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The performance of the density matrix renormalization group (DMRG) is strongly influenced
by the choice of the local basis of the underlying physical lattice. We demonstrate that, for the
two-dimensional Hubbard model, the hybrid–real-momentum-space formulation of the DMRG is
computationally more efficient than the standard real-space formulation. In particular, we show
that the computational cost for fixed bond dimension of the hybrid-space DMRG is approximately
independent of the width of the lattice, in contrast to the real-space DMRG, for which it is propor-
tional to the width squared. We apply the hybrid-space algorithm to calculate the ground state of
the doped two-dimensional Hubbard model on cylinders of width four and six sites; at n = 0.875
filling, the ground state exhibits a striped charge-density distribution with a wavelength of eight
sites for both U/t = 4.0 and U/t = 8.0. We find that the strength of the charge ordering depends
on U/t and on the boundary conditions. Furthermore, we investigate the magnetic ordering as well
as the decay of the static spin, charge, and pair-field correlation functions.

PACS numbers: 71.10.Fd, 71.27.+a

I. INTRODUCTION

Although the one-band Hubbard model [1] in two di-
mensions has long been touted as a leading candidate for
explaining the basic phenomenon of high temperature su-
perconductivity in copper oxide planes [2], whether the
unmodified model provides sufficient features to do this
is still controversial [3]. In order to clear up this issue,
enormous effort is being made to obtain its phase diagram
numerically [4]. As the model is doped away from half
filling, rich behavior emerges [5], with phases that include
antiferromagnetic ordering near half filling, a metallic
phase for weak on-site interaction, and a superconduct-
ing phase for moderate interaction. Many details of the
phase diagram, such as the presence of charge and spin
density stripes [6, 7], which have been shown experimen-
tally to play a role in high-temperature superconducting
materials [8, 9], are yet to be unequivocally determined.

One of the most important numerical methods used
to address these questions is the density matrix renor-
malization group (DMRG) [10–12]. In particular, the
DMRG can provide unbiased results that are a very use-
ful benchmark and complement for other methods. While
the DMRG has been very successful in treating one-
dimensional systems and ladders, its application to two-
dimensional systems, such as wider cylinders, is much
more challenging [13] because the growth of the entan-
glement between the DMRG blocks, which is generally
proportional to the system width for a short-range Hamil-
tonian, leads to exponential growth of the computational
cost. Furthermore, the DMRG treats two-dimensional
systems by mapping the lattice to an intrinsically one-
dimensional matrix product state (MPS) [14], resulting
in longer-range effective interaction even for short-range
models.

More recently developed tensor network meth-

ods such as multi-scale entanglement renormalization
(MERA) [15, 16] and projected entangled pair states
(PEPS) [17, 18] avoid this restriction in principle by
adapting the topology of the tensor network to the entan-
glement structure of the system. However, these meth-
ods suffer from the fact that the scaling of their com-
putational costs with the dimension of the Hilbert space
treated is much higher than that of the standard DMRG
or other MPS-based algorithms.

Another ansatz to broaden the applicability of the
DMRG for two-dimensional systems is, instead of chang-
ing the topology of the underlying network, to change the
local basis of the physical model [19]. A change of basis
can influence three characteristics that drastically influ-
ence the performance of the DMRG: the entanglement
between subsystems, the range and structure of the inter-
actions, and the number of quantities that are conserved
within the specific representation.

For instance, for translational invariant models, the
momentum-space DMRG takes advantage of the con-
served momentum quantum number and achieves a sig-
nificant speedup for a fixed size of the truncated Hilbert
space [20, 21]. However, the scaling of the size of the
Hilbert space needed to maintain a given fixed accuracy
is problematic. In particular, the block entropy is zero
in the noninteracting limit in the momentum-space rep-
resentation, as the noninteracting Fermi sea is a prod-
uct state. Unfortunately, short-range interactions in real
space become long-range in momentum space so that
all parts of the system become strongly entangled and
the block entropy increases rapidly as the interaction is
turned on; as a result, the entropy scales with the vol-
ume of the system for all nonzero interaction strengths.
Thus, the computational cost scales exponentially in the
volume of the system, making treating systems of any
significant size prohibitively expensive [22].
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Recently, it has been shown that, by choosing a mixed
basis, one can partially take advantage of the perfor-
mance benefits of the momentum-space DMRG but also
retain the beneficial entanglement scaling of the real-
space representation [23]. Our goal hence is to fur-
ther explore this approach. In particular, we apply
the hybrid–real-momentum-space DMRG to the two-
dimensional Hubbard model on a lattice with cylindrical
topology.

The remainder of the paper is organized as follows: in
Sec. II, we express the Hubbard model in the hybrid-
space representation, discuss the structure of the ma-
trix product operator (MPO), and outline how real-space
two-point correlation functions can be calculated in hy-
brid space. In Sec. III, we discuss the computational
cost of the hybrid-space DMRG as applied to the two-
dimensional Hubbard model. In particular, we analyze
the scaling of the CPU-time and memory costs as a func-
tion of the cylinder width, and verify the results us-
ing realistic numerical calculations. Section IV then de-
scribes our study of the ground state of the doped Hub-
bard model at filling n = 0.875 and interaction strengths
U/t = 4.0 and U/t = 8.0 on cylindrical lattices of width 4
and 6. In particular, we address the questions of whether
the ground state exhibits stripe structures and whether
the pairing correlations are enhanced. Finally, Sec. V
contains the conclusion.

II. MODEL AND METHOD

A. Hubbard model in hybrid space

We investigate the two-dimensional Hubbard model
with nearest-neighbor hopping and on-site Coulomb re-
pulsion defined by the Hamiltonian

H = −t
∑
〈r,r′〉σ

c†rσ crσ + U
∑
r

nr ↑ nr ↓ , (1)

where 〈r, r′〉 denotes nearest neighbors on a square lat-
tice with lattice sites r = (x, y). Here crσ (c†rσ) are
creation (annihilation) operators for electrons with spin
σ ∈ {↑ , ↓}, and nrσ = c†rσ crσ is the particle-number op-
erator. We take the lattice geometry to be cylindrical,
with cylinder length Lx, width (i.e., circumference) Ly,
a lattice spacing of unity, and periodic or antiperiodic
boundary conditions in the transverse direction. Such a
geometry is favorable for hybrid–real-momentum-space
representation. We Fourier transform in the transverse
(y-) direction, i.e., write

c†rσ =
1√
Ly

∑
ky

e−ikyy c†x ky σ (2)

and correspondingly for crσ. For periodic boundary con-
ditions, the transverse momentum points are given by
ky = 2π j/Ly with integer 0 ≤ j < Ly, whereas, for an-

tiperiodic boundary conditions, ky = 2π (j + 1
2 )/Ly. The

resulting Hamiltonian in hybrid space,

H =− t
∑

〈x,x′〉 ky σ

c†x ky σ cx′ ky σ
(3a)

+
∑
x ky σ

ε(ky) nx ky σ (3b)

+
U

Ly

∑
x ky py qy

c†x ky+qy ↓ c
†
x py−qy ↑ cx py ↑ cx ky ↓ ,

(3c)

consists of three terms, a longitudinal hopping term (3a),
a transverse hopping term (3b) with dispersion rela-
tion ε(ky) = −2 t cos ky, and a long-range interaction
term (3c). Note that the on-site Hubbard interaction
becomes long-range in the momentum direction, but re-
mains short-range in the real-space direction.

