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The fractional quantum Hall effect at ν = 2 + 3/8, which has been definitively observed, is one of
the last fractions for which no viable explanation has so far been demonstrated. Our detailed study
suggests that it belongs to a new class of of exotic states described by the Bonderson-Slingerland
wave function. Its excitations are non-Abelian anyons similar to those of the well studied Pfaffian
state at 5/2, but its wave function has a more complex structure. Using the effective edge theory,
we make predictions for various measurable quantities that should enable a confirmation of the
underlying topological order of this state.

PACS numbers: 73.43.-f, 71.10.Pm

I. INTRODUCTION

The 5/2 fractional quantum Hall effect (FQHE),
the first even denominator FQH state (FQHS) to be
observed1, has produced a host of remarkable concepts.
Its most plausible explanation is in terms of the Moore-
Read (MR) Pfaffian (Pf) wave function2, which repre-
sents a topological p-wave paired state of fully spin po-
larized composite fermions (CFs)3 supporting Majorana
modes with non-Abelian braid statistics4. Composite
fermions with weak repulsive interaction form a Fermi
sea at a half filled Landau level (LL)5, as is the case at
ν = 1/2 in the lowest LL (LLL), but presumably, the in-
teraction between them is weakly attractive at ν = 5/2,
leading to the formation of CF-pairs, which opens a gap
and produces an incompressible state6. The particle-
hole conjugate of the MR Pfaffian state, called the anti-
Pfaffian (APf)7,8, is a topologically distinct candidate for
the 5/2 FQHE, and a breaking of the particle-hole sym-
metry due to LL mixing will determine which of the two
is favored in experiments9–16.

This article is concerned with the physical origin of
another even denominator fraction, namely ν = 2 + 3/8
for which definitive experimental evidence exists17–21; no-
tably, Kumar et al.20 have reported activated behavior
at this filling fraction establishing incompressibility. The
underlying physical mechanism of the 2 + 3/8 FQHE has
not yet been understood22. We consider three topologi-
cally distinct candidates for this state, namely the Pfaf-
fian and the anti-Pfaffian states of composite fermions,
and a Bonderson-Slingerland (BS) state, all defined be-
low, and find that it is best described by the BS state. All
of these states also support excitations with non-Abelian
braid statistics23. We then consider measurements that
can confirm the BS topological order of the 2+3/8 state.

Other states have also been proposed as candidates for
the 3/8 FQHE. A maximally chiral Abelian 3/8 state was
obtained in the effective-edge-theory based classification
of Fröhlich et al.24 but without a prescription for a trial
wave function. Jolicoeur proposed a series of non-Abelian
wave functions at ν = k/(3k − 2)25, but the Jolicoeur
3/8 wave function (k = 6) is not readily amenable to
evaluation.

II. TRIAL WAVE FUNCTIONS

We discuss the wave functions in Haldane’s spherical
geometry26 where N electrons reside on the surface of a
sphere and a magnetic monopole of strength 2Qφ0 (where
φ0 = hc/e is a flux quantum) produces a radial mag-
netic field. For finite systems, the incompressible state
at a filling factor ν occurs at 2Q = ν−1N − S, where
S is called the shift. Topologically distinct candidate
states often occur at different shifts. Unless otherwise
stated we shall assume the electrons to be fully spin po-
larized, which is consistent with the current experimental
results. We shall also discuss below all physics within the
LLL subspace, even though we are interested in the sec-
ond LL physics. This is possible because the problem of
electrons in the second LL interacting via the Coulomb
interaction is mathematically equivalent to the problem
of electrons in the LLL interacting with an effective in-
teraction that has the same Haldane pseudopotentials26

as the Coulomb interaction in the second LL. We will
neglect the effects of LL mixing and finite width, which
alter the form of the interaction and produce corrections
to various observable quantities, but are not expected to
change the form of correlations and thus, will not destroy
the microscopic mechanism for incompressibility we pro-
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pose here. Nevertheless, such studies will be needed for a
more reliable quantitative comparison with experiments.

