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We derive exact physical consequences of particle hole symmetry of the ν = 1/2

state of electrons in a strong magnetic field. We show that if the symmetry is

not spontaneously broken, the Hall conductivity and the susceptibility satisfy an

exact relationship, valid at any wave numbers and any frequencies much below the

cyclotron frequency. The relationship holds for clean systems and also for systems

with statistically particle-hole symmetric disorder. We work out the constraints this

relationship imposes on the theory of the Dirac composite fermion. We also argue

that that the exact relationship is violated in the HLR field theory, and present an

explicit calculation within a Galilean invariant mean-field approximation to the HLR

theory to illustrate the breakdown.

I. INTRODUCTION

The ν = 1/2 state of fermions in strong magnetic field [1] is one of the most important

states in quantum Hall physics. It is at and near ν = 1/2 that sharp predictions of the

composite fermion (CF) theory were made and successfully compared with experiments [2–

4]. The ν = 1/2 state is also the “parent” of the incompressible states in the Jain sequences

ν = n/(2n± 1) [5] and of the Moore-Read (MR) state [6].

An important aspect of the ν = 1/2 quantum Hall system is that the Hamiltonian

is approximately symmetric under particle-hole (PH) conjugation [7] in the spin-polarized

lowest Landau level. In fact, this symmetry is exact for models with no Landau level mixing,

complete spin polarization, and only two body interactions. As an exact symmetry valid at

all length scales, it must be present in any low-energy, long-distance description. At the same

time, it is well known that the standard Halperin-Lee-Read field theory [1] does not have

any explicitly manifest symmetry that can be identified with the particle-hole symmetry. To

address this issue, an alternative field theory with explicit particle-hole symmetry has been

proposed for the ν = 1/2 state: the Dirac composite fermion theory [8]. In this theory, the

composite fermion is a Dirac fermion, characterized by a Berry phase of π around the Fermi

line. Numerical simulations have confirmed this Berry phase [9].

The Dirac composite fermion theory solves an old puzzle with the theory of the composite

fermion. Particle-hole symmetry implies that, when impurities are particle-hole symmetric

(in the statistical sense), the Hall conductivity σxy is exactly 1
2
(e2/h). In the HLR theory,

this condition translates into a Hall conductivity −1
2
(e2/h) of the composite fermion [10].



2

This seems to contradict the fact that the composite fermion feels zero average magnetic

field. If one takes the Hall conductivity of the composite fermions to be zero, the elec-

tron Hall conductivity is strictly less than 1
2
(e2/h), signaling the breakdown of particle-hole

symmetry in the HLR theory. Similarly, it was concluded in Ref. [11] that thermoelectric

transport in the HLR theory is also inconsistent with particle-hole symmetry. However, a

more recent analysis shows that in a certain regime the CF Hall conductivity may actually

be −1
2
(e2/h) [12], raising the question of whether the HLR theory is secretly particle-hole

symmetric.

In this paper we address the last question by deriving a consequence of particle-hole sym-

metry for transport at nonzero wavenumber and frequency. We show that if the ν = 1/2

state coincides with its own PH conjugate, then there exists an exact relationship between

two linear response functions, both regarded as functions of wave number q and frequency

ω: the Hall conductivity and the susceptibility. The relationship holds in the presence of

particle-hole symmetric disorder, but remains nontrivial in the absence of disorder. Any

low-energy effective theory of the half filled Landau level must reproduce, within its regime

of validity, this exact relationship. We then argue that the relationship can be easily ac-

commodated by the Dirac composite fermion theory, but is impossible to satisfy within the

HLR theory. This rules out the possibility that the HLR theory has a hidden particle-hole

symmetry.1

To write down the exact relationship, we first define the two response functions. Consider

a small perturbation of the scalar potential A0. Let δρ be the perturbation of the charge

density and ji be the current (more precisely the “g = 2” electromagnetic current that

remains finite in the lowest-Landau level limit m → 0 [13]). The linear response of the

system to external A0 is characterized by the susceptibility χ(ω,q) and Hall conductivity

σH(ω,q)

δρ = χ(ω,q)A0, (1)

ji =

[

ωqi

q2
χ(ω,q) + iσH(ω,q)ǫ

ijqj

]

A0. (2)

Alternatively, the Hall conductivity can also be defined through the density response to the

perturbation of the magnetic field (the Středa formula), when A0 is left unperturbed,

δρ = σHδB. (3)

Our result is that in the LLL limit and assuming that PH symmetry is not spontaneously

broken, the two response functions satisfy an exact linear relationship,

σH(ω, q) +
1

4π
Ṽ (q)χ(ω, q) =

1− e−q2/2

2πq2
. (4)

