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We show that spin S = 1 system with large and random single–ion anisotropy can be at low energies mapped

to a S = 1/2 system with random magnetic fields. This is for example realized in Ni(Cl1−xBrx)2-4SC(NH2)2
compound (DTNX) and therefore it represents a long sought realization of random local (on-site) magnetic

fields in antiferromagnetic systems. We support the mapping by numerical study of S = 1 and effective

S = 1/2 anisotropic Heisenberg chains and find excellent agreement for static quantities and also for the

spin conductivity. Such systems can therefore be used to study the effects of local random magnetic fields on

transport properties.

PACS numbers: 05.60.Gg, 71.27.+a, 75.10.JM

I. INTRODUCTION

In the interacting many–body systems weak disorder usu-

ally acts as a source of scattering and leads to a broadening

of a Drude peak and increased resistivity. On the other hand,

the effect of strong disorder, e.g., large local random mag-

netic fields, are expected to lead to conceptually novel and

more exotic behavior. Examples of these include Bose glass1,2

(interacting bosons undergoing a phase transition between

a superfluid and a localized phase), subdiffusive dynamics

(i.e., optical conductivity showing the anomalous power law

σ(ω → 0) ≃ ωα with α < 1), or even a many–body local-

ized phase. The latter, is an interacting analog of Anderson

localization3 and the properties of a system close to, at, or in

such a phase are a focus of many recent theoretical studies.4–21

On the other hand, experimental studies of such phenom-

ena are surprisingly rare, mainly due to the lack of real world

realizations of strong enough disorder. Recently a few studies

of cold atoms on optical lattices22–24 and a study of short ion

chains25 were preformed. On the other hand, in real materi-

als the disorder is usually introduced by doping, which, e.g.,

in spin systems locally alters the exchange interactions mak-

ing the system random26,27. Similar off-diagonal disorder is

realized in dipolar ferromagnetic Ising compounds28–31, e.g.,

LiHoxY1−xF4, which within a perturbation theory around the

ferromagnetic state28 leads to the random magnetic field of the

order of exchange interaction. However, to induce and study

the effects of strong disorder a systems with stronger local dis-

order are preferred and needed, e.g., a system with large local

random magnetic fields. This is reflected also in a dispropor-

tionate large number of theoretical studies based on a S = 1/2
antiferromagnetic Heisenberg model with random magnetic

fields (equivalent to interacting spinless fermions with random

on–site energy).

With this work we show that S = 1 antiferromagnetic

Heisenberg model (AHM) with large single–ion anisotropy

D realizes an effective low–energy Hamiltonian with locally

random magnetic fields when subjected to doping. Such a

setup is for example realized in Ni(Cl1−xBrx)2-4SC(NH2)2
compound (DTNX) and therefore it represents a long sought

realization of random local (on-site) magnetic fields in antifer-

romagnetic systems. In particular, we show that in the large

D ≫ J limit (J is the exchange coupling) the S = 1 model

maps to effective S = 1/2 model in a magnetic field. I.e.,

with D being the largest energy scale we can discuss the be-

havior of the model in local S = 1 basis: | − 1〉, |0〉 and |1〉.
For large magnetic fields (h & D) the states |0〉 and | − 1〉 are

low–lying while the state |1〉 is by about 2h or 2D higher in

energy. This state can be projected out, while the two low–

lying states can be regarded as two states of S = 1/2, i.e., | ↓〉
and | ↑〉. More importantly, effective model exhibit random

on-site magnetic fields. The latter are coming primarily from

quenched disorder of single-ion anisotropy.

The paper is organized as follows: in Sec. II we present

the S = 1 model and derivation of the effective S = 1/2
Hamiltonian. Section III is devoted to the numerical tests of

the mapping for various parameters. Main result, i.e., com-

parison of the dynamical optical conductivity for S = 1 and

S = 1/2 system is presented in Sec. IV. Finally, conclusions

together with the discussion on experimental realization of

quenched randomness in the antiferromagnetic S = 1 com-

pound is given in Sec. V.

II. EFFECTIVE LOW–ENERGY HAMILTONIAN AND

RANDOM MAGNETIC FIELDS

Let us start with one–dimensional (1D) S = 1 AHM

H =
L∑

i=1

[
JiSi · Si+1 +Di(S

z
i )

2 + hSz
i

]
, (1)

with quenched disorder in both exchange coupling Ji and

single–ion anisotropy Di, both depending on site index i.
Si = (Sx

i , S
y
i , S

z
i ) are spin S = 1 operators at site i and h

is the magnetic field. We consider Ji and Di as uncorrelated

and uniformly distributed in intervals J − δJ < Ji < J + δJ
(with average J = J) and D − δD < Di < D + δD (with

average D = D). In the reminder of this work we will denote

randomness with δR = (δJ, δD). Furthermore, we fix the
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anisotropy D = 4J (relevant for DTNX compound32), and

use J = 1 as energy units, together with kB = ~ = 1.

