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Abstract

We present an experimental and computational study of the nonlinear optical response of con-

duction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption

and an amplitude-dependent group refractive index) can be understood on the qualitative level as

the breakdown of the effective mass approximation. However, a predictive theoretical description

of the nonlinear THz propagation has been missing. We propose a model based on the semi-

classical electron dynamics, a realistic band structure, and the free electron Drude parameters to

accurately calculate the experimental observables in InSb. Our results open a path to modeling of

the conduction-electron optical nonlinearity that governs the THz propagation in semiconductors.
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I. INTRODUCTION

Studies of nonlinear optical response of conduction electrons in semiconductors have be-

come possible in the last decade due to the advent of high-field THz sources1–3 that opened

a new frontier in nonlinear optics4. A rich variety of ultrafast nonlinear phenomena has

been reported, such as THz-frequency modulation of semiconductor optical response5–8,

saturable absorption9–12, self-phase modulation13, ballistic motion of electrons14,15, and in-

terband tunneling and intervalley scattering of electrons16–18. Key features behind these

observations are highly nonequilibrium excited states of electrons induced by the THz field

and the breakdown of the effective mass approximation. While the emerging phenomenol-

ogy of the nonlinear propagation is understood qualitatively, the quantitative connection

between basic materials’ parameters and nonlinear THz propagation has been missing. A

predictive theory of the optical nonlinearity poses important fundamental questions: while

linear propagation is completely described by the Drude dielectric function, what parame-

ters describe the nonlinear propagation? Which of the Drude parameters can be retained

in the description of the nonlinear polarizability, and which ones must be abandoned? A

quantitative description of nonlinear THz propagation is central to interpretation of the

already discovered phenomenology. For example, increased intervalley scattering has been

proposed in phenomenological interpretations that rely on effective linear optical constants

to describe nonlinear propagation9,18. The predictive power of such phenomenological de-

scriptions in limited. In addition, correct interpretations of the phenomenology must be

based on a comparison of computed experimental observables that allows a separation of

different contributions to nonlinearity, such as nonparabolicity of band structure, opening

of new scattering channels, interband electronic excitation, etc. Interpretations based on

effective linear optical constants do not achieve such separation.

In this article, we explore the optical nonlinearity due to conduction electrons in indium

antimonide, InSb. Experimentally, we observe an amplitude-dependent group refractive

index (a delay in the arrival time of the THz pulse) and saturable absorption (an increase in

transmission at high incident field), which result from acceleration of conduction electrons to

high crystal momenta and energies by THz electric field. We propose a model based on the

realistic InSb band structure and semiclassical electron dynamics to account for the measured

nonlinearity. The nonlinear polarizability is computed using the electron density n and an
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energy-independent scattering rate γ determined as Drude parameters from the linear optical

properties. Keeping the scattering rate γ independent of energy is not strictly justifiable

when the electron samples large parts of the Brillouin zone. We make this assumption

because of the simplicity that it affords. A computational implementation of the model using

the finite-difference time-domain (FDTD) method provides a good quantitative agreement

with experiment. Our main finding is the ability to use the linear Drude parameters, n

and γ, to accurately describe the nonlinear response. The effective mass approximation is

replaced by the realistic band structure. Thus, we establish the connection between linear

and nonlinear THz optical properties and provide a framework for predictive modeling of

nonlinear THz propagation in other semiconductors9,10,13,15,19–21.

 

El
ec

tri
c 

fie
ld

 a
m

pl
itu

de
 E

tr(
t)/
E in

(p
ea

k)
 (a

rb
. u

ni
ts

)

(a)

7 8 9 10 11

(c)

 

 

Time (ps)

Ein(peak)
 3 kV/cm
 18 kV/cm
 31 kV/cm
 56 kV/cm
 101 kV/cm

(b)

 

 

 

FIG. 1: (a) Experiment: measured evolution of the transmitted THz pulse with increasing peak

amplitude of the incident THz field. The legend box is the same for all three panels and gives the

incident peak electric field. Data in all three panels are normalized to the peak incident field. (b)

