
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Theory of ionization potentials of nonmetallic solids
Yu Kumagai, Keith T. Butler, Aron Walsh, and Fumiyasu Oba

Phys. Rev. B 95, 125309 — Published 14 March 2017
DOI: 10.1103/PhysRevB.95.125309

http://dx.doi.org/10.1103/PhysRevB.95.125309


Theory of ionization potentials of non-metallic solids

Yu Kumagai,1,2, ∗ Keith T. Butler,3 Aron Walsh,4, 3 and Fumiyasu Oba5, 1, 6

1Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
2PRESTO, Japan Science and Technology Agency, Tokyo 113-8656, Japan

3Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
4Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK

5Laboratory for Materials and Structures, Institute of Innovative Research,

Tokyo Institute of Technology, Yokohama 226-8503, Japan
6Center for Materials Research by Information Integration,

National Institute for Materials Science, Tsukuba 305-0047, Japan.

(Dated: February 21, 2017)

Since the ionization potential (IP) is one of the fundamental quantities in a solid, ruling the physical and
chemical properties and electronic device performances, many researchers have quantified the IPs using first-
principles calculations of slab models recently. However, the breakdown into bulk and surface contributions
has remained a contentious issue. In this study, we discuss how to decompose the IP into the bulk and sur-
face contributions by using the macroscopic average technique. Although this procedure quantifies well-defined
macroscopic dipoles and corroborates with the continuous model, it is not consistent with the physical intuition.
This is because the strong charge fluctuation inside solids significantly contributes to the macroscopic dipole
potential. We also discuss the possibility of an alternative splitting procedure that can be consistent with the
physical intuition, and conclude that it is possible only when both bulk and surface charge density is well decom-
posed into a superposition of spherical charges. In the latter part, we evaluate the IPs of typical semiconductors
and insulators such as Si, diamond, GaAs, GaN, ZnO, and MgO, using atomic-charge and molecular-charge
approximations, in which the charge density of a solid is described as a superposition of charge density of the
constituent atoms and molecules, respectively. We find that the atomic-charge approximation also known as the
model-solid theory can successfully reproduce the IPs of covalent materials, but works poorly for ionic materi-
als. On the other hand, the molecular-charge approximation, which partly takes into account the charge transfer
from cations to anions, shows better predictive performance overall.

PACS numbers:

I. INTRODUCTION

Band-edge positions with respect to the vacuum level are
fundamental physical quantities having great relevance to
materials properties and applications such as catalysis and
photocatalysis, electronic transport, and electron emission1.
With X-ray photoelectron spectroscopy or Kelvin probe mi-
croscopy, one can measure an ionization potential (IP) that
is the energy required for removing an electron from a sur-
face and defined as the position of the valence band maximum
(VBM) with respect to the vacuum level1. IPs are physically
well-defined quantities depending on the surface orientations,
and can be computed using first-principles calculations of slab
models within the given approximation to the exchange and
correlation interactions between electrons2–5. The electron
affinity (EA) is defined as the conduction band minimum with
respect to the vacuum level. IPs and EAs are also utilized to
approximately discuss the Schottkey barrier heights of metal-
semiconductor interfaces6, band offsets between semiconduc-
tors5,7, and carrier doping limits8,9. It has also been conjec-
tured that the IP is composed of surface dipole potential and a
surface independent bulk electronic eigenvalue10,11. However,
researchers have thought that the latter seems impossible to
obtain for a three-dimensionally periodic solid since the aver-
age electrostatic potential is arbitrary due to the conditionally
convergence nature of the Coulomb summation12. Note that
such arbitrariness does not affect the total energies of neutral
systems, but special cares are required for those of charged

systems13–16.