The simplest, crude way to justify mapping to the effective

model is to consider J = 0, i.e., H = D̂. In such a single–

particle picture, the h = 0 ground–state (GS) is the product of

states |0〉 with degenerated |−1〉 and |1〉 excitations separated

by D [see Fig. 1(a)]. Next, finite magnetic field h (Zeeman

term) splits | − 1〉 and |1〉. At h = D the | − 1〉 becomes

degenerated with |0〉. Above h = D the GS becomes product

of | − 1〉 states. It is obvious that at h & D the low–energies

can be described only by two states per site, | − 1〉 and |0〉.
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Figure 1. (Color online) Sketch of generic T = 0 magnetic field h
phase diagram of (a) J = 0 and (b) J 6= 0 system with large single–

ion anisotropy D. Dashed lines represent closing and opening of en-

ergy gap. ǫ0 denotes the ground–state energy, FM GS-ferromagnetic

ground–state, AFM GS-antiferromagnetic ground–state.

In panel (b) of Fig. 1 we sketch the phase diagram of full

S = 1 Hamiltonian with finite exchange interaction J 6= 0
and large single–ion anisotropy D. Critical fields can be

calculated with 1/D expansion32,33, i.e., h1 = D − 2J +
J2/D+J3/(2D2) and h2 = D+4J which for our choice of

anisotropy yields h1/J ≃ 2.28 and h2/J = 8.

Let us now describe the mapping of the full S = 1 model.

Our aim is to integrate out the higher energy states |1〉 or to

make the Hamiltonian block diagonal in the subspaces of fixed

number of spins in |1〉. This is similar to strong coupling ap-

proach as introduced in Ref. 34, where the Hubbard Hamilto-

nian was made block diagonal in the subspaces of fixed num-

ber of doubly occupied sites. The used effective S = 1/2

model H̃ will be the lowest energy block, without spins in

state |1〉.

Let us start with the unitary transformation of the form

H = e−SH ′eS = H ′ + [S,H ′] +
1

2
[S, [S,H ′]]] + · · · , (2)

such that the lowest order terms in J/D of the above expan-

sion will not change the number of |1〉 states. Such a re-

quirement is equivalent to making the number of |1〉 states

a good quantum number. It is convenient to first rewrite the

S = 1 Hamiltonian (1) by using the notation and the approach

of Ref. 34.

H =

L∑

i=1

(
T±

i + T zz
i + D̂i

)
, (3)

where

T±

i =
Ji
2

(
S+

i S
−

i+1 + S−

i S+

i+1

)
, T± =

L∑

i

T±

i ,

T zz
i = JiS

z
i S

z
i+1 , T zz =

L∑

i

T zz
i ,

D̂i = Di(S
z
i )

2 , D̂ =
L∑

i

D̂i.

It is obvious that T zz
i and D̂i in (3) do not change the number

of |1〉 states. On the other hand,

T±1

i = T−1

i + T 0
i + T+1

i ,

can increase (T+1

i ), decrease (T−1

i ), or leave unchanged (T 0
i )

the total number of |1〉 states. Operators T−1,0,+1

i can be de-

fined with help of projection operators in the (|1〉, |0〉, | − 1〉)
basis

n1
i =



1 0 0
0 0 0
0 0 0


 , n0

i =



0 0 0
0 1 0
0 0 0


 , n−1

i =



0 0 0
0 0 0
0 0 1


 .

Obviously n1
i + n0

i + n−1

i = Ii. Explicit form is given by

T−1

i =
Ji
2
(n0

iS
+

i S−

i+1
n1
i+1 + n0

iS
−

i S+

i+1
n−1

i+1
) ,

T 0
i =

Ji
2
(n0

iS
+

i S−

i+1n
0
i+1 + n−1

i S−

i S+

i+1n
−1

i+1)

+
Ji
2
(n1

iS
+

i S−

i+1n
1
i+1 + n0

iS
−

i S+

i+1n
0
i+1) ,

T+1

i =
Ji
2
(n1

iS
+

i S−

i+1
n0
i+1 + n−1

i S−

i S+

i+1
n0
i+1) .