Simulation: computed evolution of the transmitted realistic source pulse. (c) Simulation: computed

evolution of the transmitted Gaussian source pulse.
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II. EXPERIMENTAL DETAILS

The experiments were performed using a home-built THz spectrometer based on a 1 kHz

repetition rate regenerative amplifier22 and THz emission from a LiNbO3 prism with tilted-

wave-front phase matching1–3. We used electro-optic sampling23 in ZnTe to estimate the

peak THz electric field at the sample to be ≃ 100 kV/cm. The sample was mounted on the

cold finger of a closed-cycle He cryostat and was held at 10 K. The amplitude of the incident

THz field on the sample was controlled by inserting Si attenuators in the THz beam path.

In each measurement, a total of six Si attenuators were used and inserted in the parts of

the spectrometer where the THz beam is collimated. To vary the THz field at the sample

position, the attenuators were moved from before to after the sample in THz beam path.

Each attenuator reduced the peak incident THz field by a factor of 0.56, with an almost flat

frequency response. InSb is a low bandgap semiconductor with a direct bandgap of 0.24 eV

at 0 K24, a low electron effective mass25 m∗ = 0.014m0, and a large nonparabolicity of the

conduction band26,27. We used a slightly n-doped (nominally undoped) 0.5 mm thick (100)

oriented InSb wafer for these measurements. The THz electric field was polarized along the

〈100〉 direction in the InSb crystal.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the measured evolution of the transmitted THz pulse with increasing

incident peak field; the data are normalized to the incident peak amplitude. In the absence

of nonlinearity, all graphs in Fig. 1(a) would collapse onto a single waveform. Two non-

linear phenomena are apparent in the figure. First, the THz pulse arrives later at higher

incident fields, the amplitude-dependent group delay. Second, the transmitted peak ampli-

tude increases at higher incident fields, the saturable absorption. Nonlinear propagation of

the THz pulse in InSb was studied in a z-scan measurement by Wen et al., who found a

drop in transmission at the highest incident field28. They explain their findings by electron

multiplication via impact ionization as THz field accelerates electrons to energies above the

bandgap. The impact ionization was also observed in subsequent THz pump-probe studies

of InSb29. Direct impact ionization is a very fast process that occurs on ≃ 140 fs time

scale30,31 with a very low threshold of the incident THz electric field32 estimated to be ∼ 8
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kV/cm. Why is it not observed in our measurement? We conjecture that the amount of

impact ionization may strongly depend on the initial density of electrons. Electron multi-

plication is a cascading process28, as the accelerated electrons create new electrons that are

also accelerated and create yet more electrons. In our sample, the measured electron density

is n = 7.3 × 1013 cm−3 at 10 K, which is considerably lower than the density cited in the

previous studies28,29. At sufficiently low initial density, the impact ionization may have no

appreciable effect on the propagation of the THz pulse, as evidenced by our experimental

data.

Our data also show little to no evidence of interband electron tunneling due to the intense

THz electric field. Interband electron tunneling was observed under high-field THz excitation

in GaAs16. Electron tunneling would lead to an increase in conduction electron density and

a drop in high-field THz transmission due to increased THz absorption. We only observe

the transmission increase at the highest THz field, which is completely explained by the

nonlinear electron dynamics at fixed electron density, as we will show below. The negligible

electron tunneling rate in our experiments results from a combination of factors. First, the

peak THz field in our measurement is 100 kV/cm, compared to 300 kV/cm reported for

the observation of electron tunneling in GaAs16, which partially offsets the possible increase

in the tunneling probability due to the much lower bandgap in InSb, 0.24 eV, compared to

about 1.5 eV in GaAs. Second, the tunneling rate is proportional to the joint density of states

at the edges of the conduction and valence bands, which in turn scales as (m∗)3/2. Due to

the much lower electron and hole effective masses in InSb, the joint density of states is more

than an order of magnitude lower in InSb than in GaAs. Finally, the electron tunneling

rate due to THz field was reported by Kuehn et al.16 to be proportional to the electron

decoherence rate that scales linearly with momentum relaxation rate γ, electron effective

mass, and temperature. We estimate the electron decoherence rate in our measurement to

be two orders of magnitude lower than in GaAs when the electron tunneling was observed16.

