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The exchange-correlation hole is a central concept in density functional theory. It not only provides
justification for an exchange-correlation energy functional, but also serves as a local ingredient for
nonlocal range-separated density functionals. However, due to the nonlocal nature, modeling the
conventional exact exchange hole presents a great challenge to density functional theory. In this
work, we propose a semilocal exchange hole underlying the Tao-Perdew-Staroverov-Scuseria (TPSS)
meta-GGA functional. Our model is distinct from previous ones not only at small separation between
an electron and the hole around the electron, but also in the way it interpolates between rapidly-
varying and slowly-varying densities. Here the interpolation is determined by the wave vector
analysis on the infinite barrier model for jellium surface. Numerical tests show that our exchange
hole model mimics the conventional exact one quite well for atoms. As a simple application, we
apply the hole model to construct a TPSS-based range-separated functional. We find that this
range-separated functional can substantially improve the band gaps and barrier heights of TPSS,
without losing much accuracy for atomization energies.

I. INTRODUCTION

Kohn-Sham density functional theory (DFT)1–3 is a
mainstream electronic structure theory due to its use-
ful accuracy and high computational efficiency. For-
mally it is an exact theory, but in practice the exchange-
correlation energy component, which accounts for all
many-body effects, has to be approximated as a func-
tional of the electron density. Development of exchange-
correlation energy functionals for a wide class of problems
with high accuracy has been the central task of DFT.
Many density functionals have been proposed4–24, and
some of them have achieved remarkable accuracy in con-
densed matter physics or quantum chemistry or both.
According to their local ingredients, density function-

als can be classified into two broad categories: semilo-
cal and nonlocal. Semilocal functionals make use of
the local electron density, density derivatives, and/or
the orbital kinetic energy density as inputs, such as
the LSDA (local spin-density approximation)25,26, GGA
(generalized-gradient approximation)10,27,28 and meta-
GGA11,16,17,20,24. Due to the simplicity in theoretical
construction and numerical implementation, as well as
relatively low computational cost, semilocal functionals
have been widely-used in electronic structure calcula-
tions29–32. Indeed, semilocal DFT can give a quick and
often accurate prediction of many properties such as
enthalpies of formation or atomization energies23,33–38,
bond lengths39,44, lattice constants40–44, cohesive ener-
gies45, etc.
Semilocal DFT has achieved high level of sophistica-

tion and practical success for many problems in chem-
istry, physics, and materials science, but it encounters
difficulty in the prediction of reaction barrier heights,
band gaps, charge transfer, and excitation energies. Ac-
curate description of these properties requires electronic
nonlocality46, which is absent in semilocal function-
als. Nonlocality can be accounted for via mixing some

amount of exact exchange into a semilocal DFT. This
leads to the development of hybrid8,13,33,47 and range-
separated functionals14,48. The former involve the ex-
act exchange energy or energy density, while the latter
involve the exact and approximate semilocal exchange
holes.

There are three ways to approximate an exchange hole.
It can be constructed from paradigm densities in which
the exact exchange hole is known, such as the slowly
varying density4,49,50 (the paradigm of condensed matter
physics) and the one-electron density7 (the paradigm of
quantum chemistry). It can be also constructed from
a density functional with the reverse engineering ap-
proach51–53. A physically more appealing approach to
approximate an exchange hole is from the density matrix
expansion24. Among the three general methods, the re-
verse engineering approach is most frequently used. How-
ever, a semilocal exchange hole based on the reverse engi-
neering approach may not be in the gauge of the conven-
tional exchange hole, because a semilocal exchange en-
ergy density is usually mot in the conventional gauge54.
In the construction of a semilocal exchange hole, one
must impose certain exact constraints on a hole to recover
the underlying exchange energy density, which is usually
not in the same gauge of the conventional exchange en-
ergy density, due to the integration by parts performed
in the construction of semilocal DFT. Examples include
the PBE GGA49,51 and TPSS meta-GGA52,53 exchange
holes. Many range-separated functionals have been pro-
posed14,55–58, and some of them have obtained great pop-
ularity in electronic structure calculations.