Next, let us consider H ′ in the same form as (3)

H ′ =
L∑

i=1

[
Ji
2

(
S+

i S
−

i+1 + S−

i S+

i+1

)
+ JiS

z
i S

z
i+1 +Di(S

z
i )

2

]
,

which can be again written as H ′ = T±1+T zz+D̂. The low-

est order of Eq. (2) will conserve the number of |1〉 states, if
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T−1 and T+1 in the first term H ′ of right hand side of Eq. (2)

will cancel with [S,H ′], namely if

[S,H ′] = −T−1 − T+1 .

Here T±1 =
∑L

i T±1

i . Since we are dealing with large–

D system, we can rewrite the above equation as [S,H ′] =

[S1, D̂] +O(J2/D), or

[S1, D̂] = −T−1 − T+1 , (4)

where we consider only terms up to J/D. One can show that

the above equation will be fulfilled by

S1 =
L∑

i=1

−T−1

i − T+1

i

2(Di +Di+1)
. (5)

Finally, we can write

H = e−S1H ′eS1 = H ′ + [S1, H
′] +

1

2
[S1, [S1, H

′]]] + · · ·

= H ′ + [S1, D̂] + · · · = T 0 + T zz + D̂ +O(J2/D) ,

where T 0 =
∑L

i T 0
i . Let us now write the explicit form of

the above (1/D approximate) Hamiltonian

T 0
i + T zz

i + D̂i = H̃ + H̃1

H̃ =
Ji
2
n0
iS

+

i S
−

i+1n
0
i+1 +

Ji
2
n−1

i S−

i S+

i+1n
−1

i+1

+ Jin
−1

i Sz
i S

z
i+1n

−1

i+1 +Di(S
z
i )

2n−1

i

+ Jin
0
iS

z
i S

z
i+1n

0
i+1 +Di(S

z
i )

2n0
i , (6)

H̃1 =
Ji
2
n1
iS

+

i S
−

i+1n
1
i+1 +

Ji
2
n0
iS

−

i S+

i+1n
0
i+1

+ Jin
−1

i Sz
i S

z
i+1n

1
i+1 + Jin

1
iS

z
i S

z
i+1n

−1

i+1

+ Jin
1
iS

z
i S

z
i+1n

1
i+1 +Di(S

z
i )

2n1
i+1 . (7)

We see that the above Hamiltonian does not mix the states

with different number of spins in |1〉, or that [H̃,
∑

i n
1
i ] = 0

and also [H̃1,
∑

i n
1
i ] = 0. At this point the mixing terms are

of higher order (J2/D). It is further clear that H̃ is nonzero

only for states with no spins in state |1〉.
In the presence of finite magnetic field h the lowest energy

from the H̃1 sub–system will be at least O(D + h) for h ∼ J
(and even O(D + 2h) for h ≫ J) higher than the lowest

states of H̃ . As a consequence, within such a h region the

low–energy (i.e., low temperature) properties of the system

can be described solely by H̃ block. Since H̃ is spanned by

| − 1〉 and |0〉 we can omit the projection operators, and use

transformation Sz = S̃z + 1/2 , S± =
√
2S̃±. The latter

maps | − 1〉 → | ↓〉 and |0〉 → | ↑〉. Finally we can write H̃

(together with Zeeman term hSz
i → hS̃z

i ) as the anisotropic

S = 1/2 Heisenberg model

H̃ =

L∑

i=1

[
J̃i

(
S̃x
i S̃

x
i+1 + S̃y

i S̃
y
i+1 +∆S̃z

i S̃
z
i+1

)
+ h̃iS̃

z
i

]
.

(8)

Here S̃α
i with α = x, y, z are spin S = 1/2 operators at

site i, J̃i = 2Ji, ∆ = 0.5 is an exchange anisotropy, and

h̃i = h−Di − (Ji + Ji−1)/2. We denote with h̃ the av-

erage magnetic field in (8) and the distribution span with

δh̃ = δJ + δD. We stress that randomness in Di and Ji
leads to randomness in local magnetic field h̃i of the effective

model. For a case with randomness only in Di, one would

have random magnetic field S = 1/2 Heisenberg model. Note

also that the average effective magnetic filed h̃ is decreased

from h by D + J and vanishes for h = D + J . Further-

more, S = 1/2 model predicts the same second critical filed,

h̃2 = D + 4J , while for the first one gives correctly the first

order in terms of J/D, i.e., h̃1 = D − 2J .