The filling factor of composite fermions, ν∗, is re-
lated to the electron filling factor by the relation ν =
ν∗/(2pν∗ ± 1)3,27. If composite fermions carrying two
vortices (p = 1) are formed at ν = 3/8 in the second
LL (neglecting the lowest filled LL), their filling factor
is ν∗ = 3/2. The most immediate possibility one can
imagine is one in which composite fermions in the sec-
ond Λ level (Landau-like level of composite fermions)
capture two more vortices and form a MR-like paired
Pfaffian or anti-Pfaffian state. The Pf and APf trial wave
functions for ν = 3/8 can be constructed by composite-
fermionizing the 3/2 Pfaffian or the anti-Pfaffian wave
function as follows28:

Ψ
APf/Pf
3/8 = PLLL

∏
j<k

(ujvk − ukvj)2Φ
APf/Pf
3/2 (1)

where u = cos(θ/2) exp(iφ/2) and v =
sin(θ/2) exp(−iφ/2) are the spinor coordinates on
the sphere, PLLL implements LLL projection and

Φ
APf/Pf
3/2 refers to the APf or Pf state at filling factor

3/2, in which the lowest LL is fully filled and elec-
trons in the second LL form a paired APf or Pf state.
The Pf state in the LLL is obtained by diagonalizing
a three-body interaction Hamiltonian given by29,30:

V int
3 =

∑
i<j<k P

(3)
ijk(3Q−3) where P(3)

ijk(L) is the projec-
tion operator which projects the state of three particles
i, j and k into the subspace of total orbital angular
momentum L. The APf state is obtained by taking

the particle-hole conjugate of the Pf state. Φ
APf/Pf
3/2 is

obtained by elevating these states to the second LL and
fully populating the LLL.

The MR Pf and APf states at 1/2 occur at 2Q = 2N−3
and 2Q = 2N + 1, respectively. The corresponding Pf

and APf trial wave functions Ψ
APf/Pf
3/8 at ν = 3/8 oc-

cur at 2Q = (8N − 13)/3 and 2Q = (8N − 9)/3 (shifts
S = 13/3 and S = 3), respectively. The largest systems
accessible to exact diagonalization are N = 14 for the
shift S = 13/3 and N = 12 for S = 3. In spite of the
large Hilbert space dimensions of these systems (Table I),
it is possible to obtain the overlaps of these states with
the exact Coulomb ground state in the second LL at the
corresponding flux. These overlaps, shown in Table I, are
low (< 10%). We have also considered a slightly modified

trial wave function in which Φ
APf/Pf
3/2 on the right hand

side of Eq. 1 is replaced by the exact Coulomb state at
3/2 at the appropriate flux (for fully spin polarized par-
ticles). The overlaps of the resulting wave function with
the corresponding exact Coulomb ground state are also
given in Table I (denoted overlap′), and are also very low.
We believe that the rather poor overlaps rule out the Pf
or APf pairing of composite fermions in the second Λ
level as the origin of the 3/8 FQHE in the second LL.

These results are in stark contrast with the 3/8 FQHE
in the LLL. Mukherjee et al.28 showed the APf wave func-
tion to be plausible for the fully spin polarized FQHE at

N 2Q dimL=0 dimLz=0 trial state overlap overlap′

12 29 1,330 1,437,269 ΨAPf
3/8 0.091(2) 0.083(1)

14 33 11,463 19,159,798 ΨPf
3/8 0.074(3) 0.104(1)

12 31 2,634 3,451,798 ΨBS
3/8 0.85442(51) -

TABLE I. Overlaps of the trial wave functions described in
Eq. 1 and 3 with the exact Coulomb ground state at 3/8
in the second LL. The last column shows the overlaps with
the trial state obtained by composite-fermionizing the exact
Coulomb ground states at 3/2 at the appropriate effective
flux values. The total Hilbert space dimension (dimLz=0) and
the zero total orbital angular momentum subspace dimension
(dimL=0) are also shown. The number in the parenthesis
is the statistical error in the Monte Carlo evaluation of the
overlap.

this fraction. We note, however, that while experimen-
tal signatures for the 3/8 state have been seen31,32, its
existence has not yet been confirmed33,34.

Having ruled out the Pf / APf pairing of composite
fermions, we consider another candidate state proposed
by BS, who have constructed a class of wave functions
that generalize the MR Pfaffian wave function23. Just
as the MR wave function is obtained by multiplying the
bosonic Laughlin 1/2 state by the Pfaffian factor, the BS
wave functions are obtained by multiplying the bosonic
Jain states at ν = n/[(2p + 1)n ± 1]35,36 by the Pfaffian
factor:

ΨBS
n

(2p+1)n±1
= Pf

[
1

ujvk − ukvj

]∏
j<k

(ujvk − ukvj)2p

× PLLL

∏
j<k

(ujvk − ukvj)Φ±n (2)

where Φn is the wave function of n filled LLs of elec-
trons, and Φ−n ≡ [Φn]∗ represents n filled LLs in neg-
ative fields. For p = 0, the only acceptable state is
the MR Pfaffian state corresponding to n = 1 and +
sign in the above equation; other states of the form
PLLL