As will be described in Sec. IV, we find states with
striped charge and spin density patterns for systems that
are moderately doped away from half filling. In order to
stabilize and target states with a particular wavelength
of the charge-density stripes, λ, we sometimes apply an
additional pinning field

Hn = P
∑
x ky σ

sin(φ+ κx) nx ky σ (4)

to the doped system. The field couples directly to the lo-
cal charge density in hybrid space and can be tailored us-
ing its amplitude P , wavenumber κ = 2π /λ, and phase
φ. Depending on the stability of the target state, we
either turn of the pinning field after the initial sweeps
of the DMRG, or we keep the field amplitude finite but
small throughout the calculation and subtract the con-
tribution of the field to the ground-state energy once the
calculation is completed. In order to ascertain that the
presence of a small pinning field has no significant effect
on the physical results, we have compared calculations
with and without a pinning field for cases in which the
pinning field can be ramped to zero during the calcu-
lation without affecting the final convergence and have
found the difference in observables and in energy (with
the energy of the pinning field subtracted) to be negligi-
ble.

B. Hybrid-space matrix product operator

In its modern formulation, the DMRG algorithm
is best described within the framework of MPSs and
MPOs [24, 25]. The MPS and MPO store the coeffi-
cients of the state |Ψ〉 and Hamiltonian H as products of
matrices associated with each site of the DMRG chain.
The MPS and MPO bonds are the contractions of the row
and column indices, respectively, of neighboring matrices.
The dimensions of the MPS bonds, m, are directly related
to the number of states kept in the traditional DMRG,
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and the dimensions of the MPO bonds refer to the opera-
tors stored in the left and right block of the DMRG. The
MPO also encodes the rules of how H |Ψ〉 must be cal-
culated within the DMRG-specific block-site-site-block
decomposition of the system and how the DMRG blocks
are updated during the sweeping process. Therefore, it
is crucial to find the optimal MPO representation for a
given model and lattice, i.e., to find the MPO with min-
imal bond dimension.

Roughly speaking, the dimension of each bond of the
MPO depends on the number of terms of the Hamilto-
nian acting simultaneously on both sites of the bond. If
the Hamiltonian is factorizable in an appropriate way,
the bond dimension can be minimized by accumulating
all interactions between opposing sides of a “composed”
operator, so that the same interaction can be expressed
using fewer terms [20]. In this section, we describe how
this is done in principle; the details of the construction of
the MPO matrices for the hybrid-space Hubbard Hamil-
tonian are given in Appendix A.

For the two-dimensional Hubbard model in real space,
the bond dimension of the optimal MPO is proportional
to the system width Ly. This can be understood as fol-
lows: Figure 1 shows the most common mapping of a

A B

FIG. 1. (Color online) Mapping of the one-dimensional
DMRG chain (black solid line) onto a 10×4 square lattice.
The bold gray lines depict nearest neighbors on the square
lattice, and the dashed lines A and B depict two possible cuts
through the DMRG chain and the corresponding bipartitions
of the system.

two-dimensional square lattice onto the one-dimensional
MPS / MPO chain; the one-dimensional path is simply
folded over the width of the lattice into two dimensions.
Therefore, it is clear that, whenever the chain is cut, the
number of nearest-neighbor bonds, and thus the number
of hopping term in the two-dimensional Hubbard model
in real space, is proportional to the width of the system.
Since (almost) all of these terms act on different sites of
the lattice, the MPO must include an individual channel
for each term; thus its bond dimension is proportional to
the system width.

In hybrid space, the situation is more complicated. In
particular, the bond dimension of the MPO depends on
where we cut the system: if the cut is between two neigh-
boring rings of the cylinder (dashed line A in Fig. 1), only
real-space-like hopping terms (3a) are cut, and the bond
dimension is again proportional to the system width. If
the cut separates sites of the same ring of the cylin-

der (dashed line B in Fig. 1), the corresponding MPO
bond has to carry all the long-range interactions in the
term (3c); for each ring this sum runs over three indepen-
dent momenta. If we were to construct the MPO with
individual channels for each term, the resulting bond di-
mension would be proportional to L3

y.
Fortunately, for a given bipartition, the sum (3c) can

be factorized to reduce the effective number of terms as
follows: for fixed x, the part of (3c) for which the anni-
hilation and creation operators are in separated parts of
the system can be rewritten as

U

N

∑
ky

A†x ky Ax ky (5)

with composed operators

A†x ky =
∑
py

c†x py ↓ c
†
x ky−py ↑ ,

Ax ky =
∑
py

cx py ↑ cx ky−py ↓ . (6)

Analogous steps can be carried out for all possible dis-
tributions of creation and annihilation operators of both
spin species onto the two subsystems, resulting in a for-
mulation in which the total number of terms connecting
the two parts of the system is O(Ly). Thus, without ap-
proximation, we obtain an MPO in which the dimension
of each bond is proportional to the system width, just as
in real space.

This approach was introduced for the momentum-
space DMRG in Ref. [20]. The technique can be applied
to other models as long as the Hamiltonian is factoriz-
able. The hybrid-space Hamiltonian and the optimized
MPO for the fermionic Hofstadter model are described
in detail in Ref. [23]. Similar optimizations of MPOs
have also been carried out for other systems with long-
range interactions, such as the quantum chemical Hamil-
tonian [26].

The exact bond dimension for the Hubbard model in
hybrid space varies with the position of the cut in the
cylinder, whereas in real space it is constant within the
bulk of the system. Assuming a constant MPS bond di-

TABLE I. Average MPO bond dimension for the two-
dimensional Hubbard model in the real-space and in the
hybrid-space representation for different cylinder widths.

Ly = 4 Ly = 6 Ly = 8 Ly = 10

Real space 18 26 34 42

Hybrid space 26.0 45.7 66.5 84.6

mension, a good indicator for the computational cost of
the DMRG is the average MPO bond dimension, which
is approximately twice as large in the hybrid-space rep-
resentation as in the real-space case (Table I). Note that
the averaged MPO bond dimension for the hybrid-space



4

MPO may still vary slightly for different orderings of
the momentum points of each cylinder ring within the
DMRG chain.

C. Real-space correlation functions in hybrid space

The equal-time spin, charge, and pair-field correlation
functions are defined as

S(r, r′) = 〈Sz(r)Sz(r
′)〉 ,

C(r, r′) = 〈n(r)n(r′)〉 − 〈n(r)〉 〈n(r′)〉 ,
Dy y(r, r′) = 〈∆†y(r)∆y(r′)〉 (7)

with

Sz(x, y) = c†x y ↑ cx y ↑ − c
†
x y ↓ cx y ↓ ,

n(x, y) = c†x y ↑ cx y ↑ + c†x y ↓ cx y ↓ ,

∆†y(x, y) =
1√
2

(c†x y+1 ↑ c
†
x y ↓ − c

†
x y+1 ↓ c

†
x y ↑) , (8)

where Sz(x, y) measures the local spin, n(x, y) is the local
charge density, and ∆†y(x, y) is the creation operator for
a pair of spin up and down particles on sites (x, y) and
(x, y + 1).

Measuring two-point real-space correlation functions in
hybrid space raises the same issues as implementing the
MPO of the Hamiltonian: applying the Fourier trans-
formation (2) to the correlation functions (7) introduces
sums over multiple momenta similar to term (3c). These
sums can again be factorized analogously to Eq. (5): the
pair-field correlation functions in hybrid space can be
written as

Dy y(r, r′) =
1

2L2
y

∑
ky

eiky(y−y
′) 〈O†y(x, ky)Oy(x′, ky)〉

(9)
with composed operators

O†y(x, ky) = 2
∑
py

cos(py − ky/2) c†x py ↑ c
†
x ky−py ↓ ,

Oy(x, ky) = 2
∑
py

cos(py − ky/2) cx py ↑ cx ky−py ↓ . (10)

The spin and charge correlation functions can be treated
analogously. Thus, the correlation functions (7) can be
measured without changing the scaling of the total com-
putational cost of the algorithm.