In this article, our main purposes are twofold. First, we
explore a definite way to decompose an IP into surface depen-
dent and independent contributions. We begin with a macro-
scopic continuous model, and apply its theory to realistic
solids in conjunction with first-principles calculations. For
metallic systems, the surface dipole potential has been ana-
lyzed using the jellium model for discussing the work func-
tions17,18. The potential is determined from the electron distri-
butions in the slab model with the positive jellium background
charge and vacuum. Such model calculations can reproduce
the tendency of work functions experimentally observed. If
the dipole potential is a well-defined quantity, it should be
plausible to estimate such a dipole potential for real solids
quantitatively once the spatial charge distribution is available.
However, such a dipole is ill defined in a solid because of the
continuous spatial fluctuation of the electron charge density.
In this study, we bridge a gap between such realistic solids and
continuous model by adopting the macroscopic average tech-
nique. This introduces a well-defined macroscopic dipole and
corroborates with the continuous model. However, the calcu-
lated bulk contributions of IPs are very much different from
those inferred from ionization energies of atoms, molecules,
and/or clusters. This is because the macroscopic dipole also
includes the influence of the spatial fluctuation of bulk charge
density. We also discuss the possibility of other splitting pro-
cedures that are consistent with the physical intuition, but is
possible only when the bulk charge density is described as a
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FIG. 1: (a, b) Schematics of solid-angle distributions subtended by
the surface dipole layers at points (a) inside and (b) outside a finite
solid. x1 and x2 in (a) are located immediate vicinity of surface 1.
The surface dipole layers are assumed to have infinitesimal thick-
ness. The signs of the solid angles are the definition in this study. (c)
Schematic of the relationship between the ionization potential (IP),
electron binding energy, electron affinity (EA), band gap, bulk elec-
tronic eigenvalue (ǫ◦VBM), and dipole potential energy (d/ǫ0).

superposition of spherical charges and they can also represent
the surface charge.

Second, we evaluate the IPs using simple approximations.
The first is the atomic-charge approximation, also known as
the model-solid theory. Model-solid theory has been used
for evaluating band offsets between conventional semiconduc-
tors with similar chemical bonding19–21, but not for predict-
ing IPs so far. As will be shown, this approximation works
well for covalent materials including simple substances, but
does not for ionic compounds. Therefore, we also consid-
ered molecules composed of the constituent ions, in which the
charge transfer between atoms is taken into account. We will
see that the molecular-charge approximation improves over
the atomic-charge approximation drastically. These investiga-
tions shed light on understanding of the IPs, and estimating
IPs quantitatively, without using slab model calculations.

II. RESULTS AND DISCUSSION

A. Macroscopic model

For discussing the work functions of metals, many re-
searchers have employed a continuous model17,18. Following
this, let us start with a macroscopic but finite non-metallic sys-
tem in which the bulk region is macroscopically charge neutral
and surfaces consist of infinitestimal charge dipole layers. To
avoid confusion, we consider the potential energies for elec-
trons that are consistent with electron eigenvalues, so the sign
is the inverse of the conventional electrostatic potential. The
sign of potential and charge follow the conventional rule and
thus the electron charge is negative. The electrostatic poten-
tial at point x posed by the surface dipole layers is determined
by solid angles subtended by the surfaces22. When the solid
angles are distributed as illustrated in Figs. 1(a) and (b), the
electrostatic potential arising from the dipoles is given as

φ(x) =
N

∑

i=1

Ωi(x)di

4πǫ0
, (1)

where N is the number of surfaces, Ωi solid angle in steradian
unit for surface i, di dipole density, and ǫ0 vacuum permittiv-
ity. We set the sign of Ωi to be positive when it is subtended
by the front of the crystal surface, in which

∑N
i=1Ωi = 0 and

∑N
i=1Ωi = −4π at a point outside and inside the system, re-

spectively (see Figs. 1(a) and (b)). di is defined from inside
the system, and so is usually negative because electrons are
considered to move toward vacuum. As seen in Eq. 1, the
electrostatic potential inside the system depends not on the
system size but on the crystal morphology. Thus, the electro-
static potential inside a solid caused by the surface dipole does
not diminish but reaches to the value in Eq. 1 as increasing the
system size even if the surface dipole layer is finite. In case the
system is surrounded by the same surface with dipole density
d, the potential energy reduces to a constant of (−e)φ = d/ǫ0,
where e(> 0) is the elementary charge.

We then consider the vacuum level. The solid angles decay
with increasing the distance from the system and the electro-
static potential finally reaches a plateau at the infinite distance,
at which the potential is set to zero by convention. The elec-
tronic level corresponds to the intrinsic vacuum level, which
is known not to be experimentally accessible1. We can in-
stead access the vacuum level at a point just outside the sur-
face of the system, which is called the local vacuum level.
The distance between such a point and a surface is assumed
to be large enough compared to the surface dipole dimension,
but small to the surface area dimension. The IP measured
by experimental techniques such as X-ray photoelectron spec-
troscopy or Kelvin probe microscopy is an energy required for
extracting an electron from a surface to the local vacuum level
near the surface1. We should emphasize that, only when the
system is surrounded by the same surface, the electrostatic po-
tential is zero at any point outside the system as

∑N
i=1Ωi = 0,

and therefore the local and intrinsic vacuum levels are exactly
the same.