1 By the HLR theory we have in mind an effective field theory of a Fermi surface of composite fermions

coupled to a Chern-Simons gauge field. The composite fermions have nontrivial Landau parameters but

have zero Berry phase.
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In this paper we set B = 1, so the magnetic length ℓB = 1 and also the CF Fermi momentum

pF = 1. The function Ṽ (q) is fully determined by the electron-electron interaction potential

V (r), or its Fourier transform V (q):

Ṽ (q) =
2

q2
(1− e−q2/2)V (q)− 2

q2

∞
∫

0

dp pe−p2/2[1− J0(pq)]V (p). (5)

In particular, for Coulomb interaction V (r) = e2/(ǫ0r), Ṽ (q) can be computed exactly in

closed form,

Ṽ (q) =
4πe2

ǫ0

{

1− e−q2/2

q3
− 1

q2

√

π

2

[

1− e−q2/4I0

(

q2

4

)]}

. (6)

Equation (4) is valid for arbitrary wave numbers and for frequencies much smaller than the

cyclotron frequency. Equation (4) also holds in the presence of PH symmetric impurities and

at finite temperature, provided that the thermal ensemble is PH symmetric. This should be

the case at least at sufficiently high temperature, even if the potential V (r) is such that the

ground state breaks PH symmetry spontaneously.

Equation (4) provides a nontrivial relationship between two otherwise unrelated response

functions. One recalls that in a Fermi liquid the response functions at finite ω have singu-

larities related to particle-hole pairs and other physical excitations. Since the right hand

side of Eq. (4) does not depend on ω at all, the singularities in σH and χ cancel exactly on

the left hand side of Eq. (4).

If a state (denoted as A) does not coincide with its particle-hole conjugate (B), one can

generalize Eq. (4) to relate the Hall conductivities of the two states, σA
H and σB

H with the

susceptibility χ (which is the same in the two states),

σA
H(ω, q) + σB

H(ω, q)

2
+

1

4π
Ṽ (q)χ(ω, q) =

1− e−q2/2

2πq2
. (7)

II. PROOF OF THE EXACT RELATION

A. Outline of the main argument

We start from a microscopic theory describing spin-polarized electrons of mass m, with

gyromagnetic factor g = 2, in a external magnetic field, interacting through a two-body

potential V :

H =

∫

dx
[ 1

2m
|(∂i − iAi)ψ|2 −

( B

2m
+ A0

)

ψ†ψ
]

+
1

2

∫

dx dyV (|x− y|)ψ†(x)ψ†(y)ψ(y)ψ(x). (8)
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The linear electromagnetic response of the system is given by δjµ(ω,q) = Πµν(ω,q)Aν(ω,q),

where

Π00 = χ, (9)

Π0i =
ωqi

q2
χ− iǫijqjσH , (10)

Πi0 =
ωqi

q2
χ+ iǫijqjσH . (11)

The same function σH governs the current response to the scalar potential and the density

response to perturbations of the magnetic field. One can thus find σH by calculating the

density of the ground state in nonuniform magnetic fields (the Středa formula).

In constant B, PH conjugation flips the sign of A0 [14, 15]. We will show that in a

nonuniform magnetic field, the action of PH conjugation is more nontrivial: it flips the sign

of A0 and simultaneously shifts it,

PH : A0 → −A0 + δPHA0. (12)

Here δPHA0 is a functional of B which vanishes when B is uniform. For small perturbations

of B, B = B0 + δB, δPHA0 is linear in δB. For later convenience, we parameterize the

perturbation of the magnetic field through a “Kähler potential” K: δB = ∇2K [16]). Then

δPHA0 is linear in K, i.e.,

δPHA0(x) = −2

∫

dyF (x− y)K(y) ≡ −2F ·K(x), (13)

with some kernel F .

Another way to write Eq. (12) is to define

Ã0 = A0 −
1

2
δPHA0[B] (14)

Then particle-hole conjugation simply flips the sign of Ã0. In particular if Ã0 = 0, or

A0 =
1

2
δPHA0[B] = −F ·K, (15)

then the Hamiltonian is particle-hole symmetric.

Accepting the transformation law (12), the argument leading to Eq. (4) goes as follows.