∏
j<k(ujvk − ukvj)Φ±n have non-zero probability

of two particles being at the same point, producing an
ill-defined wave function when multiplied by the Pfaf-
fian factor. For 2p = 2 on the other hand, all BS wave
functions are well defined. In particular, the BS wave
function for the 3/8 state is given by (in a form that is
most suitable for our calculations):

ΨBS
3/8 = Pf Φ1PLLLΦ2

1[Φ3]∗ = Pf Φ1Ψ3/5 (3)

where Φ1 =
∏
j<k(ujvk − ukvj) is the wave function of

filled LLL, Pf = Pf
[

1
ujvk−ukvj

]
, and Ψ3/5 is the Jain 3/5

state3, with the LLL projection conveniently evaluated
following Refs.37–39. ΨBS

3/8 occurs at a shift of S = 1, i.e.

at 2Q = 8N/3− 1.
The exact Coulomb ground state for N = 12 parti-

cles at shift S = 1 is incompressible, see the inset of
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FIG. 1. The pair correlation function g(r) for the exact sec-
ond Landau level Coulomb state (red), and the Bonderson-
Slingerland trial state of Eq. 3 (black) at filling factor
ν = 2 + 3/8 for N = 12 electrons. Inset: Spectrum for the
fully polarized ν = 3/8 state in the second LL obtained by
exact diagonalization at N = 12 and 2Q = 31 for the exact
second Landau level Coulomb interaction.

Fig. 1. Its overlap with the model BS wave function is
0.85442(51). It is much larger than the overlaps for the
ΨPf

3/8 or the ΨAPf
3/8 , and roughly of the same order as the

overlaps of the MR Pf wave function with the exact 5/2
state40,41 and those of the 1/3 Laughlin wave function
with the exact 7/3 state42. (For reference, for N = 10
and 14, the overlap of the Pfaffian wave function with
the exact 5/2 Coulomb ground state are 0.84 and 0.69,
whereas the overlaps of the Laughlin 1/3 state with the
exact 7/3 state are 0.54 and 0.5840,41,43.) Exact diago-
nalization for the next system size (N = 18, 2Q = 47) is
beyond our reach. From the spectrum of N = 12, we esti-
mate the gap to be of the order of 0.01 e2/ε` which is close
to the experimental estimated value 0.015 e2/ε`20. (The
theoretical gap for the LLL 3/8 is ∼ 0.002 e2/ε`28.) Fig.
1 compares the pair correlation functions g(r) of the exact
Coulomb ground state with that of the BS state. These

match very well and show decaying oscillations at long
distances, typical of an incompressible state. We also see
a “shoulder” like feature (also seen in the LLL 3/844,
MR45,46, Read-Rezayi (RR)47,48 and other BS states) at
short distances which is considered to be a characteristic
fingerprint of non-Abelian states49 that involve pairing
(MR) or clustering (RR at ν = k/(k + 2) is a k-cluster).
These results taken together give us a fair degree of con-
fidence in the validity of the BS wave function for the
2 + 3/8 FQHE.

We have also considered the possibility of a par-
tially polarized 2 + 3/8 FQHE state. All three states
considered above have partially spin polarized cousins.
The partially polarized APf/Pf states are given by

PLLLΦ2
1[Φ1,↑Ψ

APf/Pf
1/2,↓ ], and the partially polarized BS

state is given by Pf PLLLΦ3
1[Φ2,↑Φ1,↓]

∗. Exact diagonal-
ization studies up to N = 10 do not support the real-
ization of any of these states for spinful electrons at zero
Zeeman energy (the ground states at the appropriate N
and 2Q values do not have the predicted quantum num-
bers). This should be contrasted with the situation at
ν = 3/8 in the LLL, where a partially spin polarized
3/8 state is predicted to occur at sufficiently low Zeeman
energies50–52, and to provide an almost exact representa-
tion for the APf pairing of composite fermions51.