The observed THz nonlinearity results from a breakdown of the effective mass approxima-

tion as electrons accelerate to highly nonparabolic parts of the conduction band. We model

the nonlinear propagation computationally using the one-dimensional FDTD method34,

which relies on the Yee algorithm35 to solve for the propagating THz fields E, D, and

H inside InSb. For the linear propagation, the connection between the fields E and D is
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FIG. 2: Conduction band of InSb between Γ and X points33 and the corresponding electron velocity.

The lattice constant a = 0.64794 nm33.

provided by

D(ω) = ε0ε(ω)E(ω) (1)

with the Drude dielectric function36 ε(ω) = ε∞(1− ω2
p/(ω

2 + iωγ)), where ε∞ = 15.6 is the

background dielectric constant and the plasma frequency ω2
p = ne2/(ε0ε∞m∗) is related to

the electron density n and electron effective mass m∗. Equation (1) relies on the effective

mass approximation and is no longer useful when the approximation breaks down. Instead,

we compute the electric displacement as D = ε0E + P , where the polarization P consists

of linear (L) and nonlinear (NL) parts: P = P
L + P

NL. The linear part is due to the

background high-frequency dielectric susceptibility χ0: P
L = ε0χ0E, and the linear part of

the displacement becomes D
L = ε0E + ε0χ0E = ε0ε∞E. We then add the nonlinear part

P
NL to this equation and obtain the relationship

D(r) = ε0ε∞E(r) + P
NL(r). (2)

We model the conduction electron response using the semiclassical description37, in which

the velocity of an electron wave packet of wavevector k is given by

v(k) =
1

~

∂E(k)

∂k
, (3)

where E(k) is the conduction band energy-momentum dependence. The electron response

to electric field is governed by the equation of motion

~k̇ + γ~k = −eE(r, t), (4)

where γ is the electron scattering rate. Polarization P
NL is computed as Ṗ

NL = −nev,

where n is the electron density and the velocity v must be determined from (3) using a
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realistic band structure of InSb after solving the equation of motion (4). Figure 2 shows the

conduction band energy-momentum dependence E(k) and the velocity v(k) in InSb used in

our computation33,38,39.

We combine equations (2) -(4) to obtain a sequence of finite-difference equations that

connect the E and D fields for the Yee algorithm. The electric field E propagates along

the x direction and is polarized along z. The fields E and D only have z components, as do

the polarization P
NL and the electron wave vector k. The field H has only y components.

The FDTD algorithm computes the fields H , D, and E for the time step l+ 1 by using the

field values from the earlier time steps, which are assumed known and stored in computer

memory. We denote the time increment at each step as ∆t and write the time point for the

l-th step as tl = l∆t. We first compute the fields H and D using Maxwell’s curl equations

and the Yee central differencing in time and space for a nonpermeable medium34. This

step does not yet include the connection to the conduction electron polarizability, which we

establish next. From the equation of motion (4) we obtain an equation for the wave vector

k for the time step l + 1 at each point on the spatial grid

kl+1 = (1− γ∆t)kl − (e∆t/~)El. (5)

After computing the wave vectors kl+1, we determine the velocities vl+1 from the realistic

band structure (Fig. 2) and use them to compute the polarization and the electric field as

PNL
l+1 = PNL

l−1 − ne∆t(vl+1 + vl−1), (6)

El+1 = (Dl+1 − PNL
l+1 )/(ε0ε∞). (7)

The Yee algorithm relies on finite-difference equations that are central about the time point

tl, and equation (5) is not. This is because the electric field value El+1 is not available to

compute kl+1 at this stage in the algorithm. To preserve the central difference nature of the

algorithm, we compute kl+1 again after the field El+1 is known using

kl+1 =
1− γ∆t

1 + γ∆t
kl−1 −

e∆t

~(1 + γ∆t)
(El+1 + El−1) . (8)

We then repeat steps (6) and (7). This completes the computation of the fields E, D, and

H for the time point tl+1.

