǫ− ǫ̃l))

∣

∣

∣

∣

∣

ǫ=ǫ̃l

, (9)

is the residue of f in the PDS representation.

Within CAP framework, G< in Eq.(1) is the lesser
Green’s function of the central scattering region exclud-
ing the CAP regions. Substituting the second term of
Eq.(5) into the first term in Eq.(1), we find its contribu-
tion to current (denoted as I1)

I1(t) = Re
∑

nm

e−i(ǫn−ǫ∗
m
)tTr[Γα2HneqB̄2(ǫn, ǫ

∗
m)Γα]

≡ 2Re
∑

nm

e−i(ǫn−ǫ∗
m
)tMnm , (10)

where the matrix M does not depend on time. We see
that the space and time domains have been separated.
Denoting a Vandermonde matrix Vjk = exp(iǫktj) with

k = 1, 2, ..., N , tj = jdt , j = 1, 2, ..., T where dt is the
time interval, we have I1(tj) = [V t(M +M †)V ∗]jj . Us-
ing this approach, we finally obtain (see supplementary
material for details)

IL(tj) = I0L + [V tM1V
∗]jj +





∑

α=L,R

[V tM2αṼ
∗
α ]jj + c.c.



 ,(11)
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FIG. 1. a) Configuration of the gated graphene nanoribbon.
The S1 and S2 gate are of values 0.81V and -0.81V respec-
tively. b) Transient current of zigzag graphene nanoribbon
for a system of 600 atoms The dashed line is the dc limit.

where Ṽαjk = exp(i(ǫ̃k + ∆α)tj) is a T × Nf matrix,
M1 is a N × N matrix while M2 is a N × Nf matrix.
Since ǫk is the complex energy in the lower half plane,
Vjk goes to zero at large j. Hence I0L is the long time
limit of transient current which can be calculated using
Landauer Buttiker formula. The time dependent part
of the transient current can be separated into real space
calculation (calculation of M1 and M2α) and then a ma-
trix multiplication involving time. We note that at room
temperatures the Fermi function can be accurately ap-
proximated by 15 or 20 Pade approximants. Hence the
calculation of [V tM1V

∗]jj+(
∑

α[V
tM2αṼ

∗
α ]jj+c.c.) can

be combined to give TN2 computational complexity.

Now we examine the computational complexity of this
algorithm (denoted as algorithm I). Clearly the total
computational complexity is N3 + TN2. At this stage,
the algorithm is not O(1) yet. In the supplementary
material, we will show that matrix multiplication V tM ,
where M is M1 or M2α, can be done using the FMM
and FFT (denoted as algorithm II). This will reduce
the computational complexity of V tM from TN2 to
T log2N . Hence for T < N2, the computational com-
plexity is N3 + N2 log2N . For T > N2, the scaling
is N3 + T log2N . However, for large T, the physics
comes into play. Since ǫj is the complex energy of the
resonant state, VjT = exp(−iǫjdtT ) decays quickly to
zero before T = N2. For a graphene nanoribbon with
N = 104 (see details below), the maximum value of
VjT = exp(−iǫjdtT ) is 10−3 when T = N and dt = 1
fs. Consequently all the matrix elements are zero for
T = 10N . Hence for large systems, the chance to go be-
yond T = N2 is small. In this sense, the algorithm II is
order O(1) algorithm.
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III. FAST MULTIPOLE METHOD

The fast multipole method21 has been widely used
and has been ranked top 10 best algorithms in 20th
Century33. It is extremely efficient for large N. In the
following, we will illustrate how to speed up the calcu-
lation of transient current defined in Eq.(12) below. We
want to calculate the following quantity