III. PERFORMANCE

Here we start by emphasizing that the dimension of the
MPS bonds required to obtain a given accuracy scales
exponentially with the block entropy; thus, the scaling
of the block entropy with system parameters and lattice

size has a decisive influence on the performance for fixed
accuracy. For two-dimensional systems to which the en-
tropy area law [27] applies, the entropy is proportional
to system width Ly. The resulting exponential scaling of
the computational cost with system width is a fundamen-
tal limitation of the hybrid-space DMRG as well as of the
real-space DMRG and all known MPS-based algorithms.

In this section, we at first neglect the variation in the
required bond dimension m on model parameters and
lattice size and analyze the scaling of the computational
cost of the real-space and hybrid-space DMRG for fixed
m. We thus estimate the performance gain of the hybrid-
space relative to the real-space representation. We then
compare our estimate to measurements of the actual run-
time and memory usage for typical calculations and fi-
nally come back to the issue of the dependence of the
relative accuracy of the hybrid-space and real-space rep-
resentations on bond dimension m.

A. Estimated scaling of the computational cost

The majority of the computational cost in the DMRG
algorithm comes from applying the Hamiltonian to a
state, H|Ψ〉; this is the fundamental step in itera-
tive eigensolvers such as the Lanczos or Davidson algo-
rithms [28, 29]. Therefore, we examine the scaling of the
operations required for this operation with the dimension
of the physical lattice sites, d, cylinder width Ly, cylin-
der length Lx, and MPS bond dimension m based on the
structures of the MPS and MPO used. The computa-
tional costs of other operations, e.g., changing the active
sites of the DMRG in the sweeping process, benefit from
the hybrid-space representation in the same way.

We assume that the bond dimension of the MPO is
proportional to Ly in both real-space and hybrid-space
representations, as is the case for the Hubbard model (see
Sec. II B). In our estimate, we neglect the possibility of
exploiting the conservation of spin and charge quantum
numbers, as it would have the exact same effect on the
computational costs in both representations.

In the real-space representation, one Lanczos step then
requires O(d2 Ly) multiplications of m×m matrices, re-
sulting in O(d2 Lym

3) operations per Lanczos step and
O(d2 L2

y Lxm
3K) operations per DMRG sweep, with a

fixed number of Lanczos steps per DMRG step, K. The
corresponding memory costs are O(d2m2K) for the K-
dimensional Krylov space and O(Lym

2) for the left and
right DMRG block in the current block-site-site-block
configuration.

Next, we analyze the scaling of the costs in the
hybrid-space representation under the assumption that
the hybrid-space MPS has the same total bond dimension
m. Since the Hamiltonian (5) conserves the transverse
momentum quantum number, every matrix of the MPS
can be written in a block-diagonal form with Ly blocks
of size m′×m′ with m′ ≈ m/Ly, where every block corre-
sponds to one momentum sector. Therefore, the compu-
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tational costs reduce to O(d2 L−1y m3) per Lanczos step

and O(d2 Lxm
3K) per DMRG sweep, and the memory

costs become O(d2 L−1y m2K) for the Krylov space and

O(m2) for the DMRG blocks. A side-by-side comparison
of all costs is given in Table II.

Note that the above argument is only valid because
the MPS bonds decompose into Ly momentum quantum
number sectors of approximately equal size m′. For other
conserved quantities such as the total spin or particle
number, there typically is a different distribution of the
quantum number sectors, with only a few large sectors
dominating the computational costs of the algorithm; in
these cases, the speedup depends primarily on the size of
the largest sectors rather than on the number of sectors.

TABLE II. Scaling of the runtimes of a single Lanczos step,
TLanczos, and of a DMRG sweep, Tsweep, and scaling of the
memory costs associated with the Krylov space, MKrylov, and
the left and right DMRG blocks of the current block-site-
site-block configuration, Mblock, as a function of the cylinder
length Lx, the cylinder width Ly, the MPS bond dimension
m, the local lattice dimension d, and the dimension of the
Krylov subspace, K.

Real space Hybrid space

TLanczos O(d2 Lym
3) O(d2 L−1y m3)

Tsweep O(d2 L2
y Lxm

3K) O(d2 Lxm
3K)

MKrylov O(d2m2K) O(d2 L−1y m2K)

Mblock O(Lym
2) O(m2)

In conclusion, the computational costs of the hybrid-
space DMRG are expected to be independent of Ly for
fixed m, whereas for the standard real-space DMRG the
runtime and the memory consumption scales as L2

y and
Ly, respectively (Table II). Estimating the bulk MPO
bond dimension for the Hubbard model to be approx-
imately twice as large in hybrid space as in real space
(Table I), we estimate a total speedup of roughly L2

y/2.

B. Measured performance

In order to investigate the actual performance, we com-
pare the computational costs of real-space and hybrid-
space calculations for Hubbard cylinders with length 16,
widths 4, 6, and 8, and periodic transverse boundary
conditions. All calculations were carried out using the
same code and using six physical cores on an Intel R©

Xeon R© X5650 CPU. In both representations, we exploit
the block-diagonal structure of the MPS and MPO ma-
trices with respect to the conserved charge and total spin
quantum numbers; in the hybrid space version, we fur-
ther decompose the matrices using the transverse mo-
mentum quantum number.

Figure 2 shows a comparison of the runtime and mem-
ory requirements for different Ly as a function of m. As
expected, the CPU time per sweep is proportional to m3
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FIG. 2. (Color online) Performance comparison between
real-space and hybrid-space DMRG, calculated for U/t = 4.0
and n = 0.875; (a) wall time per DMRG sweep and (b) peak
memory consumption for a 16×6 cylinder as a function of the
MPS bond dimension m. The dashed gray lines depict the m3

and m2 scaling expected in the m→∞ limit. (c) Speedup
and (d) memory savings of the hybrid-space DMRG compared
to real-space DMRG as a function of m for 16×4, 16×6, and
16×8 cylinders.

for large m in both cases, while the peak memory con-
sumption scales with m2 [Figs. 2(a) and 2(b)]. The de-
viation from this limiting behavior for smaller m is due
to the quantum number bookkeeping and other overhead
in the code and is amplified for the hybrid-space DMRG
because of the additional momentum quantum number.
In agreement with the predictions above, the speedup
of the hybrid-space DMRG over the real-space calcula-
tions is larger for wider cylinders [Fig. 2(c)]. Because of
the additional overhead, the full speedup of the hybrid-
space code is only seen at large m. In the regime in which
both methods still provide results within reasonable time
in our calculations, the hybrid-space DMRG is approx-
imately 12 times faster for Ly = 4 and up to 20 and 26
times faster for Ly = 6 and Ly = 8. In terms of the peak
memory consumption, we observe a weaker influence of
Ly: the memory savings for the larger m values treated
varies only between a factor of 4 for Ly = 4 and 4.5 for
Ly = 6 and Ly = 8 [Fig. 2(d)].