We used the above computational model to simulate the nonlinear propagation of the

THz pulse in InSb. We determined the electron density n and the scattering rate γ from the
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linear THz spectroscopic measurement with very low incident electric field: n = 7.3 × 1013

cm−3 and γ = 0.5 THz. The time increment was set to ∆t = 2.08 fs and the space increment

∆x was set to 5 µm in vacuum and 1.25 µm inside InSb. We used two different incident

source pulses: one was the realistic THz pulse recorded as the free-space reference in our

measurement; the other was a Gaussian pulse given by E(t) = E0 exp [−t2/τ 2d ] sin [2πf0t]

with τd = 0.5 ps and f0=1 THz. The results of the computed nonlinear propagation of

these THz pulses through a 0.5 mm InSb layer are shown in Figs. 1(b,c). Comparison

with the experimental data (Fig 1(a)) shows that the computation reproduces very well the

major features of the nonlinear THz propagation - the group delay, the increase in the peak

transmitted THz field, and the overall evolution of the pulse shape as the incident field gets

stronger.
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FIG. 3: Measured frequency-integrated transmission (circles) and group delay (diamonds) com-

pared to the results of the simulated nonlinear THz propagation of the realistic (red line) and

Gaussian (blue line) source pulses.

For a more quantitative comparison between the experiment and computation, we mea-

sured the change in the arrival time of the THz pulse (the group delay) with increasing peak

THz field. We define the group delay as ∆t = (c∆φ)/(2πd), where where d is the sample

thickness, c is the speed of light, and ∆φ is the average phase difference between high- and

low-amplitude pulses transmitted by the sample in the frequency domain:

∆φ =

〈

arg

[

Ehigh(ω)

Elow(ω)

]〉

. (9)
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Here, we average over the full frequency content of the THz pulse. We also quantified the

frequency-integrated transmission as18

T =

∫

E2
sam(t)dt

∫

E2
ref(t)dt

, (10)

where Esam and Eref are the time-domain electric fields transmitted by the InSb sample and

the free space reference. Figure 3 shows the experimental and computational group delay and

integrated transmission. Our computational model describes very well the overall behavior of

both parameters and provides a good quantitative agreement at the highest experimentally

available peak THz fields. We emphasize that there are no free (fitting) parameters in the

computational results of Fig. 3, as the electron density n and the scattering rate γ were

fixed to the values obtained from the linear spectroscopic measurement. The only variable

is the strength of the incident THz electric field.

We compared the experimental nonlinear propagation with THz electric field polarized

along the ẑ and ŷ+ẑ directions and found no measurable difference. This observation is

explained by a small maximum displacement of electrons in k space. Under the highest

incident THz field, the maximum displacement reaches 0.1ka/(2π). The conduction band is

highly nonparabolic at these k values (Fig. 2), but the nonparabolocity is still isotropic33,

which is why we did not find any anisotropy of nonlinear THz propagation in the experiment.

We now look at the amplitude transmission t(ω) = |Ẽsam(ω)|/|Ẽref(ω)| in frequency do-

main as a function of peak incident field (Fig. 4). Here, Ẽsam(ω) and Ẽref (ω) are Fourier

transforms of the time-domain waveforms transmitted by the sample and the reference aper-

ture. The transmission measured in the linear regime at the lowest incident field (the blue

line in all three panels in Fig. 4) is reproduced very well by the model. The linear transmis-

sion displays the characteristic dip below ∼ 0.5 THz that corresponds to the Drude response

of free electrons. In the absence of nonlinearity, all transmission curves in Fig. 4 would

collapse onto the blue line. At high incident field in the nonlinear regime, we find deviations

from the linear amplitude transmission. We also find differences between the experiment

and the computational results; we find differences even between the realistic source and

the Gaussian source computational results (Figs. 4(b,c)). Despite the differences, the model

captures well the main features of the nonlinear response, such as the increased transmission

below 0.5 THz due to the saturation of the conduction electron absorption. The model also

reproduces the nonmonotonic frequency dependence of the nonlinear transmission, which is
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FIG. 4: (a) Experiment: measured amplitude transmission as a function of the incident peak THz

amplitude. The legend box is the same for all three panels and gives the incident peak electric field.