III. TEST OF THE MAPPING

In the following we compare several static and dynamic

quantities obtained with the full S = 1 model (1) with those

obtained with the effective S = 1/2 model (8) in order to

support the mapping and determine its regime of applicabil-

ity. Most of the quantities are calculated with Lanczos for

ground state or finite–temperature Lanczos method (FTLM)35

on finite chains with L = 14 sites and by using ∼ 20 ini-

tial Lanczos vectors and M = 400 Lanczos steps. In addi-

tion we support Lanczos results also with results from trans-

fer matrix renormalization group (TMRG)36–38 for L = ∞
(pure system only) and density matrix renormalization group

(DMRG)39 with L = 800.

In Fig. 2 we show h dependence of magnetization Mz =

−∑L

i=1
〈Sz

i 〉/L for pure δR = (0.0, 0.0) and random δR =
(0, 1.6) cases at T = 0. 〈. . .〉 denotes the thermodynamic

average at temperature T and average over Nr configurations

of Ji and Di. It is worth noting that, although hereafter we

present results only in the ergodic (thermal) phase, in the lo-

calized phase the system is not ergodic and therefore does not

thermalize. As a consequence, in such a phase the used Boltz-

mann thermal average and the notion of temperature is invalid,

and one should instead explore the behavior of a representa-

tive state, which, e.g., depends on the preparation protocol and

has a characteristic energy density.

We first note that the comparison of Lanczos results with

the TMRG and DMRG results is satisfactory, giving the sup-

port to the Lanczos approach. Fig. 2(a) shows results for a

pure δR = (0.0, 0.0) system, for which Mz stays zero up to

the first critical field h1. This is due to the gapped magnon

excitations for large D32,33. h1/J ≃ 2.28 for S = 1 model

while it is slightly lower for effective S = 1/2 model due

to higher order corrections of the 1/D expansion32. With in-

creasing h both models give very similar increase of Mz and

at the higher critical field h2/J = 8 show perfect agreement.

At h2 one enters into a fully polarized ferromagnetic state.

In Fig. 2(b) similar results are shown for random case with

δR = (0, 1.6). It is clear that sharp features at h1 and h2

shown in Fig. 2(a) for pure case are now broadened due to

randomness. More importantly, results for effective S = 1/2
model agree qualitatively and for larger h also quantitatively
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with the results for full S = 1 model. This gives strong sup-

port for the description of low energy physics of the S = 1
model (1) with the S = 1/2 model (8) in a wide range of h.

Note that due to spin–inversion symmetry, the S = 1/2

results are symmetric with respect to h = D + J (h̃ = 0),

e.g., h/J = 5 for case shown in Fig. 2, while no such sym-

metry is present for S = 1 model. Difference is again due

to higher order terms in 1/D expansion. We also note that

our results qualitatively agree with experimental observations

on doped DTNX1. In particular, increasing disorder (i) re-

duces (increases) first (second) critical field h1 (h2), and (ii)

increases the critical exponentφ with which magnetization ap-

proaches critical fields |h− h1,2|φ.
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Figure 2. (Color online) T = 0 magnetization Mz vs. magnetic

field h of the effective S = 1/2 model shows agreement with the full

S = 1 model. Panel (a) shows results for pure case δR = (0.0, 0.0),
while panel (b) for random system with δR = (0.0, 1.6). T = 0
and D/J = 4. Vertical lines represent critical fields. Results are

obtained with Lanczos method (L = 14, NR = 200 realizations of

random system), TMRG (L = ∞, NR = 1 taken from Ref. 36)

and DMRG (L = 800, NR = 1 random realization, 200 basis states

kept).

Above we compared results for T = 0 where the effective

low–energy Hamiltonian is expected to work well. In the fol-

lowing we focus on finite T and show that effective S = 1/2
model gives satisfactory description also for finite tempera-

tures. In Fig. 3 we show comparison of static quantity, namely

specific heat

Cv =
〈H2〉 − 〈H〉2

T 2L
, (9)

where

〈H2〉 =
∑

n

pnǫ
2
n , 〈H〉 =

∑

n

pnǫn .

pn = exp(−βǫn)/Z denotes the Boltzmann factor for the

eigenstate with energy ǫn. For presented h/J = 5 and 8

(h̃/J = 0 and 3) and δR = (0, 1.6) and find a very good

agreement between S = 1/2 and S = 1 models up to T ∼ J .