Next, we discuss the IPs. The energy level of the VBM in



3

the system with respect to the intrinsic vacuum level is written
as ǫ◦VBM − eφ(x), where ǫ◦VBM is the bulk electronic eigenvalue
at the VBM under the situation where the surface dipole is
absent. Then, the IP at surface 1 that is the potential energy
difference from x1 to x2 in Fig. 1(a), can be written as
(

0 −
N

∑

i=1

Ωi(x2)di

4πǫ0

)

−

(

ǫ◦VBM −

N
∑

i=1

Ωi(x1)di

4πǫ0

)

= −
d1

ǫ0
− ǫ◦VBM,(2)

because the solid angles subtended by surface 1 is -2π and 2π
at x1 and x2 as shown in Fig. 1(a), respectively, and the other
angles are common. In this paper, the electron binding en-
ergy, which corresponds to the sign-reversed IP (see Fig. 1(c)),
is also used, because it is intuitively understood rather than
the IP, and thus ǫ◦VBM + d/ǫ0 corresponds to the electron bind-
ing energy. Note that the calculated IP using the typical slab
model for surface 1 corresponds to the value of Eq. 2, since
the modeled surface is infinitely repeated two-dimensionally.
As shown in Eq. 2, the IP can be divided into the contribu-
tions of ǫ◦VBM and dipole potential energy d/ǫ0 (see Fig. 1(c)).
Therefore, the change of the IP by the difference in the surface
orientations reflects the change of the surface dipole potential
energy as ǫ◦VBM is a surface independent term.

B. Realistic solids

We then discuss the contributions of ǫ◦VBM and d/ǫ0 using
a prototypical solid system, LiH. Its great advantage is that
we can perform all-electron (AE) calculations with a plane-
wave basis set at a practical computational cost owing to small
nuclear charges of Li and H; the extensively used projector
augmented-wave (PAW) method23 requires additional care for
the approximation to treatment of core electrons as discussed
in Appendix24. The calculations were performed using the
Perdew-Burke-Ernzerhof generalized gradient approximation
(PBE-GGA)25 as implemented in vasp26. The lattice constant
was fixed at the bulk value of 4.02 Å, and the atomic posi-
tions were unrelaxed from their bulk positions so as to sim-
plify the discussion here. The plane-wave cutoff energy was
set at 10 keV after checking the convergence of the VBM
eigenvalue under zero average electrostatic potential condi-
tion. The slab models were constructed from sufficiently large
supercells elongated along one direction perpendicular to the
associated surface orientation, with the same thickness for the
slab and vacuum layers. The FFT grids were set to keep the
same densities as those used for bulk calculations so that nu-
merical errors are minimized.

Figures 2(a) and (b) show the planar-averaged electron
charge density and electrostatic potential of the LiH (100) sur-
face, respectively. As seen, the charge density and electro-
static potential are not constant but drastically oscillate ow-
ing to the spatial distribution of electrons and nuclei. In such
cases, the surface dipole is ill defined inside the bulk as op-
posed to the continuous model in Sec. II A. To corroborate
with the continuous model, such oscillations should be re-
moved. Since vacuum is viewed as one type of medium, sur-
faces can be regarded as special cases of interfaces, and there-
fore, the procedure used for computing the interface dipole

can also be applied. Note that such macroscopic average tech-
nique has already been applied for determining reference po-
tential offset between solids and vacuum27.