III. ENERGY SPECTRUM ON TORUS

In addition to wave function overlap, we can also study
the energy spectrum of this state on torus. We consider
a rectangular torus spanned by vectors L1 = L1êx,L2 =
L2êy and we choose the Landau gauge A = (0, Bx, 0).
The aspect ratio of the torus is defined as R = L1/L2.
For a torus enclosing a total magnetic flux of Nφ, the
single-particle wave functions in the second Landau level
are

ψ
Nφ
m (x, y) =

1

(2L2`B
√
π)1/2

Z∑
k

H1

[
x

`B
− 2π`B

L2
(m+ kNφ)

]

× exp

{
−1

2

[
x

`B
− 2π`B

L2
(m+ kNφ) + i

2πy

L2
(m+ kNφ)

]2}
, (4)

where `B =
√
L1L2/(2πNφ) is the magnetic length and

Hn denotes the Hermite polynomial of degree n. The cre-
ation (annihilation) operator for the single-particle state
with quantum number m is denoted as C†m (Cm). The
electrons interact via Coulomb potential V (r1 − r2) =
e2/(ε|r1 − r2|). The second quantized form of the many-

body Hamiltonian is

1

2

∑
{mi}

Fm1m2m4m3
C†m1

C†m2
Cm4

Cm3
. (5)

By defining the reciprocal lattice vectors G1 =
2πêx/L1,G2 = 2πêy/L2, we transform the interaction
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potential to momentum space as

V (r1 − r2) =
1

L1L2

∑
q

V (q)eiq·(r1−r2), (6)

where q = q1G1 + q2G2. This helps us to find that the
coefficients Fm1m2m4m3

are

∫
d2r1d

2r2

[
ψ
Nφ
m1 (r1)

]∗ [
ψ
Nφ
m2 (r2)

]∗
V (r1 − r2)ψ

Nφ
m4 (r2)ψ

Nφ
m3 (r1)

=
1

Nφ

Nφ∑
m1

Nφ∑
m2

∑
q1,q2

V (q) exp

{
−1

2
q2`2B

}(
1− q2

2

)2

exp

{
i2πq1

[
m1 −m2 − q2

Nφ

]}
δ̃
Nφ
m1+m2,m3+m4

, (7)

0 1 2 3
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FIG. 2. Energy spectra of the N = 12, Nφ = 32 system on
torus with aspect ratio (a) R = 1.0 and (b) R = 1.5.

where δ̃
Nφ
i,j is a generalized Kronecker delta defined as

δ̃
Nφ
i,j = 1 iff i mod Nφ = j mod Nφ. The many-

body eigenstates are labeled by the momentum quantum

number Y ≡ (
∑Nφ
i=1mi) mod Nφ.

One characteristic feature of topologically ordered
states is the existence of multiple degenerate ground
states on torus. The ground state degeneracy of the BS
state at ν = 3/8 is expected to be 24 based on the follow-
ing argument: there is a center of mass degeneracy q for
a system at ν = p/q53 (which is exact for any translation-
ally invariant Hamiltonian) and the Pfaffian factor gives
rise to another three fold degeneracy in each center of
mass sector (which is not exact in finite size systems but
converges in the thermodynamic limit). We show in Fig.
2 the energy spectra of the N = 12, Nφ = 32 system on
torus in one center of mass sector (the other sectors are
simply duplicates of this one). One can claim that there
is a three fold quasi degeneracy for R = 1.0 but such
degeneracy is not robust as it disappears at R = 1.5.

−62 −58 −54 −50 −46 −42

5
8

11
14
17
20

ξ

Lz
s

FIG. 3. Entanglement spectrum of the N = 12, 2Q = 31
system on sphere. S (R) is the southern (northern) hemi-
sphere. The number of electrons in the southern hemisphere
is NA = 6. The entanglement levels are labeled by the z-
component angular momentum of the southern hemisphere
Lsz.

IV. ENTANGLEMENT SPECTRUM ON
SPHERE

The entanglement spectrum has been useful in study-
ing some FQH states54. To compute it from a ground
state |Ψ〉, we divide the system into two subsystems S
and R so the state is decomposed as |Ψ〉 =

∑
ij Fij |ΨS

i 〉⊗
|ΨR
j 〉 =

∑
µ e
−ξµ/2|ΨS

µ〉⊗ |ΨR
µ 〉, where |ΨS

i 〉 and |ΨR
j 〉 are

the basis states of S and R respectively. The Schmidt
decomposition of matrix Fij gives entanglement eigenval-
ues ξµ. We use the ground state on sphere and cut the
sphere along its equator to create a virtual edge so one
may extract some information about the physical edge
states55–57. Fig. 3 shows the entanglement spectrum of
the N = 12, 2Q = 31 system, but there is no clear way to
identify the counting of levels and extract the associated
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edge theory. However, it can still be argued that there
is a multi-branch structure, which is probably due to the
[Φ3]∗ factor in the wave function. This is as expected due
to the fact that this state exhibits multiple edge modes
with opposite chiralities.