In Fig. 3, we compare the CPU time per sweep and
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FIG. 3. (Color online) (a) CPU time per sweep and (b) peak
memory consumption of hybrid-space DMRG calculations for
Hubbard cylinders with length 16 and width Ly as a function
of the MPS bond dimension m. The calculations were carried
out for n = 0.875 and U/t = 4.0.

the memory consumption of the hybrid-space DMRG for
different Ly. In agreement with Table II, the computa-
tional costs are almost independent of Ly. The minor
growth of the runtime that is still present is clearly sub-
linear in Ly. The measured computational costs deviate
somewhat from the estimated costs even in the large-m
limit, in which the influence of overhead should be in-
significant. In particular, the measured absolute runtime
of the hybrid-space DMRG is not strictly independent
of Ly, and thus the observed speedup over real-space
DMRG grows more slowly than L2

y. This deviation is
caused by fact that the MPO dimension is not perfectly
proportional to Ly for small Ly (Table I).

After having compared the computational costs for
fixed m, we now investigate how the change of basis in-
fluences the block entropy and the convergence of both
methods. Since the MPS bond dimension required to
reach a fixed truncation error grows exponentially with
the von Neumann entropy of the DMRG blocks, S(i),
even small changes in the entropy can influence the con-
vergence significantly. Figure 4 shows comparisons of
S(i) in real and hybrid representations for the half-filled
system at U/t = 4.0, Fig. 4(a), and for the doped sys-
tem, n = 0.875, at U/t = 8.0, Fig. 4(b). In Fig. 4(a), it
can be seen that the block entropy in the hybrid-space
representation differs only slightly from that in the real-
space representation. Note that if we cut the system
between neighboring rings of the cylinder (gray lines),
the block entropy actually is the same in both cases, as
expected. This can also be seen in Fig. 4(b); however,
here the entropy in the hybrid representation is percep-
tibly higher between these points. This illustrates that
the nonlocal nature of the interaction within the rings
does lead to a moderate increase of the entropy for cuts
within the rings in the hybrid representation, especially
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FIG. 4. (Color online) Von Neumann entropy S(i) as a
function of the MPS bond index i for (a) 8×6 cylinders at
U/t = 4.0 and half-filling and (b) 16×6 cylinders at U/t = 8.0
and n = 0.875. The sites of the real-space and hybrid-space
lattices are mapped to the MPS sites in an x-direction-first
ordering; accordingly, the gray vertical lines indicate cuts be-
tween neighboring rings of the cylinders.

as U/t is increased and the system is doped. Figure 5
illustrates the good agreement of the ground-state en-
ergies for fixed m as well as after extrapolation to zero
truncation error for both parameter sets in Fig. 4. The
slight divergence in the extrapolations for the hybrid
versus the real-space calculations, especially evident in
Fig. 5(b), shows the limitations of the extrapolation, es-
pecially for the real-space results. As can be clearly seen,
the maximum MPS bond dimension available is signif-
icantly larger for the hybrid-space algorithm, resulting
in a more well-controlled extrapolation and higher accu-
racy in the extrapolated energy. In Fig. 5, we expect
that the real-space results would converge towards the
hybrid-space results if m could be further increased in
the real-space calculation; this is not practically possi-
ble here. For narrower systems, the energies converge
more rapidly with m, and both methods yield results
that agree very well. For example, for the 16×4 cylinder
at U/t = 8.0 and n = 0.875, we obtain the same extrap-
olated energy, E0/t = −0.75114(2), for each method.

Even with the significant reductions in computational
costs, achieving good convergence for wider cylinders is
still very expensive, making an efficient parallelization
indispensable. In this respect, the hybrid-space DMRG
has an advantageous property: the additional momentum
quantum number leads to finer-grained quantum number
sectors, which makes for better load balancing. In partic-
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FIG. 5. (Color online) Ground-state energy obtained from
hybrid-space DMRG and real-space DMRG as a function of
the discarded weight per site, ∆ξ, for (a) 8×6 cylinders at
U/t = 4.0 and half-filling and (b) 16×6 cylinders at U/t = 8.0
and n = 0.875. The MPS bond dimension is increased every
other sweep and is written alongside the corresponding data
points. The solid lines are linear fits through the last 5 data
points of each series and indicate the zero-truncation-error
extrapolations of the ground-state energies.

ular, the momentum quantum numbers yield equal-sized
quantum number sectors, resulting in more equal-sized
chunks of work. In our implementation, we apply shared-
memory parallelization to the combined loops over quan-
tum number sectors and terms of the Hamiltonian, as
described for classical DMRG in Ref. [30]. In order to
further extend the applicability of the hybrid algorithm,
additional steps such as real-space parallelization [31] or
efficient distributed memory parallelization [32] could be
implemented.

IV. RESULTS

We study the ground state of the doped Hubbard
model on width-4 and width-6 cylinders for U/t = 4.0
and U/t = 8.0 at filling n = N−1

∑
rσ nrσ = 0.875. We

choose these two values of U/t for the following reasons:
(i) In general, we want to compare the physics and the
performance of the method at moderate coupling with
that at strong coupling. (ii) It is interesting to investigate
the stability of inhomogeneous phases as the interaction
strength is changed, in particular, whether a stripe phase
remains stable for weaker interaction. (iii) For real-space
DMRG methods, the numerical convergence, i.e., the be-
havior of the block entropy, is generally more favorable

at strong coupling. (Real-space DMRG actually becomes
exact in the atomic limit rather than the strong-coupling
limit, but a local interaction that is strong relative to the
hopping generally brings the system closer to that limit.)
As was discussed in Sec. III B, the hybrid-space DMRG
has the same block entropy as the real-space method at
cuts between cylinder rings and moderate excess entropy
for cuts within the rings (see Fig. 4), an excess which
becomes smaller for weaker interaction strength. There-
fore, the hybrid-space algorithm has slightly better rel-
ative convergence at moderate interaction strength and
can also handle a larger bond dimension m than the real-
space method, so that the moderate-interaction regime is
more accessible than with the real-space method.

In the following, we calculate the ground-state energy,
the site occupancy, and equal-time spin, charge, and pair-
field correlation functions. All results are extrapolated to
zero truncation error. The maximum MPS bond dimen-
sion was at least 30,000 for cylinder lengths 16 and 32,
27,500 for length 48, and 25,000 for length 64.
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FIG. 6. Charge-density distribution n(x) for length-32 Hub-
bard cylinders at U/t = 4.0 and n = 0.875. Panels (a)–(d)
show width-4 and width-6 cylinders with periodic (PBC) and
antiperiodic (ABC) transverse boundary conditions, as indi-
cated. The black lines show the zero-truncation-error extrap-
olated densities, and the gray lines show the non-extrapolated
values. The gray dashed lines indicate the average filling.

Figure 6 shows the charge-density distribution in
the longitudinal direction, n(x) = L−1y

∑
y σ nx y σ, for

U/t = 4.0 and different widths Ly and boundary con-
ditions. In all cases, we find a stripe pattern with
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FIG. 7. Charge-density distribution n(x) for length-32 Hub-
bard cylinders at U/t = 8.0 and n = 0.875. Panels (a)–(d)
show cylinder with different width, boundary conditions, and
wavelength λ of the charge-density stripes, as indicated. The
black lines show the zero-truncation-error extrapolated den-
sities, and the gray lines show the non-extrapolated values.
The gray dashed lines indicate the average filling.

wavelength 8; for Ly = 4, each stripe contains 4 holes
[Figs. 6(a) and 6(b)], and for Ly = 6 each stripe con-
tains 6 holes [Figs. 6(c) and 6(d)]. For larger interaction
strength, U/t = 8.0, Fig. 7, we find two different stripe
configurations, wavelength λ = 8.0 [Figs. 7(a)–7(c)] and
wavelength λ = 5.3 (more exactly, λ = 16/3) [Fig. 7(d)].
For both configurations, we add a pinning field, Eq. (4),
with the appropriate wavelength to stabilize the state. In
most cases it is sufficient to add the pinning field during
the initial sweeps of the calculation and ramp its am-
plitude P down to zero in subsequent sweeps. However,
for width 6 cylinders at U/t = 8.0, the amplitude of the
field must be held finite (we take P = 0.01) during the
entire calculation in order to stabilize the λ = 8.0 stripe
pattern. After subtracting the field energy, we find that
the λ = 8.0 phase is lower in energy and is thus globally
stable; it should also be noted that the λ = 5.3 phase
only occurs for the Ly = 6 lattices with periodic bound-
ary conditions.