Baldereschi et al. have proposed the macroscopic aver-

age technique for analyzing the potential offset between dif-
ferent materials and the dipole charge around interfaces28.
The macroscopic average function is calculated by f (z) =
1
L

∫ z+ L
2

z− L
2

f (z)dz, where f (z) is a target function and L the period

length of the unit-cell along the direction considered. This
technique can filter out rapid oscillations caused by the core
electrons and the nuclei. When adopting this approach for the
surface model, the dipole potential is defined as the difference
in the Coulomb potentials averaged over a unit cell going from
inside the slab to vacuum. We can now clearly see the sur-
face dipole density (Fig. 2(a)) and the dipole potential energy
(Fig. 2(b)), which we refer to as the macroscopic dipole (d)
and the macroscopic dipole potential energy (d/ǫ0), respec-
tively, in this study. Note that, when adopting a larger averag-
ing window with an integral multiple of the minimum period
distance instead, the dipole charge distribution is changed, but
both the dipole moment and potential offset are unaltered. The
calculated d/ǫ0 from the potential offset is -4.87 eV, which can
also be estimated from the macroscopic dipole density (solid
green line in Fig. 2(a)) via Poisson equation.
ǫ◦VBM can be obtained from first-principles calculations of

bulk systems under zero average electrostatic potential condi-
tion, as often adopted in the plane-wave codes. However, in
order to know the relative position of the VBM with respect to
the vacuum level, we need the calculation of the slab model to
quantify d/ǫ0. In rocksalt LiH, ǫ◦VBM is 0.55 eV and d/ǫ0 -4.87
eV as shown above. Therefore, the IP of the (100) surface is
4.87 - 0.55 = 4.32 eV within the PBE-GGA. This means that
the bulk electronic eigenvalue ǫ◦VBM of LiH is positive but the
large macroscopic dipole potential pushes the electron’s en-
ergy level downward significantly, resulting in the positive IP
(see Fig. 3). The macroscopic dipole potential energy through
the (110) surface was also calculated and found to be -4.71 eV
as shown in Fig. 3. Interestingly, the difference of the macro-
scopic dipole potential between the (100) and (110) surfaces
(0.16 eV) is very small compared to their absolute values.
This indicates that d/ǫ0 partly includes the bulk contribution,
which will be discussed in Sec. II C.

We also calculated the surface dipole charge using the pro-
cedure proposed for estimating the interface dipole by Bylan-
der and Kleinman29. They defined the dipole charge as the
difference between the charge density of an interface model
and that of its constituent solids29. The interface was then set
at the bisected plane. Figure 2(c) shows the planar-averaged
charge density of the surface model minus that of the clipped
pristine bulk at the bisected plane. The bulk charge density on
the boundary is then reduced to half. It is clearly seen that the
dipole layer is caused by the electron leakage at the surface.
It generates the potential shift (Fig. 2(d)), but corresponds to
just 34 % of the macroscopic dipole potential.

What contributes to the remaining macroscopic dipole po-
tential? Figures 2(e) and (f) show the macroscopic averages
of the charge and electrostatic potential energy of the clipped
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FIG. 2: Results of an all-electron calculation of the LiH (100) surface slab model. (a) Planar average of electron charge density (thick solid
gray line) and macroscopic average of electron (dashed red line), nuclear (dotted blue line), and total (solid green line) charge density. (b)
Planar average (thick solid gray line) and macroscopic average (solid green line) of electrostatic potential. Note that average electrostatic
potential in the entire supercell is set to zero by convention. (c) Planar average of electron leakage charge defined as the charge difference
between the surface slab model and clipped bulk model, in which the charge density is halved on the bisecting plane and zero outside (see text
for details). (d) Planar average of the potential energy calculated from the charge density in (c) via Poisson equation. (e, f) Same as those in
(a, b) but for the clipped bulk model (see text for details). In (a) and (e), the insets show the enlarged total charge density.

bulk, respectively. As seen, despite the centrosymmetricity of
the unit cell, the clipped bulk charge introduces shift of the
macroscopic average potential. This can be understood from
the schematic of uniform electron model shown in Fig. 4(a),
which is comprised of nuclear point charges and uniform elec-
tron charge. One can see the electrostatic potential energy is
zero only on the cell boundary and negative at any other area
inside the system, owing to electrons that inevitably locate
outside nuclei. As a consequence, the macroscopic average
potential is negative inside the slab, even without spill of elec-
trons into vacuum. This is also related to the seemingly coun-
terintuitive positive value of ǫ◦VBM obtained under the condi-
tion of zero average electrostatic potential. We deal with this
in more detail in Sec II C.