V. EDGE PHYSICS OF THE THREE
CANDIDATE STATES

While these results make the BS state very plausible,
its full confirmation will require further theoretical and
experimental work. In particular, it would be crucial to
ask if the BS description also captures the physics of the
excitations. The excitations of this state are complicated,
which can be seen as follows. In the standard CF the-
ory, the excitations are created in the factor Φn. Such an
excitation in the BS wave function produces a quasiparti-
cle of charge 1/8. On the other hand an excitation in the
Pf factor has a charge 3/16. The most straightforward
way to obtain these numbers is to note that a charge
3/8 vortex at position (U, V ) on the sphere, obtained by
multiplication with

∏
i(uiV −viU), can be combined with

Φ∗3 and split into three quasiholes (each with charge 1/8),
or it can be combined with the Pf factor and split into
two quasiholes (each with charge 3/16). The object with
smallest charge 1/16 consists of one excitation of each
type. We now ask, within an effective theory framework,
what are the most relevant excitations for various kinds
of tunnelings at the edge.

In the following, we perform an analysis of the Pf and
the APf 3/8 states, and the results (correcting the analy-
sis of Ref.28) are given in Table II. The three states have
very distinct electron structures. Thus, if one could tun-
nel an electron directly into the edge of the 3/8 FQHE
state, one would be able to differentiate between these
states from the characteristic exponent of the tunneling
current. Unfortunately, an electron from the outside cou-
ples preferably to the edge of the lowest LL. The most
relevant quasiparticles in all of these states have iden-
tical scaling dimensions. (We emphasize that these re-
sults are obtained under the assumption that the edge
is in the universal regime where the two-terminal Hall
conductance is universal and quantized. Outside this
regime, the interaction between forward moving charged
mode and backward moving neutral modes yields non-
universal tunneling exponents, but with the price of
non-universality of the two-terminal Hall conductance58.)
Therefore, it will not be possible to differentiate be-
tween these states using QPC tunneling experiment, un-
less somehow one is able to probe the less relevant quasi-
particles. This and the recent progress in heat trans-
port measurement59 make the thermal Hall conductance
measurement the most promising way to experimentally
differentiate between these states. The thermal Hall con-
ductance κH = ∂JQ/∂T , where JQ is the thermal energy
current and ∂T is the Hall temperature difference. It
only depends on the central charge of the edge CFT and

not on the interaction between the modes, which means
that it takes a universal and quantized value. In units
of (π2k2B/3h)T , each chiral boson edge mode contributes
one unit and each Majorana fermion mode 1/2 unit60,61,
with the sign depending on the direction of propagation.
The BS state has two backward and one forward moving
bosonic modes and one forward moving Majorana mode,
producing κH = −1/2. On the other hand, the ther-
mal Hall conductance for both Pfaffian and anti-Pfaffian
states are positive, given by κH = 5/2 and κH = 1/2,
respectively. We note that the thermal Hall conductance
will also differentiate these non-Abelian states from the
Abelian state of Fröhlich et al.24, which has κH = 3.
(The lowest filled LL will contribute an additional κH = 2
to all the states.)

BS Pf APf

electron {ψ, 1, 13
6
} {1, 1, 3

2
} {1, 1, 5

3
}

{ψ, 1, 5
2
} {ψ, 1, 13

6
}

quasiparticle {σ, 3
16
, 7
64
} {σ, 3

16
, 7
64
} {σ, 3

16
, 7
64
}

{σ, 1
8
, 29
192
} {1, 1

8
, 3
16
} {σ, 1

16
, 29
192
}

{1, 3
8
, 3
16
}

TABLE II. The spectrum for three candidates of ν = 2 + 3/8
state, namely the Bonderson-Slingerland (BS), Pfaffian (Pf),
and the anti-Pfaffian (APf) wave functions. Inside the curly
brackets {· · · } the first entry denotes the sector of the Ising
CFT the particle lives in, the second entry denotes the charge,
and the last entry denotes the scaling dimension.

A. The formalism

Let us start with a quick summary of the K matrix ter-
minology, following Ref. 62. A quantum Hall edge with
n chiral bosonic modes is described by the Hamiltonian

Hb =
1

4π

∫
dxVij ∂xφi ∂xφj , (8)

where i = 1, · · · , n and the bosons obey the following
commutation relation

[φi(x), φj(x
′)] = iπ

[(
K−1

)
ij

sgn(x− x′) + εij

]
, (9)

with K ∈ SL(n,Z) a symmetric matrix and the anti-
symmetric matrix

εij =

{
1, if i > j

−1, otherwise
(10)

ensures all electron vertex operators are mutually
fermionic. The filling factor is given by