In order to elucidate the convergence of the λ = 5.3
and λ = 8.0 states for Ly = 6 at U/t = 8.0, we examine
the discarded-weight extrapolation of both pinning-field-
stabilized states in Fig. 8. As can be seen, the λ = 8.0
state has lower energy for any fixed ∆ξ as well as for

∆ξ → 0.0, but the λ = 5.3 state has lower energy for any
accessible fixed m. Because of this, the λ = 8.0 state be-
comes unstable if P is set to zero at any point during the
calculation due to the fact that the DMRG algorithm
is always driven towards the state that has the lowest
energy within the finite reduced subspace of the Hilbert
space treated, i.e., the state space with fixed MPS bond
dimension m. The ground state within this subspace is
not necessarily the ground state for fixed truncation er-
ror ∆ξ or, indeed, for ∆ξ → 0. In general, the DMRG
should converge to the true ground state at some level of
accuracy (because it becomes exact for m→∞), but the
required m may be inaccessible. Thus, applying a pin-
ning field is necessary here in order to enable the DMRG
to track both states as the discarded weight is varied;
in practice, we use the fixed pinning field amplitude of
P = 0.01 for the depicted range of ∆ξ for both states
even though it would have been possible to set P = 0 in
the latter part of the λ = 5.3 calculation.

0 2e-5 4e-5 6e-5 8e-5
∆ξ

−0.748

−0.746

−0.744

−0.742

−0.740

E
0
/t
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25.0k30.0k35.0k

λ ≈ 5.3 P = 0.01

λ ≈ 8.0 P = 0.01

FIG. 8. (Color online) Discarded weight extrapolation of the
energy for λ = 5.3 and λ = 8.0 on 16×6 cylinders at U/t =
8.0 and n = 0.875. The energy contribution of the pinning
field has been subtracted, and the MPS bond dimension m is
indicated by the labels alongside selected data points.

The amplitude of the charge-density modulations,
∆n = 1/2 {maxx[n(x)]−minx[n(x)]}, is plotted as a
function of the inverse cylinder length in Fig. 9 for
both values of U/t. The trend shows that in all cases
the stripes have finite amplitude in the infinite-cylinder
length limit. The fact that the stripes are enhanced
for Ly = 6 indicates a striped ground state in the two-
dimensional limit. As the interaction is increased from
U/t = 4.0 to U/t = 8.0, the amplitude of charge density
in the λ = 8.0 stripes increases.

Typically, a striped charge-density distribution in the
doped Hubbard model is accompanied by a striped stag-
gered spin-density distribution with a wavelength that is
double that of the charge-density distribution [6]. Mea-
suring these stripes in hybrid space would require break-
ing the translation invariance in the transverse direction,
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FIG. 9. (Color online) Amplitude of the charge-density
stripes, ∆n, for width-4 and width-6 cylinders with periodic
(PBC) and antiperiodic (ABC) transverse boundary condi-
tions at n = 0.875 with (a) U/t = 4.0 and (b) U/t = 8.0 as a
function of the inverse cylinder length, 1/Lx.
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which could only be done at the cost of slowing down the
algorithm significantly. Instead, we calculate the struc-
ture factor of the equal-time spin correlations,

SS(k) =
1

N

∑
r r′

eik (r−r′) S(r, r′) ; (11)

for finite cylinder length we expand in the particle-in-
a-box eigenmodes, as in Ref. [7]. Figures 10 and 11
show SS(k) for U/t = 4.0 and U/t = 8.0, respectively,
at n = 0.875 (the same parameter sets as in Figs. 6
and 7). As can be seen in Figs. 10(a)–10(d) for U/t = 4.0
and in Figs. 11(a)–11(c) for U/t = 8.0, SS(k) is peaked
at k ≈ (±7/8π, π) in all cases in which period λ = 8.0
stripes are present. Thus, the spin correlations are anti-
ferromagnetic with a π-phase shift every eighth site, as
expected. For the λ = 5.3 stripes, Fig. 11(d), the peak
shifts to k ≈ (±13/16π, π) which corresponds to antifer-
romagnetic spin correlations with a π-phase shift every
5.3 sites, also compatible with the stripe structure. As we
have seen for the amplitude of the charge-density stripes,
the amplitudes of the peaks of the spin structure factor
also increase with increasing interaction strength.

In order to test for dx2−y2 -pairing-induced supercon-
ductivity, we have calculated the equal-time pair-field
correlation functions and have compared their decay to
that of the spin and charge correlations. To compen-



10

sate for the stripe structure of the ground state, we take
averaged absolute values; e.g., for the spin correlation
functions we define

S(lx) =
1

8

(Lx−lx)/2+3∑
x=(Lx−lx)/2−4

|S(x, x+ lx)| . (12)

The decay of the correlations with distance along the
cylinder is shown in Fig. 12 for width-4 cylinders. As
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FIG. 12. (Color online) Equal-time pair-field Dy y(lx), spin
S(lx), and charge C(lx) correlations as a function of the longi-
tudinal distance lx for 64×4 Hubbard cylinders at n = 0.875
and U/t = 4.0 for (a) periodic and (b) antiperiodic boundary
conditions.

can be seen by the approximately linear behavior of the
envelopes of the correlation functions on the semiloga-
rithmic scale, all three correlation functions decay ex-
ponentially at moderate to long distances for both peri-
odic and antiperiodic boundary conditions. For periodic
boundary conditions, all three correlation functions de-
cay approximately at the same rate, with the spin corre-
lations having a larger absolute value. For antiperiodic
boundary conditions, the spin correlations are dominant
for larger distance. Thus, we do not find that pairing
correlations are long-range or, indeed, even dominant.

We investigate the effect of interaction strength on the
strength of pairing correlations by comparing the pair
correlation functions for the λ = 8.0 stripes for U/t = 4.0
and U/t = 8.0 in Fig. 13. For periodic boundary con-
ditions, Fig. 13(a), there is a slight suppression of the
exponentially decaying correlation function as U/t is in-
creased, whereas for antiperiodic boundary conditions,
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FIG. 13. (Color online) Equal-time pair-field correlation
functions for 64×4 Hubbard cylinders at n = 0.875 for differ-
ent U/t for (a) periodic and (b) antiperiodic boundary condi-
tions.

Fig. 13(b), changing U/t has virtually no effect.