First, if the state under consideration is PH symmetric in uniform magnetic field, then it

will remain PH symmetric under the small perturbation (15). This means that the particle

number density in this state is exactly half of the density of the full Landau level in the

(nonuniform) magnetic field. But the density is given by the linear response formula

δρ = Π00δA0 +Π0iδAi = χδA0 + σHδB =

(

σH +
F

q2
χ

)

δB(q). (16)
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On the other hand, the density of the full Landau level is computable to linear order in

perturbations (see Ref. [17] and below),

δρν=1(q) =
1− e−q2/2

πq2
δB(q). (17)

This leads to Eq. (4), with

Ṽ (q) =
4π

q2
F (q). (18)

Note that the coefficient on the right-hand side of Eq. (17) is simply the Hall conductivity

of the full Landau level,

σν=1
H (q) =

1− e−q2/2

πq2
. (19)

If one is dealing with a state which is not its own particle-hole conjugate, repeating the

above procedure and remembering that the susceptibility χ is invariant under particle-hole

symmetry, one can derive Eq. (7).

B. Particle-hole conjugation in a nonuniform magnetic field

To derive (12), we can limit ourselves to perturbations which are translationally invariant

in one Cartesian coordinate, chosen to be y. In the the Landau gaugeAx = 0, Ay = x+K ′(x),

the normalized LLL orbitals (which are degenerate with zero energy [18]) have the form

ψk(x, y) = L
−1/2
y ψk(x)e

iky, where Ly is the size of the box along the y direction, and to

linear order in K

ψk(x) =
1

π1/4
e−(x−k)2/2[1−K(x) + K̄(k)]. (20)

Here the function K̄ is obtained by smearing K by a Gaussian

K̄(k) =
1√
π

∫

dx e−(x−k)2K(x). (21)

which implies that the Fourier transforms of K and K̄ are related by K̄(q) = e−q2/4K(q).

(We use k, l, etc. for momenta along the y direction and p, q, etc. for momenta along the

x direction).

The density of the ν = 1 state in inhomogeneous magnetic field can be computed exactly

to linear order in perturbation,

ρ(x) =
∑

k

|ψk(x)|2 =
∫

dk

2π

1√
π
e−(x−k)2(1−2K(x)+2K̄(k)) =

1

2π
(1−2K(x)+2 ¯̄K(x)), (22)

where ¯̄K is the function K smeared [as in Eq. (21)] twice. In momentum space,

δρ(q) = −K(q)

π
(1− e−q2/2), (23)



6

which coincides with Eq. (17).

In the m → 0 limit, the Hamiltonian can be projected to the LLL. Assuming that A0 is

also translationally invariant along the y direction, the projected Hamiltonian is

H =
∑

k

Ukc
†
kck +

1

2

∑

klmn

Vklmnc
†
kc

†
l cmcn , (24)

with

Uk = −
∫

dxA0(x)ψ
2
k(x), (25)

Vklmn =

∫

dx1 dx2 dy V (x1 − x2, y)ψk(x1)ψl(x2)ψm(x2)ψn(x1)
1

Ly
e−i(k−n)yδk+l,m+n , (26)

Note that Vklmn is real and Vklmn = Vnmlk.

We will assume A0 to be of the same smallness as K, therefore we can replace in Eq. (25)

the wavefunctions by the unperturbed wavefunctions at K = 0. We find

Uk = −Ã0(k) = −
∫

dq

2π
eiqk−q2/4A0(q), (27)

where A0(q) is the Fourier transform of A0(x).

We now perform PH conjugation of the Hamiltonian: ck → c†k.
2 After normal ordering,

one finds that the two-body potential remains unchanged, but the one-body potential is

modified

Uk → −Uk +
∑

l

(−Vkllk + Vklkl). (28)

We will evaluate explicitly the sum by inserting wavefunctions (20) into the definition of

Vklmn. But even without calculating, since we know that the result must be linear in K(q)

and respect translational invariance along the y direction, we can write it as

∑

l

(−Vkllk + Vklkl) = 2

∫

dq

2π
eiqk−q2/4F (q)K(q), (29)

From Eqs. (27), (28), and (29), we conclude under PH conjugation

A0(q) → −A0(q)− 2F (q)K(q), (30)

and so F (q) is the Fourier transform of the function F (x) introduced in Eq. (13).