ν = tT ·K−1 · t, (11)

where the entries of the charge vector t are integers. The
spectrum can then be constructed using vertex operators.
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A quasiparticle that is described by O` = ei`iφihas a
charge q` = tT ·K−1 · ` and its exchange statistics with
respect to another quasiparticle O`′ = ei`

′
iφi (which can

be itself) is given by θ``′ = π `T · (K−1 + ε) · `′.
The edge theory can also have a neutral sector con-

structed from the chiral (or anti-chiral) part of a ratio-
nal conformal field theory (CFT) and in that case, the
quasiparticles will be described by products of primary
operators of the rational CFT and the vertex operators
of the bosonic sector. The charge of such a quasiparti-
cle depends solely on the bosonic part but the exchange
statistics will also have to include the exchange statistics
of the operators of the rational CFT.

To construct the spectrum, one first finds all fermionic
operators with charge equal to unity. These are the
electron operators. Since any physical correlation func-
tion containing an electron operator insertion must be
a single-valued function of the position of the insertion,
the rest of the spectrum can be constructed by finding
all operators that are single-valued under the exchange
with the electron operators63,64. In other words, we can
find all physical quasiparticles by finding operators whose
exchange statistics with respect to all electron operators
are integer multiples of π.

In order to determine the scaling dimensions of the
quasiparticles, we need to simultaneously diagonalize K
and V . First, let us consider a basis transformation φ′ =
M−11 · φ, under which

K ′ = MT
1 ·K ·M1 =

(
1n+ 0

0 −1n−

)
, (12)

where 1n± is an n±×n± identity matrix and n++n− = n.

Next, we can diagonalize V ′ = MT
1 · V ·M1 by

V ′′ = MT
2 ·MT

1 · V ·M1 ·M2, (13)

where V ′′ is a diagonal matrix and M2 ∈ SO(n+, n−)
such thatK ′′ = K ′. (Note that V is a symmetric matrix.)
We can express the second basis transformation as M2 =
B ·R, where R is an orthogonal matrix, i.e., the rotation,
and B is a positive matrix, i.e., the pure boost of Lorentz
group. It turns out that the scaling dimension of an
operator O`′′ is given by

∆`′′ = `′′
T ·∆ · `′′. (14)

where

∆ =
B2

2
. (15)

Interestingly ∆ also determines the two-terminal Hall
conductance, which is given by

σH = 2 t′′
T ·∆ · t′′. (16)

Here, the two-terminal conductance is given by the cur-
rent response to an electric field applied along the edge.

B. Bonderson-Slingerland state

Let us now look at the edge theory for Bonderson-
Slingerland state. It is given by

K =

2 3 3

3 2 3

3 3 2

 and t =

1

1

1

 , (17)

along with the chiral (holomorphic) part of an Ising CFT.
The latter has two primary operators ψ and σ, whose
exchange statistics are given by

θψψ = π, θψσ = π/2, (18)

and scaling dimensions are given by

∆ψ = 1/2, ∆σ = 1/16. (19)

The K matrix has a close correspondence with the BS
wave function: It is given by a 3×3 matrixK = −1+3C3,
where the first term on the right hand side is the K ma-
trix of Φ∗3 and the second term, with C3 being the pseudo-
identity matrix of all ones, arises from the Jastrow factor∏
j<k(ujvk−ukvj)3. Vij denotes the strength of the short

range interaction between the bosons, and v is the veloc-
ity of the Majorana mode.

We first note that all charge 1 vertex operators are
mutually bosonic and thus, all electron operators must
reside in the ψ-sector of the Ising CFT. It is instructive
to parametrize the boost B as

B2 =

 γ β1γ β2γ

β1γ 1 +
β2
1γ

2

γ+1
β1β2γ

2

γ+1

β2γ
β1β2γ

2

γ+1 1 +
β2
2γ

2

γ+1

 , (20)

where γ = 1/
√

1− β2
1 − β2

2 , in the basis where

K = diag(1,−1,−1) and t = (
√

3/8, 0, 0)T .
(21)

The two-terminal Hall conductance is then given by σH =
3γ/8 and thus, we should look at the point γ = 1, or
β1 = β2 = 0. This is the point in parameter space where
the forward moving charged mode is decoupled from the
two backward moving neutral modes.

A comment is in order. Since the regime where the
Hall conductance is given by the “correct” value is only
a point in the parameter space, a mechanism where this
point becomes an attractive renormalization group (RG)
fixed point is desired. Such mechanism is given in Ref.
65. Regardless of the mechanism, away from this point
both the two-terminal Hall conductance and the scaling
dimensions of quasiparticles are not universal58.