The partition of the surface dipole into the electron leakage
and clipped bulk charge is, however, not unique since it de-
pends on where the clipping surface is chosen6. Figure 4(b)
shows the schematic of a surface rotated by 45 degrees from
the surface in Fig. 4(a). The surface in Fig. 4(a) has larger
negative dipole potential than that in Fig. 4(b) since the po-
tential caused by the clipped bulk charge is proportional to
square of the periodic distance in the uniform electron model
as easily inferred from Poisson equation. The IPs are almost
independent of the surface orientation, and such difference of
the clipped bulk potential is compensated by the electron leak-
age potential. Indeed, as shown in Fig. 3, the LiH (100) sur-

face has larger clipped bulk potential than the (110) surface
although the IPs are nearly the same as the former has the
longer periodicity along the surface orientation. Furthermore,
we can also apply other definitions for the clipped bulk sur-
faces such as a stepwise surface as shown in Fig. 4(b). The
amount of the dipole of the electron leakage is then decreased
whereas that of the clipped bulk is increased with keeping the
same total dipole.

C. Physical meaning of the split of IPs from macroscopic

viewpoint

The split of IPs based on the macroscopic average tech-
nique is mathematically strict and unique; ǫ◦VBM is obtained
from bulk calculation and d/ǫ0 fully contains surface depen-
dency. However, one might wonder about the physical mean-
ing of this split because the bulk contribution of the electron
binding energies should be physically negative and similar to
the ionization energies of atoms, molecules and/or clusters.
The discrepancy between our definition and physical intuition
is attributed to the significant fluctuation of bulk charge den-
sity. To explain this, Fig. 5 shows the energy diagram of
hypothetical oxides AO and BO. Here are two assumptions:
First, these two solids have the same IP and the same struc-
ture. Second, A ion has core electrons, whereas B ion does
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(ǫ◦VBM(AE)), PAW method (ǫ◦VBM(PAW)) and PAW method with a cor-
rection derived by Bruneval et al.24 (ǫ◦VBM(cor)) (see Appendix for de-
tails).

not, and they do not affect the valence electrons (O-2p band in
our example). Therefore, the valence electrons feel the same
electrostatic potential and their wavefunctions are the same.
Deduced from physical intuition, these two bulk components
of IPs should have the same values. However, based on the
macroscopic average technique, ǫ◦VBM values are very differ-
ent from each other, and d/ǫ0 counteracts this difference as
shown in Fig. 5. This is due to the core electrons introducing
a strong fluctuation of potential and so a shift of d/ǫ0. Such
core effect should be included into the bulk contribution from
the aspect of physics. Thus, although the macroscopic average
technique is strict for splitting IPs into bulk and surface inde-
pendent components, it is not useful for discussing physical
and chemical tendencies. This is also discussed via system-
atic calculations in the Appendix.

The next question is whether it is possible to exclude
such bulk fluctuation effect from d/ǫ0 in a consistent man-
ner. By splitting d/ǫ0 into bulk contribution without surface
dependence dbulk/ǫ0 and surface contribution dsurface/ǫ0 from
physics viewpoint, the electron binding energy can be rewrit-
ten as

(

ǫ◦VBM +
dbulk

ǫ0

)

+
dsurface

ǫ0
. (3)

The first parenthesis and the third term correspond to the rede-
fined bulk and surface contributions, respectively. The IPs of
unrelaxed Tasker type 1 surfaces denoted as neutral surfaces in
this study are almost independent of the surface orientations,
especially when surface chemical bonds are absent. Such IPs
would be close to bulk components of IPs, i.e., ǫ◦VBM+dbulk/ǫ0.
When the charge density of both bulk and neutral surfaces
is well described with a superposition of spherical charges
as illustrated in Fig. 6(a), the macroscopic dipole potentials

macroscopic average

C
h

a
rg

e
 d

e
n

si
ty

electrons

nuclei

P
o

te
n

tia
l

E
n

e
rg

y

(a)

Periodicity

(100)

C
h

a
rg

e
 d

e
n

si
ty

electrons

nuclei

Periodicity

(b)

P
o

te
n

tia
l

E
n

e
rg

y

(100) (110) (110)

FIG. 4: (a) Schematic of a model composed of uniform electron
and nuclear point charges. The electron charge density is zero out-
side of the model. Planar-averaged charge density, electric field, and
electrostatic potential energy are also shown. (b) Same as (a) but 45
degrees rotated. Note that the macroscopic dipole potential energy is
higher than that in (a). As with the stepwise surface shown in (b) with
dashed-dotted lines, other definitions for the surface are possible.

e-

AO

BO

IP

vacuum
level

B

A
VBM (B)

VBM (A)

A atom has core electrons 

B atom has no core electrons

atomic distance

O-2p

FIG. 5: Schematic of the relationship between electrostatic poten-
tial (solid lines), macroscopic dipole potential energy d/ǫ0 and bulk
electronic eigenvalues ǫ◦VBM of hypothetical oxides AO and BO. We
assume that these two oxides have the same crystal structures and
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and ǫ◦VBM are very much different, which is attributed to the core elec-
trons in A atoms.

d/ǫ0 estimated from these spherical charges are accurately
predicted without surface dependences (see Fig. 6(b)).