I(tj) =
∑

n,m

exp(−iǫntj)Mnm exp(iǫ∗mtj), (12)

where the matrix M can be expressed in terms of vec-
tors as M = (c0, c1, ..., cN−1) and Vnj = exp(−iǫntj) is
a Vandermonde matrix with tj = jdt and j = 1, 2, ...T .
Eq.(12) is of the form V tMV ∗ where t stands for trans-
pose. In the following, we outline how to calculate V tc
using κ1N + κ2N log2N operations where c is a vector
of N components and κ1 and κ2 are constants.
Setting aj = exp(−iǫjdt) and denoting T the num-

ber of time steps. Then b = V tc is equivalent to

bn =
∑N−1

j=0 cj(aj)
n. A direct computation shows that

the entries of b = V tc are the first T coefficients of the
Taylor expansion of

S(x) =

N−1
∑

j=0

cj
1− ajx

=

∞
∑

n

N−1
∑

j=0

cj (ajx)
n
=
∑

n

bnx
n,

(13)

where bn =
∑N−1

j=0 cj(aj)
n. Denoting S̄(x) =

∑T−1
n=0 bnx

n

and setting x = ωl
T with ωT = exp(i2π/T ) we can calcu-

late S̄(ωl
T ) which is the Fourier transform of bn,

S̄(ωl
T ) =

N−1
∑

j=0

T−1
∑

n=0

cja
n
j ω

nl
T =

N−1
∑

j=0

cj
1−

(

ajω
l
T

)T

1− ajωl
T

= ω−l
T

N−1
∑

j=0

cj(1− aTj )

(1/ωT )
l
− aj

,

where we have used [ωT ]
T = 1. Note that the fast multi-

pole method (FMM) aims to calculate vl =
∑

j cj/(xl −

aj) with O(N) operations instead of N2 operations.
Hence S̄(ωl

T ) can be obtained using FMM, from which
we calculate bn using FFT.
Now we estimate the computational complexity for

T ≤ N . For FMM we need κ1max(T,N) oper-
ations where κ1 is about 40 log2(1/τ) with τ the
tolerance31. For FFT the computational complexity is
at most κ2N log2N where κ2 is a coefficient for FFT
calculation31. To compute V tM where M has N vec-
tors, we have to calculate V tc N times. Hence the total
computational complexity is κ1N

2 + κ2N
2 log2N . This

algorithm is denoted as algorithm IIa while the algorithm
for T < N2 discussed below is denoted as algorithm IIb.
For very large T up to T = N2 (ifN = 104 we have T =

108), we will show that the computational complexity is
κ1N

2+2κ2N
2 log2N . In fact, it is easy to see that I(tj)

defined in Eq.(12) is the first T coefficients of the Taylor
expansion of

S(x) =

N−1
∑

n,m=0

Mnm

1− ana∗mx
(14)

=
∞
∑

j

N−1
∑

n,m=0

Mnm (ana
∗
m)j xj =

∑

j

I(tj)x
j ,(15)

where an = exp(−iǫndt). Now we define two new
vectors u and d which have N2 components with
ut = (ct0, c

t
1, ..., c

t
N−1) (recall our definition M =

(c0, c1, ..., cN−1)) and d
t = (a∗0a

t, a∗1a
t, ..., a∗N−1a

t), where
once again t stands for transpose. With the new vectors
defined, S(x) in Eq.(14) is expressed as

S(x) =

N2−1
∑

j=0

uj
1− djx

, (16)

which is exactly the same form as Eq.(13). The only dif-
ference is that c and a in Eq.(13) haveN components and
S has to be calculated N times while u and d in Eq.(16)
have N2 components and we calculate S defined accord-
ing to Eq.(16) just once. Therefore the computational
complexity is κ1N

2 + κ2N
2 log2N

2. If T = nN with
n = 1, 2, ...N , it is not difficult to show that the compu-
tational complexity is κ1TN/n+ κ2T (N/n) log2(nN) =
κ1N

2 + κ2N
2 log2(nN).

To summarize, the computational complexity of
Eq.(12) is κ1N

2 + 2κ2N
2 log2N for T < N2. It is easy

to show that for T > N2 the scaling is dominated by
κ2T log2N . However, for large T, the physics comes into
play. Since aj = exp(−iǫjdt) with ǫj the energy of reso-
nant state, aTj quickly decays to zero before T = N2 and

hence no need to go up for T > N2.