2 The PH conjugation used here is a unitary transformation which is a product of the anti-unitary particle-

hole conjugation of Refs. [14, 15], spatial reflection (P ) y → −y and time reversal T . The product PT

transforms wave functions as Ψ(xi, yi) → Ψ∗(xi,−yi) and seems to be a symmetry of all quantum Hall

states proposed so far, although strictly speaking there seems to be no reason it could not be spontaneously

broken. For PT symmetric states, invariance under the unitary PH conjugation implies invariance under

the anti-unitary PH conjugation, and vice versa.
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We now split F (q) = FH(q) + F ex(q), where

−
∑

l

Vkllk = 2

∫

dq

2π
eiqk−q2/4FH(q)K(q), (31)

∑

l

Vklkl = 2

∫

dq

2π
eiqk−q2/4F ex(q)K(q), (32)

and compute FH and F ex separately. The calculation is straightforward but somewhat

tedious; readers who are not interested in the details can skip to Eqs. (38) and (47). First,

for the Hartree term FH,

−
∑

l

Vkllk = − 1

Ly

∑

l

∫

dx1 dx2 dy V (x1 − x2, y)ψ
2
k(x1)ψ

2
l (x2) (33)

= −
∫

dx1 dx2
dl

2π
V1(x1 − x2)ψ

2
k(x1)ψ

2
l (x2), (34)

where V1(x) =
∫

dy V (x, y). Corrections of order O(K) appear in both ψk(x1) or ψl(x2), but

it is easy to see that the only nontrivial O(K) contribution comes from ψl(x2). We thus

have

−
∑

l

Vkllk = −
∫

dx1 dx2
dl

2π
V1(x1 − x2)

1

π
e−(x1−k)2−(x2−l)22(−K(x2) + K̄(l)). (35)

Integration over l yields

1

π

∫

dx1 dx2 V1(x1 − x2)
1√
π
e−(x1−k)2(K(x2)− ¯̄K(x2)). (36)

Rewriting in momentum-space representation, one finds

−
∑

l

Vkllk =
1

π

∫

dq

2π
e−q2/4eiqkV (q)(1− e−q2/2)K(q), (37)

which means

FH(q) =
1−e−q2/2

2π
V (q). (38)

Now let us turn to the exchange contribution,

∑

l

Vklkl =

∫

dx1 dx2 dy
dl

2π
ψk(x1)ψl(x2)ψk(x2)ψl(x1)e

−i(k−l)yV (x1 − x2, y). (39)

Expanding the wavefunctions to linear powers in K using Eq. (20), we get

∑

l

Vklkl =
2

π

∫

dx1 dx2 dy
dl

2π
e−

1

2
((x1−k)2+(x2−l)2+(x2−k)2+(x1−l)2)−i(k−l)y×

× V (x1 − x2, y)[−K(x1)−K(x2) + K̄(k) + K̄(l)]. (40)
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To evaluate this integral, we represent K, K̄, and the potential V in Fourier components

K(x) =

∫

dq

2π
eiqxK(q), K̄(k) =

∫

dq

2π
eiqk−q2/4K(q), (41)

V (x, y) =

∫

dpx dpy
(2π)2

ei(pxx+pyy) V (p), p ≡
√

p2x + p2y . (42)

After integrating over y and l, we obtain

2

π

∫

dq

2π

dpx dpy
(2π)2

V (p)K(q)

∫

dx1 dx2 e
S0

(

−eiqx1 − eiqx2 + eiqk−q2/4 + eiq(k−py)−q2/4
)

, (43)

where

S0 = −1

2

[

(x1 − k)2 + (x2 − k + py)
2 + (x2 − k)2 + (x1 − k + py)

2
]

+ ipx(x1 − x2). (44)

The integral over x1, x2 is a Gaussian integral which can be evaluated exactly. We get

2

∫

dq

2π

dpx dpy
(2π)2

V (p)K(q)e−p2/2eikq−q2/4(−e−(px+ipy)q/2 − e(px−ipy)q/2 + 1 + e−ipyq). (45)

Going to polar coordinate in (px, py) plane, and integrate over the angle, we find

∑

l

Vklkl = −2

∫

dq

2π

∞
∫

0

dp

2π
pV (p)K(q)e−p2eiqk−q2/4[1− J0(pq)], (46)

which implies

F ex(q) = −
∞
∫

0

dp

2π
pe−p2/2[1− J0(pq)]V (p). (47)

Summing up FH and F ex, and using Eq. (18), we find Eq. (5). The exact result (4) is now

proven.

Later we will need the Taylor expansion of F ex(q) over q2,

F ex(q) =
∞
∑

n=1

(−1)n

n!

(

q2

2

)n

Vn , (48a)

Vn =
1

2nn!

∞
∫

0

dp

2π
p2n+1e−p2/2V (p) =

∞
∫

0

dr rLn

(

r2

2

)

e−r2/2V (r). (48b)

In contrast with Ṽ H(q) = 4πq−2FH(q) and which inherits the singularity at small q of the

potentail (for example, of the Coulomb potential), Ṽ ex(q) = 4πq−2F ex(q) is regular at q = 0

for reasonably behaving potentials.