When γ = 1, there are three electron operators that
are most relevant. In the original basis, they are given
by

Oel = ψ exp[i`iφi], (22)
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where {`i} is the permutation of {2, 3, 3}, and their scal-
ing dimension is 13/6. The most relevant quasiparticle
in the 1-sector of the Ising CFT is given by

O1 = exp
[
i (φ1 + φ2 + φ3)

]
, (23)

whose charge is 3/8 and scaling dimension is 3/16. Sim-
ilarly, the most relevant quasiparticle in the ψ-sector is
given by

Oψ = ψ exp
[
i (φ1 + φ2 + φ3)

]
. (24)

Its charge is also 3/8 but the scaling dimension is 11/16.
Lastly, the most relevant quasiparticle in the σ-sector is
given by

Oσ = σ exp

[
i
φ1 + φ2 + φ3

2

]
, (25)

whose charge is 3/16 and scaling dimension is 7/64. This
quasiparticle will dominate the tunneling between the
edges through a quantum point contact (QPC). The
tunneling current is given by I ∼ V 2g−1 and the tun-
nel conductance has a temperature dependence given by
σT ∼ T 2g−2, where g = 7/32 is twice the scaling dimen-
sion.

Since the scaling dimension of Oσ is smaller than that
of the most relevant operators in the other sectors, let
us also look at the second most relevant quasiparticles in
the σ-sector. There are three of them and they are given
by

Oσ,i = σ exp

[
i
φi
2

]
, (26)

where i = 1, 2 or 3. Their charge is 1/8 and the scaling di-
mension is 29/192, which is still smaller than the scaling
dimension of the most relevant operator in the 1-sector.
It is interesting to note that the quasiparticles with the
smallest charge do not have the smallest scaling dimen-
sion. This is because the requirement that all operators
that represent physical excitations must be single-valued
under the exchange with the electron operators results
in the quasiparticles with the smallest charge to depend
not only on the forward moving charged mode but also
on the neutral modes.

The next quasiparticle also comes in triplet:

Oσ,i,j = σ exp

[
i
φi + φj

2

]
, (27)

where i 6= j. Its charge is 1/8 and the scaling dimension
is 1/6.

C. Pfaffian 3/8

The bosonic content of the edge theory of the 3/2
state in which the LL is full and the second LL has 1/2

state is described by the K matrix

(
1 0

0 2

)
. Composite-

fermionization of this state adds 2 to each entry to pro-
duce the K matrix for the 3/8 Pfaffian state:

K =

(
3 2

2 4

)
and t =

(
1

1

)
, (28)

which is then accompanied with the chiral Ising CFT.
There are charge-1 fermionic operators both in the 1-
sector and in the ψ-sector:

Oel,1 = exp

[
i
{

(3 + 2n)φ1 + (2− 4n)φ2

}]
(29)

Oel,ψ = ψ exp

[
i
{

(2 + 2n)φ1 + (4− 4n)φ2

}]
, (30)

where n ∈ Z and the operators with the smallest scal-
ing dimensions in each sector are given by n = 0. The
scaling dimensions of these most relevant operators are
3/2 for the 1-sector and 5/2 for the ψ-sector. We note
that even though all electrons in each sector are mutually
fermionic, electrons from different sectors are mutually
bosonic. This can be fixed by introducing an extra Klein
factor.

Now, we can construct quasiparticle operators by find-
ing all operators whose correlators are single-valued un-
der an electron operator insertion. In other words, all
operators whose exchange statitistics with all electron
operators are integer multiples of π. In 1-sector, there
are two of the most relevant of such operators and they
are given by

O
1,

1
8

= exp[iφ2], O
1,

3
8

= exp
[
i (φ1 + φ2)

]
(31)

They both have scaling dimension 3/16 but the former
has charge 1/8 while the latter 3/8. Similarly, in ψ-
sector, we have two most relevant operators

O
ψ,

1
8

= ψ exp[iφ2], O
ψ,

3
8

= ψ exp
[
i (φ1 + φ2)

]
(32)

both with scaling dimension 11/16 but the former with
charge 1/8 and the latter with charge 3/8.

In the σ-sector, the single-value criterion requires the
coefficients in front of φi’s to be odd multiples of half-
integers. Therefore, the most relevant quasiparticle in
that sector is unique and it is given by

Oσ = σ exp

(
i
φ1 + φ2

2

)
, (33)

with charge 3/16 and scaling dimension 7/64.