One possibility of realizing such a situation is the model-
solid theory, in which electron charges in solids are supposed
to be a superposition of atomic charges. However, when atoms
condensate, chemical bonds and charge transfer emerge, and
consequently, such models do not satisfy the aforementioned
prerequisites. Indeed, model-solid theory cannot well pre-
dict the macroscopic dipole potential of ionic compounds as
shown later. Therefore, it is a future work to construct a
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unique and non-biased procedure fulfilling the conditions.

D. Model-solid theory

In the previous section, we considered how to split the IPs
of the realistic materials into the bulk electronic eigenvalue
ǫ◦VBM and macroscopic dipole potential energy d/ǫ0. Here, we
discuss procedures to predict IPs without slab model calcula-
tions, which requires a way to approximately estimate d/ǫ0.

A few simple methods that predict the band offset between
semiconductors solely from bulk information have been pro-
posed so far. For example, Baldereschi et al. used the bulk

charge density of the Wigner-Seiz cell, which corresponds
to the clipped charge density in this study, for estimating
the band offset28. This works well for interfaces composed
of isostructural materials with similar chemical bonding, in
which the electron leakage would be mostly canceled out be-
tween two materials. However, this does not work for pre-
dicting the IPs because the electron leakage contribution to
the dipole potential is significant as shown in Fig. 2(d). Fur-
thermore, the surface boundary is ill defined in general as dis-
cussed above.

Van de Walle and Martin have proposed an alternative way
to predict the band offset using atomic-charge density also
known as the model-solid theory19–21. It is successful for
predicting the band offset between the conventional semicon-
ductors such as II-VI and III-V zincblende materials as the
Baldereschi’s procedure. In this study, we applied the model-
solid theory to predict the IPs. Although the PAW radii affect
both ǫ◦VBM and d/ǫ0, their deviations are cancelled out when
calculating the IPs. Therefore, calculations in this subsection
were performed with the PAW method (see Appendix for de-
tails).

First, we have checked how atomic relaxation in the slab
models affects the IPs. As seen in Fig. 7(a) showing compar-
ison between the IPs with and without atomic relaxation, the
IPs are mostly increased by the surface reconstruction, but the
variations are not significantly large (the mean absolute varia-

tion is 0.36 eV).
We then show the calculated IPs using the atomic charge. In

this approximation, the macroscopic dipole potential energy
can be calculated as

d

ǫ0
=

1
Ωcell

N
∑

i=1

∫

Vidr, (4)

where Ωcell is the volume of the unit cell, N the number of
atoms in the unit cell, and Vmol the electrostatic potential
caused by the i-th atom, and the integral interval is infinite
space30. Under the zero average electrostatic potential con-
dition,

∫

Vidr can be simply obtained from −Vcell · φ, where
Vcell is the volume of the supercell used for a calculation of
i-th atom and φ the potential at the outermost point from the
atom in the supercell. Note that,

∫

Vidr only depends on the
atomic species, so we do not have to recalculate these once
obtained. Therefore, this approximation allows us to estimate
the IPs at great speed as long as the bulk calculations are fin-
ished. Note also that this approximation and the following
molecular-charge approximation do not depend on the surface
orientation but on the volume of the system involved. There-
fore, if this works well for predicting IPs of neutral surfaces,
we can adopt the IPs as a definition of bulk contributions of
IPs as discussed in Sec. II C. As shown in Fig. 7(a), this can
predict the IPs of zinc-blende compounds well. Especially,
the predicted IPs for II-VI compounds are almost identical to
those of the slab models. However, it works poorly for other
solids, especially ionic compounds such as rocksalt oxides
and LiH, because the representation of the charge density as
a superposition of neutral atoms is very far from the physical
situation, owing to significant charge transfer between these
ionic species.