For the Coulomb potential V (r) = e2/(ǫ0r), using the formulas above, the function F (q)

can be evaluated exactly to be the one given by Eqs. (6) and (18).
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C. Discussion

Our formula (4) does not determine σH and χ separately, but only fixes a linear combi-

nation of the two. However, even this limited statement can give very interesting results,

which, in principle, should be verifiable by numerical simulation of the half-filled Landau

level.

Firstly, we notice that for a purely repulsive potential (V (r) > 0 for all r), F (q) vanishes

at some value of q. In fact, at q → 0, one can show that

F (0) =
q2

2

∫

dr rV (r)

[

1− e−r2/2

(

1− r2

2

)]

, (49)

and hence is positive, while for q → ∞ the the exchange part F ex dominates, and ac-

cording to Eq. (47) it approaches a negative constant, which can be shown to be F (∞) =

−
∫∞

0
dr e−r2/2V (r). At q where F (q) = 0, the Hall conductivity is exactly determined by

Eq. (4). For example, for the Coulomb interaction F (q) vanishes at q = q0 ≈ 1.4197ℓ−1
B .

The Hall conductivity σH at this wavenumber can be predicted to be 0.3150 e2/h, and is

independent of frequency.

Another interesting value of q is q = 2, corresponding to the 2kF singularity in the

response functions. Our result implies that although each function χ and σH may show

Friedel-type singular behavior at this wave number, the linear combination

σH +
1

4
F (2)χ, F (2) ≈ −0.2372

e2

ǫ0
, (50)

should be free of all singularities, for all ω.

Finally, in the limit q → 0, ω → 0, q/ω → 0, the density-density correlation function is

expected to behave as χ(q) ∼ q4 (the q2 term in χ is fixed by Kohn’s theorem and vanishes

in the LLL limit m→ 0). For any potential which is less singular than 1/q2 at small q, the

q2 correction to the AC Hall conductivity is then completely fixed

σH(ω, q) =
1

4π

(

1− q2

4

)

+ o(q2), vF q ≪ ω (51)

To the order q2, this is exactly one half of the σH for a filled Landau level.

III. CONSTRAINTS ON THE DIRAC COMPOSITE FERMION THEORY

We now show that the exact relationship can be accommodated by the Dirac composite

fermion theory. To illustrate how such a theory can be constructed, we start with the

simplest model Lagrangian, and then improve it.

Let us start from the action providing the dual description of Dirac fermions [19–23]

S = iψ̄γµ(∂µ − iaµ)ψ − 1

4π
Ada, (52)
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where Ada ≡ ǫµνλAµ∂νaλ and for convenience, here and below integration over spacetime is

implied in the action. As we are interested only in local response, we ignore issues related

to the parity anomaly, and the fractional coefficients of the CS terms. This action has a CP

symmetry, under which x→ x, y → −y and

A0 → −A0, Ax → −Ax, Ay → Ay, a0 → a0, ax → ax, ay → −ay. (53)

Under CP the Hall conductivity flips sign, therefore any CP -symmetric state must have

zero Hall conductivity.

Consider now the half-filled Landau level with a long-ranged electron-electron interaction.

At minimum, one has to add two more terms to the action

S = SCF(ψ, a)−
1

4π
Ada+

1

8π
AdA− 1

2
V δρ2, (54)

with

δρ =
1

4π
(δB − b), (55)

being the density perturbation, and we use the shorthand notation V δρ2 ≡
∫

dx dy V (x −
y)δρ(x)δρ(y). The two terms added are AdA term, which shifts the the particle-hole sym-

metric value of σH from 0 to 1
2
(e2/h), and the term containing V which describes the long-

ranged density-density interaction. The additional terms violate the CP symmetry (53).

However, if one separates out the Chern-Simons term AdA, which depends exclusively on

the background field,

S = Sph(ψ, Ã, a) +
1

8π
AdA, (56)

the remaining part Sph can be put into the form

Sph = S(ψ, a)− 1

4π
Ãda− 1

2

1

(4π)2
(V δB2 + V b2), (57)

where

Ã0 = A0 −
V · δB
4π

, Ãi = Ai. (58)

Now one can see that Sph has a modified CP symmetry, under which

Ã0 → −Ã0, Ax → −Ax, Ay → Ay, a0 → a0, ax → ax, ay → −ay. (59)

To derive the consequences of this symmetry for transport, imagine that we integrate out

the dynamical ψ and a. We now have an effective action for Aµ which is constrained by the

symmetry (59). To the quadratic order

Seff [A] =
χ

2
Ã2

0 −
χM

δ
B2 +

1

8π
AdA, (60)

where χ is the susceptibility and χM is a coefficient related to the magnetic susceptibility.