D. Anti-Pfaffian 3/8

The bosonic content of the edge theory of the 3/2 APf
state in which the lowest two LLs are full and the second
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LL has 1/2 state of holes is described by the K matrix1 0 0

0 1 0

0 0 −2

. Composite-fermionization of this state adds

2 to each entry to produce the K matrix for the 3/8 anti-
Pfaffian state:

K =

3 2 2

2 3 2

2 2 0

 and t =

1

1

1

 (34)

It has two forward and one backward moving chiral bo-
son modes. We make an SL(3,Z) transformation with−1 1 1

3 0 −2

0 1 0

 to bring it into the equivalent form (which

we prefer because it has integer eigenvalues)

K =

2 3 3

3 3 2

3 2 3

 and t =

1

1

1

 . (35)

This, along with the anti-chiral part of an Ising CFT:

θψψ = −π, θψσ = −π/2, (36)

then describe the anti-Pfaffian state. We note that there
is an SU(2) symmetry, with φ2,3 transforming as a dou-
blet. Here, we have a counter-propagating bosonic mode
and thus, in most part of the parameter space, observ-
ables such as the two-terminal Hall conductance and scal-
ing exponents are not universal. Let us parametrize the
boost B as

B2 =

1 +
β2
1γ

2

γ+1
β1β2γ

2

γ+1 β1γ
β1β2γ

2

γ+1 1 +
β2
2γ

2

γ+1 β2γ

qoβ1γ β2γ γ

 , (37)

where γ = 1/
√

1− β2
1 − β2

2 , in the basis where

K = diag(1, 1,−1) and t = (
√

3/8, 0, 0)T .
(38)

The two-terminal Hall conductance is then given by

σH =
3

8

(
1 +

β2
1γ

2

γ + 1

)
, (39)

and thus, we should look at the point β1 = 0. This is
the point in parameter space where the forward moving
charged mode is decoupled from the backward moving
neutral mode. Since β1 = 0, |β2| < 1 is the universal
regime, for simplicity, we can set β2 = 058.

As is in the case of Pfaffian 3/8, here we also have
charge-1 fermionic operators in both the 1-sector and ψ-
sector. In the 1-sector, they take the form:

Oel,1 = exp

[
i
{

(7− 2m− 2n)φ1 + (2m+ 1)φ2 + 2nφ3

}]

Oel,1 = exp

[
i
{

(7− 2m− 2n)φ1 + 2mφ2 + (2n+ 1)φ3

}]

while in ψ-sector, they take the following form:

Oel,ψ = ψ exp

[
i
{

(6− 2m− 2n)φ1 + (2m+ 1)φ2

+ (2n+ 1)φ3

}]

Oel,ψ = ψ exp

[
i
{

(8− 2m− 2n)φ1 + 2mφ2 + 2nφ3

}]
.

(40)

The most relevant electrons are then a doublet in the
1-sector

Oel,1 = exp
[
i (3φ1 + 3φ2 + 2φ3)

]
(41)

Oel,1 = exp
[
i (3φ1 + 2φ2 + 3φ3)

]
(42)

with scaling dimension 5/3, while in the ψ-sector

Oel,ψ = ψ exp
[
i (2φ1 + 3φ2 + 3φ3)

]
, (43)

with scaling dimension 13/6.
Now, let us look at the quasiparticle content. In the

1-sector, the most relevant quasiparticle is

O1 = exp
[
i (φ1 + φ2 + φ3)

]
, (44)

with charge 3/8 and scaling dimension 3/16. Similarly,
in the ψ-sector, we have

Oψ = ψ exp
[
i (φ1 + φ2 + φ3)

]
, (45)

with the same charge but scaling dimension 11/16.
For the σ-sector, the most relevant quasiparticle is

given by

Oσ = σ exp

[
i
φ1 + φ2 + φ3

2

]
, (46)

with charge 3/16 and scaling dimension 7/64. The next
most relevant quasiparticle in this sector is

Oσ = σ exp

[
i
φ1
2

]
, (47)

with charge 1/16 and scaling dimension 29/192, which is
smaller than the scaling dimension of the most relevant
quasiparticle in the 1-sector.

VI. CONCLUSION

In summary, by studying several candidate states we
have shown that the state at ν = 2 + 3/8 is probably a
realization of a new class of Bonderson-Slingerland FQH
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states. The energy spectrum on torus provides some evi-
dence for 24-fold ground state degeneracy, and the entan-
glement spectrum suggests that the edge contains multi-
ple branches, but study of larger systems, currently not
possible, would be necessary for more detailed and defini-
tive information. We have further shown, using an effec-
tive edge theory, that the BS structure of this state can
be confirmed either by tunneling of an electron into the
3/8 edge or by a measurement of the thermal Hall con-
ductance.
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