To improve the predictive capability, we consider molecules
comprised of the constituent atoms and estimated the surface
dipole potential from the molecular-charge density in the same
manner as the model-solid theory. The surface dipole poten-
tial energy can be then calculated as

d

ǫ0
=

Z

Ωcell

∫

Vmoldr, (5)

where Z is the number of formula unit in the unit cell, Vi the
electrostatic potential caused by the diatomic molecule. The
interatomic distances were optimized within PBE-GGA. Note
that we can calculate the molecules much faster than the slab
models. In Fig. 7(b), the IPs estimated from the molecular-
charge approximation are shown. It is clearly seen that this
approximation drastically improves the prediction of the IPs
over the atomic-charge approximation. Especially, it can re-
produce the IPs calculated from slab models with atomic re-
laxation. This would be because atoms near surfaces relax
in a similar manner with the molecules. The mean absolute
error estimated in our test set is 0.4 eV. Since the IPs gener-
ally range between 4 and 12 eV31, its prediction error roughly
corresponds to 5%. Combining this method with an accurate
calculation of the bulk eigenvalue, for example using the GW
method (which provides a calculate error of approximately 0.2
eV compared to experiment4,5) would result in IPs with an ex-
pected error of ∼ 0.6 eV, compared to experiment; this is still
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FIG. 7: Estimated electron binding energies from (a) atomic-charge and (b) molecular-charge approximations compared to those calculated
using slab models with and without atomic relaxation.

an acceptable accuracy for application in a high-throughput
screening approach. A drawback of this approximation is that
the calculations of molecules can be straightforward only for
such simple binaries, and we need a further consideration for
complex compounds because their constituent molecules can
have various configurations.

The MgO (100) surface shows the largest error in the
molecular-charge approximation. Therefore, we checked the
convergence of the dipole potential as a function of the size of
the MgO clusters surrounded by the (100) surface. Figure 8
shows the calculated dipole potential from the Mg-O molecule
and MgO clusters with various sizes. For 64- and 216-atom
clusters, the dipole potential is estimated from the average
electrostatic potential in the central region of each cluster with
respect to the vacuum potential at the outermost point in the
supercell (see Fig. 8). One can see that the dipole potential is
well calculated even with the 8-atom cluster and almost con-
verged in the 64-atom cluster. This indicates that the IP of the
MgO (100) surface, having the largest error in our test set, can
be very accurately calculated only with half unit-cell width for
the surface layer.

III. CONCLUSIONS

In this paper, we theoretically investigated the IPs of non-
metallic solids. First, we discussed how the IPs are decom-
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FIG. 8: Relative dipole potential of the MgO (100) surface calculated
using the Mg-O molecule and 8-, 64-, and 216-atom clusters. The
reference is set to the value of the relaxed MgO (100) slab model.
The atomic positions in the molecule and clusters are relaxed except
for the eight atoms at the center of 64- and 216-atom clusters, for
which the macroscopic dipole potential is estimated from the average
electrostatic potential at the central region colored by light red. On
the other hand, for the 8-atom cluster, it is estimated in the same
manner as the molecule.

posed into the bulk electronic eigenvalue ǫ◦VBM and surface
dipole potential energy d/ǫ0 from a macroscopic viewpoint
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(Sec. II A).
Next, we considered the IPs of realistic materials in

Sec. II B. A detailed argument was developed with the (100)
and (110) surfaces of the prototypical solid, LiH. To com-
ply with the macroscopic viewpoint, we adopted the macro-
scopic average technique, by which we define the macro-
scopic dipole density d and macroscopic dipole potential en-
ergy d/ǫ0. These are composed of the electron leakage and
clipped bulk contributions. However, since the surface bound-
ary is ill defined, this partition is not unique. It is found
that the bulk electronic eigenvalues are mostly positive, and
a large macroscopic dipole potential significantly pushes the
electron’s energy levels downward, resulting in the positive
IPs (see also Appendix). Although the partition of IPs into
ǫ◦VBM and d/ǫ0 is well defined from macroscopic viewpoint,
it is difficult to find the clear physical meaning of this split as
neither quantity correlates strongly to the IPs, and they largely
cancel out each other when constructing the IPs. We also dis-
cussed the possibility of an alternative splitting procedure that
can be consistent with the physical intuition, and conclude that
it is possible only when the charge density of both bulk and
neutral surfaces is well decomposed into a superposition of
spherical charges.