From this effective action it is straightforward to derive

σH +
V

4π
χ =

1

4π
. (61)
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This is similar to, but not yet the exact relationship (4): instead of Ṽ (q) we have only the

leading part V (q), and on the right hand side is just constant instead of the full function of

q. However, it is easy to modify the action to reproduce correctly the exact relationship. Let

Sν=1[A] be the action describing the full lowest Landau level. This is a complicated functional

of A, but to the quadratic level it is completely determined by the Hall conductivity (19)

Sν=1[A] =
1

4π
ǫµνλAµ∂νAν −

1

8π
(∇ ·E)1− e∇

2/2 +∇2/2

∇4/8
B. (62)

With a bit of hindsight, consider the following action

S = S0(ψ, a, A) +
1

2
Sν=1[A]−

V

2

(

δS0

δA0
+

1

2

δSν=1

δA0
− ρ0

)2

+
∞
∑

n=0

Cn
δS0

δA0
∇2nδB, (63)

where S0[ψ, a, A] is a local Lagrangian involving the Dirac composite fermion field ψ, the

emergent gauge field a and the external gauge field A (the Chern-Simons term − 1
4π
Ada is

included in SCF). We assume for simplicity that S0 is linear in A0. Since the electron density

is

ρ =
δS0

δA0

+
1

2

δSν=1

δA0

, (64)

the third term on the right-hand side of Eq. (63) is the interaction energy.

In Eq. (63) we have included an infinite number of local interaction term between the

composite fermion charge density δS0/δA0 and the magnetic field. Since these terms are all

local, nothing prevents them from arising in the low-energy effective theory. We now rewrite

the action to the form

S = S0(ψ, a, Ã)−
V

2

(

δS0

δA0

)2

− V

8

(

δSν=1

δA0

− ρ0

)2

+
1

2
Sν=1[A], (65)

where ρ0 is the background density and

Ã0 = A0 −
V

2

(

δSν=1

δA0
− ρ0

)

+

∞
∑

n=0

Cn∇2nδB. (66)

To linear order,

Ã0(q) = A0(q)−
[

1

4π

2

q2
(1− e−q2/2)V (q)−

∞
∑

n=0

(−1)nCnq
2n

]

δB. (67)

Now if Cn are related to the coefficients Vn in Eq. (48b) by

Cn =
Vn+1

2n+1(n+ 1)!
, (68)

then one recognizes the expression in the square bracket to be Ṽ (q), so

Ã0 = A0 −
Ṽ · δB
4π

. (69)
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Again the action can be broken into two parts

S = Sph[ψ, a, Ã] +
1

2
Sν=1[A], (70)

with the Sph part having the symmetry (59). From this we find the exact relation (4). We

conclude that if the action can be brought to the form (63), where S0 depends linearly on

A0 and has the symmetry (53), then the exact relationship between σH and χ is guaranteed.

At this moment we do not know how to write the action (63) in a more compact and

more natural form. We expect additional terms to appear if one goes to higher orders in

δB. One should be able to write these terms down by repeating the calculations of Sec. II B

beyond linear order in δB.

IV. CONCLUSION AND COMMENTS ON THE HLR THEORY

We have shown that particle-hole symmetry of the lowest Landau level leads to an exact

relationship between the Hall conductivity and the susceptibility. The relationship is valid

at all wavenumbers and for all frequencies (much smaller than the cyclotron frequency, but

can be in any relationship with the interaction energy), in the absence of disorder or in

the presence of statistically particle-hole symmetric disorder. This relationship should be

verifiable in numerical simulations. For the latter, the Hall conductivity can be found, e.g.,

by measuring the density in inhomogeneous magnetic field.

We have shown that the exact relationship requires that the action of the Dirac composite

fermion theory contains an infinite number of local terms, with coefficients fixed by the two-

body electron-electron potential. This seems to be related to a discrete symmetry and thus

should not be viewed as fine tuning.

The HLR field theory does not have an explicit particle-hole symmetry and hence a priori

it is not clear if it can be modified so that the exact relationship (4) holds for all ω and q.

While a full analysis is still to be made, one problem can already by identified in the limit

of small ω and q, q/ω → 0, where Eq. (51) predicts the value for the coefficient of the q2

correction to the Hall conductivity. One might think that this coefficient can be tuned to any

value by adding higher-derivative terms to the HLR Lagrangian. However, this is not true.