The obvious question to be addressed is why the pair
correlations, and, indeed, also the charge and spin cor-
relations, are strong at short length scales, but have no
long-range or quasi-long-range (i.e., critical power-law)
order. Here we point out that the stripe state breaks
the translational symmetry and is locked into the finite
lattice, so that the charge order manifests itself in a vari-
ation of the local charge density. One then expects the
charge correlation with the local order subtracted out to be
short-range, i.e., exponentially decaying. A similar argu-
ment holds for the spin correlations, which are locked to
the charge correlations (but have twice the wavelength
and a π-phase shift between stripes). The dx2−y2 pair
correlations do show strong short-range correlations, but
are also exponentially decaying, meaning that pairing is
not even present in the one-dimensional sense, i.e., that
the correlations decay as a power law. To explain this
behavior, we make three points: (i) The locked-in charge
order could preclude any other than short-range order in
all correlation channels. (ii) The pairing correlations are
measured perpendicularly to the stripes, i.e., in a direc-
tion in which charge transport for static stripes would not
be expected. (Note that the cylindrical geometry locks
in transverse stripes, and that measurement of pair cor-
relations in the transverse direction over any significant
length is not possible due to limitations in the treatable
system width.) (iii) For this doping of the system and
wavelength of the stripes, the stripes are completely filled
with holes and thus insulating, so that quasi-long-range
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pair correlations would not be expected. In addition, it is
fair to point out that, as earlier works on two-leg ladders
have shown [33, 34], convergence of the long-range part
of the pairing correlations occurs very slowly as m is in-
creased in the DMRG; an MPS bond dimension of 30,000
states might still be insufficient to restore algebraic decay
over long length scales for width-4 cylinders.

Finally, we obtain accurate estimates of the ground-
state energies in the infinite-length-cylinder-limit by car-
rying out consecutive extrapolations in the discarded
weight, followed by the inverse cylinder length. The
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FIG. 14. (Color online) Ground-state energies for doped
width-4 and width-6 Hubbard cylinders with periodic (PBC)
and antiperiodic (ABC) transverse boundary conditions at
n = 0.875 and (a) U/t = 4.0 and (b) U/t = 8.0 as a function
of the inverse cylinder length. In (b), the wavelength λ of the
charge-density stripe is indicated. The energies are extrapo-
lated to zero discarded weight, with the estimated error from
the extrapolation indicated by the error bars. The dashed
and the solid lines show the extrapolation to infinite cylinder
length for width-4 and width-6 cylinders, respectively.

extrapolation to infinite cylinder length for U/t = 4.0
and U/t = 8.0 is shown in Fig. 14. Energies for cylin-
der lengths 16, 32, 48, and 64 fall almost perfectly
onto the linear fits for all curves in both Figs. 14(a)
and 14(b). As can be seen, the error bars, which re-
sult from the discarded-weight extrapolations, get larger
for wider cylinders, but the data points still allow for a

well-controlled and accurate extrapolation. Note that in
Fig. 14(b) the meta-stable state with a stripe wavelength
λ = 5.3 is very close in energy to the λ = 8.0 state. Even
though the effects of the discarded-weight extrapolation,
Fig. 8, and the system-length extrapolation can be larger
than the energy difference, the energy of the λ = 8.0 state
is consistently lower than that of the λ = 5.3 state, both
at finite system length after the discarded-weight ex-
trapolation and after subsequently extrapolating to the
infinite-system-length limit. The energies obtained for
all parameters are given in Appendix B in Tables IV and
V.

V. SUMMARY AND DISCUSSION

We have investigated the applicability and usefulness
of the DMRG in a hybrid–real-momentum-space formu-
lation for the two-dimensional Hubbard model on cylin-
drical lattices. We have first compared the computational
costs of the real-space and hybrid-space DMRG as a func-
tion of the system width in theory and practice, and have
shown the hybrid-space variant to be significantly faster.
In particular, we have shown that, due; to conservation
of the additional momentum quantum number, the com-
putational and memory costs of the hybrid-space DMRG
are essentially independent of the width of the cylinder
for fixed dimension of the MPS bonds, m. In practice,
we have found that the computational cost is almost
width-independent and have obtained speedup factors of
roughly 12, 20, and 26 for cylinder width 4, 6, and 8 rel-
ative to the real-space DMRG for fixed m. Subsequently,
we have demonstrated, that the entropy in the system is
not increased significantly in the hybrid representation,
giving both formulations comparable convergence with
m. Thus, we have shown that the hybrid-space ansatz
widens the applicability of the DMRG to Hubbard-like
models, especially for larger system widths.

We have then used the hybrid-space DMRG to investi-
gate the static properties of the ground state of the doped
two-dimensional Hubbard model at filling n = 0.875 and
interaction strengths U/t = 4.0 and U/t = 8.0; examin-
ing width-4 and width-6 cylinders, we have found that
the system forms a striped charge-density distribution of
wavelength λ = 8.0 for both values of U/t. The magnetic
ordering of the ground state is antiferromagnetic with a
modulation of wavelength 16. For width 6 cylinders with
periodic boundary conditions and interaction strengths
U/t = 8.0, we have also found a metastable λ = 5.3 state,
which we have shown to be slightly higher in energy
for both finite cylinder length and in the infinite-length
limit. Furthermore, we have calculated pairing, spin,
and charge correlation functions and have found that the
spin correlations have the slowest decay with distance,
while the pair-field and charge correlations have a sub-
dominant decay of comparable strength. The behavior
of the correlations is nearly identical for U/t = 4.0 and
U/t = 8.0.
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We now compare our results to those of other meth-
ods, first for U/t = 4.0: unsurprisingly, the ground-
state energy we have obtained is in excellent agree-
ment with recent real-space DMRG calculations; Leblanc
et al. reported a value of E0/t = −1.028 [4], for infi-
nite width-6 cylinders averaged over periodic and an-
tiperiodic boundary conditions, while we have obtained
E0/t = −1.0282(4). Recent calculations using the den-
sity matrix embedding theory (DMET) [35] find a phase
diagram in which the system lies just within a supercon-
ducting phase for n = 0.875 and U/t = 4.0. This phase
is in very close proximity to both an antiferromagnetic
and to a metallic phase; see Fig. 2 in Ref. [5]. In partic-
ular, the authors find two states with somewhat differ-
ent magnetic orderings and strengths of d-wave pairing
correlations that are energetically very close to one an-
other: an incommensurate antiferromagnet for 8×2 clus-
ters with E0/t = −1.0288 and a homogeneous antiferro-
magnetic state for 4×4 clusters with E0/t = −1.033(2).
A recent DMET calculation on a 16×2 cluster [36],
which is large enough to encompass the π-phase shift
in spin correlations between stripes, yields a lower en-
ergy, E0/t = −1.0327(1), for the incommensurate antifer-
romagnet. This improved energy for the incommensurate
state is within error bounds of that of the homogeneous
antiferromagnetic state, leaving the nature of the ground
state within the DMET undetermined. The improved en-
ergy for the incommensurate antiferromagnetic state and
for the homogeneous state agree well with our results;
however, we find only a incommensurate striped state,
no homogeneous state, in our calculations. We note that
we have been able to take larger cluster sizes into account
and that an incommensurate striped state is excluded for
the 4×4 cluster in the DMET calculations. Therefore,
we find it likely that the ground state for this parameter
set indeed has an inhomogeneous, i.e., striped, magnetic
order in the thermodynamic limit. Earlier DMRG stud-
ies of doped width-6 Hubbard cylinders found that the
charge-density stripes disappear in the Lx →∞ limit for
U/t = 3.0 and n ≈ 0.905 [7]. According to the phase dia-
gram of the DMET calculations, this parameter set falls
just on the other side of the phase transition line to a ho-
mogeneous metallic state. Thus, these findings are not
inconsistent with our results or the DMET results.