Finally, we estimated the IPs using two approximations,
i.e., atomic-charge and molecular-charge approximations in
Sec. II D. The former can estimate the IPs of covalent sys-
tems quite successfully, but works poorly for ionic systems.
On the contrary, the latter can predict the IPs of both covalent
and ionic materials overall. This would be because the calcu-
lations of molecules can take into account the charge transfer
from cations to anions. Furthermore, we found that the MgO
(100) surface has the largest discrepancy between the IPs of
the slab model and the molecular-charge approximation in our
calculation set, but its IP can be accurately calculated with the
64-atom cluster which has just half unit-cell width for the sur-
face layer, indicating a rather localized nature of the surface
region at this surface.
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Appendix

To see the meaning of the split of the IP into bulk elec-
tronic eigenvalues and macroscopic surface dipole potential,
we also show the results of systematic calculations for a wide

variety of materials taking the diamond, zincblende, and rock-
salt structures in this Appendix. An IP is almost independent
of the choice of PAW data set as long as electron reconstruc-
tion at the surface is accurately described by the PAW method.
However, since the PAW method does not explicitly consider
charge density near nuclei, its calculated ǫ◦VBM and d/ǫ0 are de-
creased and increased from the AE values, respectively. The
change of ǫ◦VBM in LiH as a function of PAW radii has also
been discussed in Ref.24. It is, however, prohibitively com-
putationally demanding to calculate other materials including
heavier elements with the AE method. Therefore, we here
use a correction scheme developed by Bruneval et al. to es-
timate ǫ◦VBM using the PAW method23,24. We can indirectly
estimate d/ǫ0 from ǫ◦VBM and IPs via Eq. 2. Figure 3 shows an
example of LiH, where ǫ◦VBM was calculated using the PAW
potential with a Bruneval correction (ǫ◦VBM(cor)) by the abinit
code32. We have found that the discrepancy between ǫ◦VBM(cor)
and AE ǫ◦VBM (ǫ◦VBM(AE)) is less than 10 meV, and the obtained
IPs at the LiH (100) surface are almost identical within 3 meV.
Therefore, d/ǫ0 can be estimated using the PAW method via
Eq. 2 to be -4.86 eV, which is almost identical to the AE value
of -4.87 eV.

Figure 9 shows the calculated electron binding energies
d/ǫ0 + ǫ

◦

VBM with the PBE-GGA functional, and their decom-
position into d/ǫ0 and ǫ◦VBM. The surfaces considered are all
classified as Tasker type 1 surfaces at which each plane holds
neutral charge33. As represented by the LiH (100) and (110)
surfaces shown in Fig. 3, the IPs of the Tasker type 1 surfaces
are very similar to each other in the same system34,35. The
atomic positions are fixed at those in the PBE-GGA structures
for simplicity. Note that PBE-GGA typically underestimates
band gaps and GaSb, InAs, and InSb show metallic behav-
iors in our test set although they are semiconductors in exper-
iments. Their IPs are set to the Fermi levels in this study. Such
underestimated IPs can be improved by using the hybrid func-
tionals or GW approximations compared to the experimental
values, which can be significant for practical applications4,5,36.
It is generally seen that, when calculating IPs, ǫ◦VBM and d/ǫ0
largely counteract each other, and when ǫ◦VBM is high, d/ǫ0
tends to be low. As a result, the variations of IPs are not so
large compared to both ǫ◦VBM and d/ǫ0. It is also seen that ǫ◦VBM
is increased as the lattice constant is decreased whereas d/ǫ0
is decreased, which is also discussed with the jellium model
in Sec. II B.

The bulk electronic eigenvalue ǫ◦VBM can be obtained from
a simple bulk calculation. Therefore, if the bulk eigenvalue
were significantly correlated to the IP, one could predict the
IP without requiring an expensive slab calculation. In order to
assess this correlation, Fig. 10 shows the plot of the electron
binding energies against ǫ◦VBM. The electron binding energy
seems positively correlated with ǫ◦VBM, but the correlation is
unfortunately not strong, as demonstrated by the discrepancy
between LiH and Li halides. Therefore, it would be difficult
to deduce the IPs only from ǫ◦VBM obtained through a bulk
calculation.
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