It is known that Galilean invariance relates this coefficient with the (frequency-dependent)

Hall viscosity ηH at zero q [24, 25]. For the “g = 2” current considered in this paper, the

relationship reads

σH(ω, q) =
ν

2π
+
(

ηH(ω)−
ρ

2

)

q2 + o(q2). (71)

where ρ is the particle number density. The Hall viscosity is related to the average orbital

spin per particle s by [26]

ηH =
ρs

2
. (72)

Equation (51) then translates to an average orbital spin s = 1
2
per particle in the Fermi

liquid state, exactly the same value as in the filled Landau level. On the other hand, in the
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HLR theory the composite fermion acquires orbital spin from flux attachment: each unit

of flux increases the orbital spin of the composite particle by 1
2
[27], making the composite

fermion of the half filled Landau level having orbital spin 1, which differs from the value

we have just deduced from particle-hole symmetry and which would lead to a vanishing q2

correction to σH .

One may wonder if it is possible to modify the HLR theory so that the composite fermion

would have orbital spin 1
2
instead of 1. However, such a modification would break the orbital

spin of the gapped states derived from the HLR Fermi liquid state: the Jain-sequence states

ν = n
2n+1

and ν = n+1
2n+1

, and the Pfaffian state. The ν = n
2n+1

state is obtained from the

HLR state by placing the composite fermions into n filled Landau level, increasing the orbital

spin per fermion by n
2
to a total of 1 + n

2
= n+2

2
, consistent with the shift [28] n+ 2 for this

state. In the PH conjugate state ν = n+1
2n+1

the CFs fills n + 1 LLs in a magnetic field of

opposite sign, making the orbital spin 1− n+1
2

= 1−n
2
, again matching the shift 1−n. In the

Moore-Read state the composite fermions form spin-1 Cooper pairs in which each fermion

receives an additional orbital spin 1
2
to a total of 1 + 1

2
= 3

2
, matching the shift S = 3. Any

modification of the HLR theory that changes the orbital spin of the CF would destroy these

agreements.

To further illustrate the difficulties of the HLR theory with particle-hole symmetry, in

the Appendix we consider a concrete realization of this theory—an approximation scheme

developed in Refs. [13, 29] under the name “magnetized modified RPA” (MMRPA). We show

that this approximation accurately reproduces the q2 term in the DC Hall conductivity of

the Jain-sequence states, but fails to get the PH-symmetric coefficient of this term in the

AC Hall conductivity of the Fermi liquid state.
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Appendix A: An HLR mean-field calculation of the q2 correction to Hall conductivity

We start from the HLR effective theory,

S = S[ψ,A− a] +
1

8π
ada+

V

2(4π)2
(∇× a)2, (A1)

where S[ψ,A − a] is the action describing the coupling of the nonrelativistic CF with the

gauge field (A − a)µ. Integrating over ψ and keeping only quadratic term, this action is

replaced by 1
2
(A− a) · ΠCF · (A− a) where Πµν

CF is the electromagnetic response function of
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the CF. Working in the temporal gauge, this matrix becomes a 2 × 2 matrix of the spatial

components. In this gauge it is easy to integrate out a to get the response matrix of the

electron Π,

Π = −Q (ΠCF +Q)−1Q+Q, (A2)

where the matrix Q is defined as

Qij =
iω

4π
ǫij −

V (q)

(4π)2
(q2δij − qiqj). (A3)

In the most naive RPA, ΠCF is assumed to be the response function of a free composite

Fermi gas Πfree
CF computed assuming the CF has effective mass m∗. This approximation

breaks Galilean invariance when m∗ differs from the bare electron mass m and hence cannot

be used if one wants to take the LLL m→ 0. To correct the problem, a modification of the

RPA was proposed in Ref. [29] which was later amended in Ref. [13] into a scheme called

“MMRPA.” We reinterprete this modification as replacing S[ψ,A − a] not by an action of

a free fermion coupled to aµ, but by

S[ψ,A− a, vi] = iψ†Dtψ − |Diψ|2
2m(1 + F1)

+
F1

1 + F1

i

2
viψ†

↔

Diψ +
F1

1 + F1

mv2

2
ψ†ψ, (A4)

where vi is a field to be integrated over, and F1 is a parameter. This action describes

a theory of a fermion with an effective mass m∗ = m(1 + F1) but is consistent with the

Galilean invariance of the original electrons with mass m. One quick way to see that is

to follow Ref. [30] to check, with the help of the equation of motion δS/δvi = 0, that the

momentum density T 0i is the particle number ji times the bare electron mass m:

∂L
∂(∂tψ)

Diψ +Diψ
† ∂L
∂(∂tψ†)

= m
∂L
∂Ai

. (A5)

If one integrate out vi first, one generates a contact interaction for the fermion. Hence

one can interprete F1 can be interpreted as the p-wave Landau parameter. The LLL limit

corresponds to taking F1 → ∞, m∗ = m(1 + F1) fixed. In this limit the last term in the

right hand side of Eq. (A4) disappears.