Fig. 3 also nicely demonstrates how effective S = 1/2 model

captures only the low lying excitations related to local states

| − 1〉 and |0〉, while it misses the higher energy ones related

to |1〉.
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Figure 3. (Color online) Specific heat Cv of a S = 1 system is at

T . J very well captured by effective S = 1/2 model. Results

are calculated for h/J = 5 and 8 (h̃ = 0 and 3), δR = (0.0, 1.6)
and are obtained with Lanczos method (L = 14, NR = 200 random

realizations).

IV. SPIN CONDUCTIVITY

Disorder is expected to affect most dramatically the trans-

port properties and here we discuss dynamical spin conduc-

tivity σ(ω). In the following we show that also σ(ω) of a

disordered S = 1 model behaves as a σ(ω) of the effective

random magnetic field S = 1/2 model. σ(ω) is given by

σ(ω) =
π

L

1−exp(−βω)

ω

∑

n,m

pn|〈n|jz|m〉|2δ(ω−ǫm+ǫn) ,

(10)

where jz =
∑

i Ji
(
Sx
i S

y
i+1 − Sy

i S
x
i+1

)
is a spin current, β =

1/T . Since our numerical calculations are performed on finite

chains, σ(ω) is a sum of weighted δ functions that need to

be smoothed. We used smoothing η = 0.2 which roughly

corresponds to energy resolution of our method, i.e., ∆ǫ/M
where ∆ǫ is an energy span. In Fig. 4 we present finite-size

scaling of spin conductivity for S = 1 and correspondingS =
1/2 model. As evident, results for two largest considered L
are almost indistinguishable.

In Fig. 5 we present one of our main results - the compari-

son of the σ(ω) between the random S = 1 and the effective

S = 1/2 model for D/J = 4 and h/J = 5. We choose

such h in order to have an effective S = 1/2 model with ran-

dom magnetic fields h̃i distributed around zero average mag-

netic field h̃ = 0. In panel (a) we compare σ(ω) for S = 1
and for effective S = 1/2 model for one single randomness

realization and find very good agreement. This supports the

mapping even on the level of small chains, single realization

and for transport quantities. In panels (b) and (c) of Fig. 5

we present conductivity averaged over NR = 200 realizations
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Figure 4. (Color online) Finite–size dependence of spin conductivity

Tσ(ω) for T/J = 1, h/J = 5 and S = 1 (L = 10, 12, 14) and S =
1/2 (L = 14, 18, 22) systems. Panels (a) and (c) show the results for

δR = (0.0, 1.6), while panels (b) and (d) show the results for δR =
(0.4, 1.6). Results are obtained with the use of FTLM, averaged

over NR = 200 realizations of random system, and smoothed with

η = 0.2.

for several T and for δR = (0.0, 1.6) and δR = (0.4, 1.6).
As expected, the agreement is very good, being qualitative

and even quantitative in broad range of ω (in particular at low

ω), T and δR. This gives strong support that even transport

properties of a S = 1 model can essentially be captured with

S = 1/2 model. It is also clear from comparison of panel (b)

and (c) that randomness in Ji or J̃i has smaller effect on σ(ω)

than randomness in Di or h̃i. Deviations between the two

models are expected at higher T and large ω since the effec-

tive S = 1/2 does not include the higher energy states. This

is nicely seen for ω > 4 and T & 2 in panels (b) and (c) of

Fig. 5, were the S = 1/2 model is missing the high–ω spectral

weight. The agreement for ω < 4 even for T = 2 indicates,

that at even such high–T the contribution to Eq. (10) of higher

energy states in small. This is also clearly visible in Fig. 5(d)

were we present temperature dependence of integrated low-

ω part of spin conductivity I(ω) = T/π
∫ ω

−ω
dω′ σ(ω′) for

ω = D = 4J . Note that for S = 1/2 system I(ω = D)
exhausts the total sum–rule related to the total kinetic en-

ergy of the system I(ω = D) ≃ I(ω = ∞) = T ǫkin.

The latter can be calculated exactly in the high–T limit, i.e.,

T ǫkin = 〈jzjz〉/L = J̃2/8. It is evident that the high–ω con-

tributions become important for T & J . The comparison is

on the other hand expected to be even better for cases were

mapping works better, e.g., for larger h (in particularly close

to h2) or for larger D.