The main additional feature of the results for U/t = 8.0
is the presence of a metastable higher energy state with
stripe order of wavelength λ = 5.3 in addition to the
λ = 8.0 ground state, found only in the width-6 lat-
tices with periodic boundary conditions. The energy dif-
ference between these two states can only be resolved
by careful extrapolation in truncation error and system
length. We note, however, that these results are consis-
tent with those of other methods, including real-space
DMRG, DMET, iPEPS [37, 38], and constrained-path
auxiliary-field quantum Monte Carlo, as discussed exten-
sively in Ref. [39]. Thus, there is strong evidence that the
λ = 8.0 stripes are a robust feature of the ground state
of the two-dimensional Hubbard model at n = 0.875 for

interaction strengths from U/t = 4.0 to U/t = 8.0.
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Appendix A: MPO matrices

The individual matrices of the MPO for the hybrid-
space Hamiltonian (3a)–(3c) are relatively large, and
their size and structure depend on the width of the cylin-
der, the mapping between the lattice and the MPO, and
the position within the MPO in a nontrivial way. There-
fore, it is not possible to give the explicit form of the
matrices in a compact way. Instead, we give stepwise in-
structions on how to construct the explicit form of the
MPO.

MPO matrices are best written down as matrices of
local operators. For the case of spinful fermions with
local basis (0, ↑, ↓, ↑↓), we use

c†↑ =

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , c↑ =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

c†↓ =

0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 , c↓ =

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 , (A1)

1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , F =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


for the creation, annihilation, identity, and fermionic-
sign operators. Here we have incorporated the fermionic
sign that occurs when the MPO is applied to an MPS

through the F operator and the minus signs in c†↓ and

c↓, which are chosen according to the normal ordering

(c†↑, c↑, c
†
↓, c↓).

To familiarize the reader with the construction of the
fermionic MPO, we start by giving the form of the MPO
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for the one-dimensional Hubbard model in real space:

W [i] =



1 0 0 0 0 0

t c↑ 0 0 0 0 0

−t c†↑ 0 0 0 0 0

t c↓ 0 0 0 0 0

−t c†↓ 0 0 0 0 0

U n↑ n↓ c†↑F c↑F c†↓F c↓F 1


, (A2)

with nσ = cσ c
†
σ. Here W [i] is the matrix for the i-th site,

and the row and column indices correspond to the virtual
MPO bonds. Within each virtual bond, the first and the
last channels are used as “initial” and “target” channels
of the MPO, and within these channels, identity opera-
tors establish connections through the entire MPO from
left to right. The on-site repulsion is local in real-space
and thus its operator directly connects the initial and
target channels on each site. For the hopping term, four
additional channels are needed to connect the appropri-
ate combinations of creation and annihilation operators
on neighboring sites. To complete the MPO, the matrix
for the first (last) site must be multiplied with the column
(row) unit vector eT6 (e1).

Using the same basic concepts as in Eq. (A2) we can
now construct the MPO for the first two parts (3a)
and (3b) of the hybrid-space Hamiltonian, i.e., the MPO
for the hopping terms. For a width-2 cylinder, the MPO
matrices can be written as

W [i] =



1 0 0 0 0 0 0 0 0 0

t c↑ 0 0 0 0 0 0 0 0 0

−t c†↑ 0 0 0 0 0 0 0 0 0

t c↓ 0 0 0 0 0 0 0 0 0

−t c†↓ 0 0 0 0 0 0 0 0 0

0 F 0 0 0 0 0 0 0 0

0 0 F 0 0 0 0 0 0 0

0 0 0 F 0 0 0 0 0 0

0 0 0 0 F 0 0 0 0 0

εi n 0 0 0 0 c†↑F c↑F c†↓F c↓F 1



,

(A3)

with n = n↓ + n↑. For the mapping between the MPO
chain and the two-dimensional lattice given in Fig. 1,
an additional four channels are needed to connect the
appropriate cσ and c†σ operators between next-nearest-
neighbor sites. The transverse hopping is encoded into
the dispersion relation and is thus local in hybrid space;
it can then be treated just like the on-site repulsion in
the real-space MPO. For arbitrary cylinder width, four
channels are needed for each momentum point, result-
ing in a total MPO bond dimension of 2 + 4Ly for the
combined terms (3a) and (3b).

The last term (3c) is more complicated to implement,

four two one

1 final 6 c†↑ c↑ 12 c†↑

three 7 c†↑ c
†
↓ 13 c↑

2 c†↑ c↑ c
†
↓ 8 c†↑ c↓ 14 c†↓

3 c†↑ c↑ c↓ 9 c↑ c
†
↓ 15 c↓

4 c†↑ c
†
↓ c↓ 10 c↑ c↓ zero

5 c↑ c
†
↓ c↓ 11 c†↓ c↓ 16 initial

TABLE III. Labels for MPO channels grouped according to
the number of included operators as used for the MPO matrix
in Eq. (A6).

requiring multiple steps. For fixed x, the sum (3c) can
alternatively be written as a sum over four momenta,

U/Ly
∑

k k′ p p′

c†k ↑ ck′ ↑ c
†
p ↓ cp′ ↓ δk−k′+p−p′ , (A4)

where the δ-function ensures momentum conservation.
Note that we have dropped the x index and the second-
level y index for compactness. Furthermore, if we neglect
momentum conservation for the moment, we obtain a
relatively simple sum that contains all possible arrange-

ments of the four operators (c†↑, c↑, c
†
↓, c↓) within the sites

of one ring of the cylinder:

U/Ly
∑

k k′ p p′

c†k ↑ ck′ ↑ c
†
p ↓ cp′ ↓ . (A5)

This sum can be represented as an MPO in a compact
form using 16 channels, which we label in the follow-
ing way: the initial channel designates “no operator”,
the target channel stands for “all four operators”, and
the other 14 channels represent all possible one-, two-,
and three-operator combinations (disregarding order and
repetition). The complete set of channels is given in Ta-
ble III. The lower triangular part of the MPO matrices
then contains all entries that logically connect this set of
channels in that the matrix element in row i and column
j consists of either the operator(s) that must be added
to the label of the i-th row to obtain the label of the
j-th column or zero if this is not possible. In addition,
the matrices must incorporate the appropriate sign that
takes into account the fermionic commutation relations
with respect to the ordering of the operators in Eq. (A5)
within the MPO chain. This can be done by assigning
a minus sign to all matrix elements that require an odd
number of exchanges of operators to reorder the com-
bined labels of the row plus the element itself to match
the label of the column. Finally, identity operators and
fermionic-sign operators must be placed on the diagonal
so that operators connect over longer distances. Follow-
ing these rules, the resulting MPO matrix for one single
ring of the cylinder reads
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W [i] =

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

U/Ly c↓ F 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−U/Ly c†↓ 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0