(b) Simulation: computed amplitude transmission with the realistic source pulse. (c) Simulation:

computed amplitude transmission with the Gaussian source pulse.

apparent in Figs. 4(a,b): the transmission increases below 0.5 THz, decreases around 0.7

THz, and increases again above 1 THz. Another detail found in both the experiment and

model is the nonmonotonic dependence of the nonlinear transmission on the incident THz

amplitude at a specific frequency: for example, at 1.6 THz, the transmission first goes up

and then goes down as the incident amplitude increases.

The difference between the nonlinear transmission computed using the realistic and Gaus-

sian source pulses (Figs. 4(b,c)) does not come as a surprise. The realistic and Gaussian

source pulses differ in their time domain shape and frequency content. The result of their

nonlinear propagation cannot be obtained by applying the same transfer function to both

pulses, as each Fourier frequency component will be enhanced or suppressed differently, de-
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pending on its amplitude and on the amplitudes of other Fourier components. Therefore,

the different transmission for different time-domain inputs is a hallmark of nonlinear prop-

agation. The same reasoning contributes to the difference in the measured and computed

nonlinear transmission in Figs. 4(a,b). Even though the realistic source pulse in the model

is the measured reference THz pulse, its measurement includes the response function of the

THz receiver. The THz pulse that interacts nonlinearly with the InSb sample does not

include the receiver response function and could have a slightly different time domain shape

from the measured reference pulse. This difference causes no adverse effects in a linear

sample-reference spectroscopic measurement, as the receiver response function cancels out

when the linear transmission is computed. In our nonlinear case, the slight uncertainty in

the shape of the incident pulse could contribute to the discrepancy in amplitude transmission

between the measurement and the realistic source model (Figs. 4(a,b)).

The above pulse-shape uncertainty should not be viewed as the main or only source

of the small discrepancies between theory and experiment. While mostly successful, our

theory does not include such processes as interband electron tunneling or direct impact

ionization, which could become important in different doping regimes or at higher incident

THz fields. We also use an energy-independent scattering rate γ. As we argued earlier,

interband tunneling and impact ionization are largely absent from our data, but could be

present in incipient form and contribute to the observed nonlinear THz propagation. The

same caveat applies to our assumption of the energy-independent scattering rate γ. The

presented computational model is sufficiently flexible to allow the inclusion of additional

physical processes via Monte Carlo-type ensemble descriptions of electron dynamics.

IV. CONCLUSIONS

The significance of our results is that a simple semiclassical model of electron dynam-

ics, with the realistic band structure and the linear Drude parameters n and γ, provides a

good quantitative description of nonlinear THz propagation without the need to introduce

phenomenological effective values of those parameters. We achieve good agreement between

the computed and measured nonlinear absorption and refractive index (Fig. 3). The sat-

urable absorption and the increased group refractive index have also been reported in other

semiconductors10,13, where they exhibit a very similar dependence on the strength of the
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incident THz field. This suggests that the validity of the proposed model should extend

beyond the presented phenomenology of InSb. It is easily applied to other semiconductors

by using the appropriate band structure. While we use here the average electron k vector for

simplicity, our method allows straightforward extensions to Monte Carlo-type descriptions

of electron dynamics that make use of a distribution of electronic states32. As well, the

method is sufficiently flexible to allow more sophisticated descriptions of electron scattering,

such as those that introduce resonant intervalley scattering9,10,31. We proposed a computa-

tional method to establish a connection between microscopic electronic processes and the

experimentally measured nonlinear THz propagation in semiconductors.
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