Finally, in Fig. 6, we present how optical conductivity

changes with increasing randomness. Presented results are

consistent with decreasing d.c. conductivity with increas-

ing δR and thus δh̃. This is a general behavior of a sys-

tem with strong and increasing randomness and our results

for σ(ω) already compare nicely with some random magnetic
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Figure 5. (Color online) Effective S = 1/2 model with random mag-

netic fields nicely captures the behavior of spin conductivity σ(ω) of

the disordered S = 1 model. Spin conductivities Tσ(ω) for S = 1
and effective S = 1/2 models and for magnetic field h/J = 5

(h̃/J = 0) is shown for (a) temperature T/J = 1 and one real-

ization (NR = 1) for δR = (0.0, 1.6). Panels (b) and (c) simi-

larly show Tσ(ω) averaged over NR = 200 realizations for vari-

ous temperatures and for δR = (0.0, 0.1.6) and δR = (0.4, 1.6).
(d) T dependence of integrated spin conductivity I(ω = D) for

S = 1 and S = 1/2 system for h/J = 5, δR = (0.0, 0.0) and

δR = (0.0, 1.6). The latter is shifted by +0.5 for clarity. Grey

points depict I(ω → ∞) for S = 1 system. Horizontal dashed

line represent exact high–T kinetic energy Tǫkin = I(ω → ∞) for

S = 1/2 system. At very low–T open point/dashed lines are used

due to possible finite–size effects.

field studies6,10,40.
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Figure 6. (Color online) With increasing randomness both S = 1 and

effective S = 1/2 model show decreasing low ω spin conductivity

Tσ(ω), which is typical for system close to MBL regime. T/J = 1

and h/J = 5 (h̃/J = 0).

V. DISCUSSION AND CONCLUSIONS

Let us comment on experimental realization of quenched

randomness in antiferromagnetic S = 1 compound with

large, single–ion anisotropy, i.e., Ni(Cl1−xBrx)2-4SC(NH2)2
(DTNX)41. The low–energy physics of the clean parent

(δJ = δD = 0) is well studied experimentally and understood

theoretically32,42–47. Reported values system parameters are

JCl ≃ 2.2K, DCl ≃ 8.9K, with out of the chain interaction

J⊥ ≃ 0.12K. Random system is believed to be a mixture of

JCl and DCl with correlated JBr and DBr on Br–doped site. Pa-

rameters of random Hamiltonian where fitted to reproduce the

experiment1 and found to be JBr/JCl ≃ 2.35, DBr/DCl ≃ 0.5.

Note that average value of D/J changes with doping, i.e.,

realized values x = 0.0, 0.06, 0.08, 0.131,48,49 have D/J ≃
4.0, 3.3, 3.0, 2.6, respectively. For the maximal x = 0.25
(concentration x has 2x of changed bonds) the system will

be in the Haldane–like limit, D . J . As a consequence,

with increasing doping our mapping becomes less accurate.

However, there are may other candidates of S = 1 materials

with reduced dimensionality and larger single–ion anisotropy,

e.g., CsFeBr3 with D/J ∼ 550, Ni(C2H8N2)2Ni(CN)4 with

D/J ∼ 751, or Sr3NiPtO6 with D/J ∼ 952. If successfully

doped, these could be even better effective realizations of ran-

dom magnetic fields. Also, any systems with S > 1/2 and

single–ion anisotropy can be investigated in similar manner,

as in the case of Cs2CoCl4 compound which can be described

by S = 3/2 Hamiltonian with D/J ∼ 1053,54. Another in-

triguing possibility is engineered magnetic atomic structure

on surface, where both, large magnetic anisotropy and ex-

change interactions were demonstrated (for a review see Ref.

55).

Regarding the possibility of MBL effects in DTNX, we

stress that several works6–8,14,24,56–65 suggest that MBL regime

for S = 1/2 model (8) appears for δh̃/J & 7 (with δJ = 0),

which is not reachable with DNTX having D/J = 4 and es-

timated δh̃/J ∼ 4 for assumed δJ = 0. It is further a fu-

ture theoretical challenge to explore the effects of higher or-

der terms in J/D, higher dimensionality (2D and 3D)68 and

even more importantly the effects of other degrees of freedom

in real compounds, e.g., phonons. In particular, since these

might prevent localization14,66,67.

In summary, we have shown that S = 1 system with large

single–ion anisotropy and quenched randomness essentially

realizes a random local magnetic fields in an effective low–

energy S = 1/2 Hamiltonian. This could be tested by explor-

ing the spin or heat transport or alternatively the nonergodic

behavior via the persistent imbalance22,23 like quantities, e.g.,

possibly by NMR or µSR.
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20 M. Kozarzewski, P. Prelovšek, and M. Mierzejewski, Phys. Rev.

B 93, 235151 (2016).
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