IV. NUMERICAL TEST

To demonstrate the power of this algorithm, we cal-
culate the transient current in a graphene nanoribbon.
Graphene is a well-known intrinsic 2D material with
many exotic properties27,28. Its transient behaviour
in response to a step-like pulse was studied in the
literature7,29,30. R. Tuovin et al.7 explored the metal-
graphene-metal system at zero temperature under the
effect of ribbon length, width and bias and found the
present of several-hundreds-femtoseconds oscillation pe-
riod in transient current, caused by the lead-ribbon re-
flections; Again at zero temperature, E. Perfetto et
al.29 studied the phenomenon of two temporal plateaus
that appeared in the transient current of wide graphene
nanoribbon (width W > 20 nm) and deduced the two
has arisen from diverse origins; For zigzag ribbon, Xie et
al.30, investigated the difference in the current response
for symmetric and asymmetric systems. While in all
these studies, the transient current through a central re-
gion of pure graphene nanoribbons under a step bias have
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been studied for both armchair and zigzag structures un-
der different circumstances, none of them has considered
the cases when barrier-like gated regions exist in cen-
tral region. Here, we will test our algorithm on a gated
zigzag graphene nanoribbon at room temperature using
the tight-binding (TB) Hamiltonian given by

Ĥ = −h0
∑

<i,j>

ĉ†i ĉj − q
∑

i

[Viθ(t) + Vg1i + Vg2i]ĉ
†
i ĉi ,

(17)

where ĉ†i (ĉi) is the creation (annihilation) operator at
site i and h0 = 2.7eV being the nearest hopping constant.
Here V (x) = VL + (VR − VL)x/L is the potential land-
scape due to the external bias with VR = −VL = 0.54V
and Vg1 and Vg2 are gate voltages in regions S1 and S2,
respectively.
We first confirm that the transient current calculated

using the new method is the same as that of Ref.15.
Using 30 layers of CAP, transmission coefficient ver-
sus energy was calculated which shows good agreement
with the exact solution (Fig.2 gives the comparison for
a graphene nanoribbon with N = 10000). This also
ensures the correct steady state current. For the tran-
sient current, excellent agreement is also obtained be-
tween our algorithm and that of Ref.15 (see Fig.1). We
note that even in the presence of gates, an overshooting
at the beginning is still observed, similar to the un-gated
graphene30 but the oscillating tail is not observable after
the overshooting peak. We also tested with the cases for
gated graphene ribbon with a larger width W(not shown)
and obtained higher transient current over time which
was observed previously7 for the un-gated condition.
We have performed calculation on transient current

through a zigzag graphene nanoribbon of 10000 atoms
with T = 20000 time steps (each time step is 1fs). The
width of the system is two unit cells (16 atoms) while the
length of the system is 625 unit cells. Two gate voltages
of 2.2V were applied so that the system is in the tunnel-
ing regime. The bias voltage is vL = −vR = 0.5V . From
Fig. 3, we see a typical behavior of transient current with
the current shots up initially and then decreases to the
long time limit. Our numerical results using FMM (algo-
rithm II) show that 100ps is needed to reach the dc limit.
The oscillatory behavior is due to resonant states in the
system.
Now we test the scaling of our algorithm by calculating

the transient current for nanoribbons with different sys-
tem sizes ranging from 600 to 10200 atoms. We first test
the algorithm I. Computational time of transient current
for 3 time steps against system sizes N is shown in Fig.
4a. We have fitted the data using 50N3 + TN2 with
very good agreement showing TN2 scaling for the time-
dependent part. For comparison, we have also plotted
the computation time using method in Ref.15. We found
that the number of energy points NE depends on the
spectrum of resonant states of the system. For graphene
nanoribbons with 600 atoms, we have used NE = 6000 to

-8 -6 -4 -2 0 2 4 6 8

0

1

2

3

4

 

 

 TS

 TCAP

Tr
an

sm
is

si
on

Energy (eV)

FIG. 2. The transmission coefficient of the zigzag graphene
nanoribbon for a system of 10000 atoms. The solid line (TS)
is the exact numerical result using self-energy of the lead and
the dashed line (TCAP ) is from CAP.
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FIG. 3. Transient current of zigzag graphene nanoribbon for
a system of 10000 atoms at temperature of 300K. The inset
is the long time behavior between 17ps to 18ps. The dashed
line is the dc limit of transient current.

converge the integral over Fermi function. Fig. 4a shows
that a speed up factor of 1000T is achieved at N = 2400.
The scaling is shown in Fig. 4b, from which we see that
for T < N the computational time is almost independent
of the number of time steps.