U/Ly c↑ 0 0 F 0 0 0 0 0 0 0 0 0 0 0 0

−U/Ly c†↑ 0 0 0 F 0 0 0 0 0 0 0 0 0 0 0

U/Ly c
†
↓c↓ c†↓F c↓F 0 0 1 0 0 0 0 0 0 0 0 0 0

−U/Ly c↑c↓ −c↑F 0 c↓F 0 0 1 0 0 0 0 0 0 0 0 0

U/Ly c↑c
†
↓ 0 −c↑F −c†↓F 0 0 0 1 0 0 0 0 0 0 0 0

U/Ly c
†
↑c↓ c†↑F 0 0 c↓F 0 0 0 1 0 0 0 0 0 0 0

−U/Ly c†↑c
†
↓ 0 c†↑F 0 −c†↓F 0 0 0 0 1 0 0 0 0 0 0

U/Ly c
†
↑c↑ 0 0 c†↑F c↑F 0 0 0 0 0 1 0 0 0 0 0

U/Ly c↑c
†
↓c↓ c↑c

†
↓F c↑c↓F c†↓c↓F 0 c↑ c†↓ c↓ 0 0 0 F 0 0 0 0

−U/Ly c†↑c
†
↓c↓ −c

†
↑c
†
↓F −c†↑c↓F 0 c†↓c↓F −c†↑ 0 0 c†↓ c↓ 0 0 F 0 0 0

U/Ly c
†
↑c↑c↓ c†↑c↑F 0 −c†↑c↓F −c↑c↓F 0 −c†↑ 0 −c↑ 0 c↓ 0 0 F 0 0

−U/Ly c†↑c↑c
†
↓ 0 c†↑c↑F c†↑c

†
↓F c↑c

†
↓F 0 0 −c†↑ 0 −c↑ −c

†
↓ 0 0 0 F 0

U/Ly c
†
↑c↑c

†
↓c↓ c†↑c↑c

†
↓F c†↑c↑c↓F c†↑c

†
↓c↓F c↑c

†
↓c↓F c†↑c↑ c†↑c

†
↓ c†↑c↓ c↑c

†
↓ c↑c↓ c†↓c↓ c†↑F c↑F c†↓F c↓F 1



.

(A6)

Note that fermionic-sign operators must be applied to
all elements of the matrix which have an odd number of
operators to the right within the MPO, i.e., all elements
in columns 2 to 5 and 12 to 15. Since the sum (3c) is local
in the x-direction, the MPO for the complete cylinder can
be constructed by connecting Lx MPOs for single rings
only through their initial and final channels.

In order to restore momentum conservation, we now
split each of the 14 one-, two-, and three-operator chan-
nels into Ly separate channels, which correspond to the
individual momentum sectors. Only the initial and tar-
get channels must have zero momentum and thus do not
need to be split. The original matrix (A6) must then be
transformed in the following way: the corner elements of
the matrix remain unaltered, the other elements within
the first and last row or column become 1×Ly and Ly×1
sub-matrices, respectively, and all remaining elements
become Ly×Ly sub matrices. Within these sub matri-
ces, the local operators must be arranged according to
their momentum and the momenta of the column and
row channels, i.e., the combined momentum of the row
channel and the operator must match the momentum of
the column channel (modulo system width). Precisely, if
we label the new channels with increasing momenta, an
operator with momentum k is placed on the k-th upper
and (Ly − k)-th lower diagonal. For example, a creation
operator on a site with momentum k = 2 within a width-

6 cylinder becomes a 6×6 sub-matrix

c†↑ →



0 0 c†↑ 0 0 0

0 0 0 c†↑ 0 0

0 0 0 0 c†↑ 0

0 0 0 0 0 c†↑
c†↑ 0 0 0 0 0

0 c†↑ 0 0 0 0


. (A7)

The resulting MPO is indeed momentum-conserving,
and its structure encodes the factorization described in
Sec. II B, with the one-, two-, and three-operator chan-
nels corresponding to all possible composed operators to
the left and the right side of each bond.

This completes the steps that are necessary to assem-
ble a complete MPO for the hybrid-space Hamiltonian.
The MPOs for the different parts of the Hamiltonian can
be combined by simply using distinct sets of channels for
each part, except for the initial and final channels. In to-
tal, one initial channel, one final channel, 4Ly channels
for the longitudinal hopping (3a), and 14Ly channels for
the nonlocal Hubbard interaction (3c) are required, re-
sulting in a total virtual bond dimension of 2 + 18Ly.

The final MPO contains many superfluous nonzero el-
ements, which should be eliminated to prevent unnec-
essary calculations. Since the initial and final channels
have zero momentum, many paths through the MPO de-
scribed above are dead ends that cannot contribute to
the final results in any meaningful calculation, i.e., they
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are either not connected to the initial channel to the left
or have no connection to the target channel to the right.
One can eliminate all elements that are part of such dead
ends and thus significantly reduce the effective average
virtual bond dimension of the MPO (see Table I). Fur-
thermore, it is possible to reuse the one-operator channels
of the interaction MPO to implement the longitudinal
hopping in a more economical way; however, this makes
the structure of the MPO more complicated and results
only in minor savings (≈ 5%) of computational time and
memory costs.

Appendix B: Complete energy tables

Tables IV and V list the ground-state energies for
the two-dimensional Hubbard model at n = 0.875 and
U/t = 4.0 and U/t = 8.0, respectively.

Lx×Ly boundary conditions λ E0/t

16×4 PBC 8.0 −1.018413(2)

16×4 ABC 8.0 −1.001587(4)

32×4 PBC 8.0 −1.028614(6)

32×4 ABC 8.0 −1.010893(3)

48×4 PBC 8.0 −1.032078(7)

48×4 ABC 8.0 −1.013997(5)

64×4 PBC 8.0 −1.033814(4)

64×4 ABC 8.0 −1.015549(5)

∞×4 PBC 8.0 −1.03891(3)

∞×4 ABC 8.0 −1.020202(5)

16×6 PBC 8.0 −1.0097(5)

16×6 ABC 8.0 −1.0088(1)

32×6 PBC 8.0 −1.0191(2)

32×6 ABC 8.0 −1.0184(1)

48×6 PBC 8.0 −1.0223(2)

48×6 ABC 8.0 −1.0214(2)

64×6 PBC 8.0 −1.0240(3)

64×6 ABC 8.0 −1.0230(4)

∞×6 PBC 8.0 −1.0286(4)

∞×6 ABC 8.0 −1.0277(3)

TABLE IV. Zero-truncation-error extrapolated ground-state
energies of Hubbard cylinders for U/t = 4.0 at n = 0.875 fill-
ing for different system sizes and transverse boundary condi-
tions. For width 6, a pinning field was used to stabilize the
different stripe configuration during the initial DMRG sweeps.

Lx×Ly boundary conditions λ E0/t

16×4 PBC 8.0 −0.75114(2)

16×4 ABC 8.0 −0.74712(2)

32×4 PBC 8.0 −0.75841(2)

32×4 ABC 8.0 −0.75382(3)

48×4 PBC 8.0 −0.76079(2)

48×4 ABC 8.0 −0.75604(4)

64×4 PBC 8.0 −0.7621(5)

64×4 ABC 8.0 −0.75725(6)

∞×4 PBC 8.0 −0.7657(3)

∞×4 ABC 8.0 −0.76057(7)

16×6 PBC 8.0 −0.7481(2)

16×6 PBC 5.3 −0.74745(2)

32×6 PBC 8.0 −0.7556(7)

32×6 PBC 5.3 −0.754702(3)

48×6 PBC 8.0 −0.7577(3)

48×6 PBC 5.3 −0.75727(1)

64×6 PBC 8.0 −0.7591(2)

64×6 PBC 5.3 −0.75842(4)

∞×6 PBC 8.0 −0.7627(5)

∞×6 PBC 5.3 −0.76210(5)

TABLE V. Zero-truncation-error extrapolated ground-state
energies of Hubbard cylinders for U/t = 8.0 at n = 0.875 fill-
ing for different stripe patterns, system sizes, and transverse
boundary conditions. For width 6, a pinning field was used
to stabilize the different stripe configuration; the energy con-
tribution of the pinning-field was subtracted afterwards.
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