The scheme developed in Refs. [13, 29] is essentially the RPA in the theory (A1), (A4).

One integrates out ψ first and keep only terms quadratic in a and v,

1

2
[A− a− (m∗ −m)v] · Πfree

CF · [A− a− (m∗ −m)v] +
ρ

2
(m∗ −m)v2, (A6)

where ρ is the particle number density. Then one performs the Gaussian integration over vi

in the Gaussian approximation to obtain 1
2
(A− a) · ΠCF · (A− a), where

ΠCF =

(

1 +
m∗ −m

ρ
Πfree

CF

)−1

Πfree
CF . (A7)
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This is exactly the prescription of the “modified RPA” [29]. The later improvement, “mag-

netized modified RPA” [13] simply declares the Π obtained in Eq. (A2) to corresponds to

the “g = 2” electromagnetic response.

From now on we choose q to point along the x axis, q = (q, 0). For the ν = n
2n+1

state,

the composite fermions live in a reduced magnetic field b = B
2n+1

. In the small ω, small q

limit, ω/q → 0, the response function of a free gas is [31]
(

Πfree
CF

)

11
=

n

2π

m∗

b
ω2 +O(ω2q2), (A8)

(

Πfree
CF

)

12
= iω

n

2π

(

1− 3n

4
(qℓb)

2

)

+O(ωq4), (A9)

(

Πfree
CF

)

21
= −

(

Πfree
CF

)

12
, (A10)

(

Πfree
CF

)

22
= −n2

2π

q2

m∗

+O(q4), (A11)

where ℓ2b = 1/b = (2n + 1)ℓ2B. Inserting these formulas into Eqs. (A2) and Eq. (A7), one

finds the q-dependence of the DC Hall conductivity σH = −i limω→0 ω
−1Π12 to be

σH(q) =
1

2π

n

2n+ 1

(

1 +
n

4
q2ℓ2B

)

. (A12)

This agrees with the general formula

σH(q) =
ν

2π

(

1 +
S − 2

4
q2ℓ2B

)

, (A13)

when one substitutes in the latter the value of the shift of the Jain state, S = n+ 2.

Analogously, for the ν = n+1
2n+1

state,

(

Πfree
CF

)

11
=
n+ 1

2π

m∗

|b| ω
2 +O(ω2q2), (A14)

(

Πfree
CF

)

12
= −iωn+ 1

2π

(

1− 3(n + 1)

4
(qℓb)

2

)

+O(ωq4), (A15)

(

Πfree
CF

)

21
= −

(

Πfree
CF

)

12
, (A16)

(

Πfree
CF

)

22
= −(n + 1)2

2π

q2

m∗

+O(q4), (A17)

and after some calculation one obtains

σH =
1

2π

n+ 1

2n+ 1

(

1− n+ 1

4
q2ℓ2B

)

, (A18)

which matches with the value of the shift S = −n + 1.

Let us now turn to the Fermi liquid state. For small ω and q, but ω/vF q ≫ 1, the

response function of a Fermi gas is

(

Πfree
CF

)

11
= − ρ

m∗

(

1 +
3

4

v2F q
2

ω2

)

, (A19)

(

Πfree
CF

)

12
=

(

Πfree
CF

)

21
= 0, (A20)

(

Πfree
CF

)

22
= − ρ

m∗

(

1 +
1

4

v2F q
2

ω2

)

. (A21)
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Applying the formulas (A2) and (A7) we find

σH =
1

4π
+O(q3), (A22)

with zero coefficient in front of the q2 term, which does not match the requirement of

particle-hole symmetry (51).

One can also put the action (A1), (A4) in curved space by using the metric tensor gij

to sum over spatial indices and replacing the covariant derivative by Dµψ = (∂µ − iAµ +

iaµ − isωµ) with s being the orbital spin of the composite fermion and the spin connection

ωµ defined as in Ref. [24] so that it vanishes in flat space and any electromagnetic field.

It happens that for s = 1 one does not need to introduce any higher-order term to make

the theory consistent with the nonrelativistic general coordinate invariance of the original

electron theory with g = 2 [32]. This explains why the MMRPA reproduces correctly

the O(q2) correction to the Hall conductivity for the Jain sequence at ν = n
2n±1

. It also

implies that for Jain states around other even-denominator filling fractions, e.g., ν = 1
4
, the

unmodified MMRPA will not give the correct q2 correction to σH .
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