Now we examine the algorithm II which reduces the
scaling TN2 further. Notice that the scaling TN2 comes
from matrix multiplication involving Vandermonde ma-
trix V tM1. Fast algorithm is available to speed up the
calculation involving structured matrix such as Vander-
monde matrix. As discussed in details in section III, we
can use FMM21,22 and FFT to carry out the same ma-
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FIG. 4. (a) Scaling of computation time against N at T=3
(each time step is 1fs). The fitted curve in the form of 50N3+
TN2 is in good agreement with the calculated results (Y-axis
is on the right). In order compare the performance of Ref.(15),
6000 energy points was used for integration(Y-axis is on the
left).(b) Scaling of CPU time against t for N=10200 (t=100
fs corresponds to T=100) using algorithm I. Left hand side:
exponential scale in t; Right hand side: linear scale in t, shows
that at extreme large data points ranges over 10 thousands
points, computational time is proportional to T.

trix multiplication using only κ1N
2 + κ2N

2 log2N op-
erations provided T < N2. Here the coefficient κ1 is
a large constant that depends only on the tolerance of
the calculation τ and the setup of FMM. The theoreti-
cal estimate of this coefficient is about 40log2(1/τ) where
τ is the tolerance31 in FMM calculation which we used
τ = 10−4. When implementing FMM, this coefficient is
in general larger than the theoretical one.
To test the algorithm II, we have calculated the tran-

sient current numerically for N = 104 and T = 108 using
FMM and FFT. The configuration of the system is the
same as that appeared in main text (Fig.1) except the
width W of the system is now 17 times wider with a to-
tal of 10200 ∼ 104 atoms. The time step is 0.012 fs. The
computed transient current using Algorithm I and II are
shown in Fig.5. The purpose of this calculation is to test
the computational complexity only. All we need to do is
to compute,

S̄(ωl
T ) = ω−l

T

N2−1
∑

j=0

uj(1− dTj )

(1/ωT )
l
− dj

, (18)

using FMM and then take FFT to obtain I(tj) where uj
and dj have been defined just before Eq.(16). Note that
uj has been obtained in the time independent calculation.

If (1/ωT )
j and dj in Eq.(18) are uniformly distributed

on the complex plane, the FMM can be done much faster.
However, as shown in Fig.6 and Fig.7, the unit distribu-

tion of (1/ωT )
j
and dj are highly non-uniform in our
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FIG. 5. Transient current calculated by algorithm I, Algo-
rithm IIa and Algorithm IIb;IIa and IIb refer to the cases
with FMM methods targeting T = N and T = N2 respec-
tively.
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FIG. 6. Distribution of (1/ωT )
j on the complex plane.

case. Actually, (1/ωT )
j
are distributed non-uniformly

along the circle (Fig.6) while dj are distributed in a sec-
tor of unit circle (Fig.7). This makes the calculation more
difficult. For N = 104 and T = N8, we found that the
optimum number of levels in FMM is 10. With 10 levels
in FMM, over 60% of CPU time was spent on direct sum
in FMM calculation.

In Fig.5, we have tested the algorithm IIa which is
suitable for T = N and the algorithm IIb designed for
T = N2 against the algorithm I. For T < N , the results
of the algorithm I, the algorithm IIa and IIb are on top of
each other. For T > N , the calculation was done for T =
N2. In Fig.5, we only show the results for T < 40000.
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There is no significant feature in the transient current
plot beyond that.
Denote t1 the CPU time needed for the spacial calcula-

tion (order N3), t2 needed for the temporal part (matrix
multiplication in Eq.(7)). Using a workstation of Xeon
X5650 with 12 cores and frequency 2.67GHz, we obtained
t1 = 3500s using 12 cores and t1 = 33800s using a sin-
gle core so the efficiency of multithreading is about 80%.
For FMM calculation, multithreading could be very in-
efficient and we have used a single core to perform the
calculation. We found t2 = 3400s for T = 108 using a
single core. We see that for T = 108 the time spent in
time dependent part is about one tenth of the time in-
dependent calculation. This confirms that our method is
of order O(1) as long as T < N2. We wish to point out
that the algorithm II is aimed to calculate the transient
current I(t) with time steps T = N2 at one shot with
scaling N2log2N . This scaling remains if we want I(t)
with the number of time step less than N2.

V. DISCUSSION AND CONCLUSION

Since our algorithm is based on the NEGF-CAP for-
malism, it could be extended to the NEGF-DFT-CAP
formalism which performs the first principles calculation.
With the fast algorithm at hand, many applications can
be envisaged. For instance, the transient spin current
(related to spin transfer torque) using the NEGF-DFT-
CAP formalism could be carried out for planar structures
where k-sampling in the first Brillouin zone is needed. It
is straightforward to include k-sampling in our method.
It is also possible to extend this method to the case when
electron-phonon interaction in the Born approximation
as well as other dephasing mechanism are present32. Fi-

nally, first principles transient photo-induced current on
two dimensional layered materials could be calculated us-
ing our method.
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APPENDIX A: PADE APPROXIMANT

Brute force integration over Fermi function along
real energy axis to obtain G<(t, t) may need thousands
of energy points to converge which is very ineffi-
cient. To obtain an accurate result while reducing the
cost, fast converging Pade spectrum decomposition
(PSD) is used for the Fermi function f in Eq.(4) in
the main text so that the residue theorem can be applied.

Using [n-1/n] PSD scheme26 with the Pade approxi-
mant accurate up to O((ǫ/kT )4n−1), Fermi function f
can be expressed as

f(ǫ) =
1

2
−

n
∑

j=1

2ηjβǫ

(βǫ)2 + ξj
2 , (19)

where ξj and ηj are two set of constants that can be
calculated easily. Using the PSD scheme analytic form
of G< in Eq.(4) of the main text can be obtained using
the residue theorem.

APPENDIX B: CALCULATION OF THE

SPECTRAL FUNCTION

We express G̃r(ǫ) and G
r
(ǫ), the equilibrium and non-

equilibrium retarded Green’s functions, respectively in
terms of their eigen-functions by solving the following
eigen-equations for Heq and Hneq,

15 i.e.,

(Heq − iW )ψ0
n = ǫ0nψ

0
n ,

(Heq + iW †)φ0n = ǫ0nφ
0
n , (20)

whereW =
∑

αWα and similar equations can be defined
for Hneq. Using the eigen-functions of Heq − iW and
Hneq − iW , we have

G̃r(ǫ) = [ǫ −Heq + iW ]−1 =
∑

n

|ψ0
n〉〈φ

0
n|

(ǫ − ǫ0n + i0+)
, (21)

G
r
(ǫ) = [ǫ −Hneq + iW ]−1 =

∑

n

|ψn〉〈φn|

(ǫ− ǫn + i0+)
. (22)
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Performing integral over ω using the residue theorem, the
analytic solution of Aα is obtained

Aα(ǫ, t) =
∑

n

|ψn〉〈φn|

ǫ+∆α − ǫn + i0+
+
∑

n

ei(ǫ+∆α−ǫn)t|ψn〉〈φn|

ǫ− ǫn + i0+

×

[

∆α

ǫ+∆α − ǫn + i0+
−∆

∑

l

|ψ0
l 〉〈|φ

0
l |

ǫ− ǫ0l + i0+

]

,

(23)

where ∆ = Hneq −Heq.

APPENDIX C: CALCULATION OF THE

TRANSIENT CURRENT

Starting from Eq.(1) and in analogue to Eq.(6) of the
main text, the expressions of the current in Eq.(7) of the
main text can be obtained as follows:

I0L(tj) = 2ReTr

[

i

π
ΓLHneqB1ΓL

]

,

M1 = ReTr

[

i

π
ΓL(2Hneq − (ǫn − ǫ∗m))

(

B̄2 +
∑

α

f(ǫn −∆α)B̄4α

)

Γ

M2α = ReTr

[

i

π
ΓL(2Hneq − (ǫ̃l − ǫ∗m +∆α))

(

f(ǫ∗m)B̄3α

)

ΓL

]

.

The expression of transient current IR(t) is similar to
Eq.(7).
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