The exchange hole in the conventional gauge is of spe-
cial interest. For example, the sub-system functional
scheme proposed by Mattsson and co-workers15,59–61 was
developed from the conventional exchange hole of the
edge electron gas62. In the present work, we aim to de-
velop an exchange hole in the conventional gauge. The
hole will reproduce the TPSS exchange energy functional
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by construction. To ensure that our model hole is in
the conventional gauge, we not only impose the exact
conventional constraints in the conventional gauge (e.g.,
recovery of the correct short-range behaviour without in-
tegration by parts) on the hole model, but also modify
the TPSS exchange energy density by adding a gauge
function. The new gauge function is similar to the one
proposed by Tao et al.54, but with a modification so that
the gauge-corrected exchange energy density or underly-
ing hole is ensured to be negative even in the far density
tail. Adding a proper gauge function to the exchange
energy density will not alter the integrated exchange en-
ergy, but it will improve the agreement of the model hole
with the exact conventional one. Furthermore, the hole
model can generate the exact system-averaged exchange
hole accurately by replacing the TPSS exchange energy
density with the gauge-corrected exact conventional ex-
change energy density (i.e., in TPSS gauge). As a simple
application, we apply our semilocal exchange hole to con-
struct a range-separated exchange functional. Our nu-
merical tests show that this range-separated functional,
when combined with the TPSS correlation functional,
can yield band gaps and barrier heights in much bet-
ter agreement with experimental values than the original
TPSS functional, without losing much accuracy of atom-
ization energies.

II. EXACT CONVENTIONAL EXCHANGE

HOLE

For simplicity, let us first consider a spin-unpolarized
density (n↑ = n↓). For such a density, the exchange
energy can be written as

Ex[n] =

∫

d3r n(r)ǫx(r)

=

∫

d3r n(r)
1

2

∫

d3u
ρx(r, r+ u)

u
, (1)

where n(r) = n↑+n↓ is the total electron density, ǫx(r) is
the conventional exchange energy per electron, or loosely
speaking the exchange energy density, and ρx(r, r+u) is
the exchange hole at r+ u around an electron at r. It is
conventionally defined by

ρx(r, r + u) = −|γ1(r, r+ u)|2/2n(r). (2)

Here γ1(r, r+u) is the Kohn-Sham single-particle density
matrix given by

γ1(r, r+ u) = 2

N/2
∑

i

φi(r)
∗φi(r+ u), (3)

with N being the number of electrons and φi(r) being
the occupied Kohn-Sham orbitals. According to the ex-
pression (1), one can regard the exchange energy as the
electrostatic interaction between a reference electron at

r and the exchange hole at r + u. Therefore, strictly
speaking, an exchange energy functional cannot be fully
justified unless the underlying exchange hole has been
found. But this issue can be addressed with the reverse
engineering approach52.
The exchange hole for a spin-unpolarized density can

be generalized to any spin polarization with the spin-
scaling relation63

ρx[n↑, n↓] =
n↑

n
ρx[2n↑] +

n↓

n
ρx[2n↓]. (4)

Therefore, in the development of the exchange hole, we
only need to consider a spin-compensated density. Per-
forming the spherical average of the exchange hole over
the direction of separation vector u, the exchange energy
of Eq. (1) may be rewritten as

Ex[n] =

∫ ∞

0

du 4πu2

∫

d3r n(r)
〈ρx(r, u)〉sph

2u
, (5)

where 〈ρx(r, u)〉sph is the spherical average of the ex-
change hole defined by

〈ρx(r, u)〉sph =

∫

dΩu

4π
ρx(r, r+ u). (6)

This suggests that the exchange energy does not depend
on the detail of the associated hole. Re-arranging Eq. (5)
leads to a simple expression

Ex[n] = N

∫

du 4πu2 〈ρx(u)〉
2u

, (7)

where 〈ρxc(u)〉 is the system average of the exchange hole
defined by

〈ρx(u)〉 =
1

N

∫

d3r n(r)〈ρx(r, u)〉sph. (8)

Although the conventional exact exchange hole of
Eq. (2) satisfies the sum rule,

∫

d3u ρx(r,u) = −1, (9)

(the most important property of the exchange hole), the
exact exchange hole transformed to a new coordinate
system64,65 does not. Nevertheless, the system averaged
hole always satisfies the sum rule

∫

d3u 〈ρx(u)〉 = −1. (10)

This is the constraint that has been imposed in the devel-
opment of a semilocal exchange hole. While the exchange
energy is uniquely defined, the exchange energy density
ǫx(r) as well as the exchange hole ρx(r, r + u) are not.
For example, both quantities can be altered by a gen-
eral coordinate transformation or by adding an arbitrary
amount of the Laplacian of the electron density, without
changing the total exchange energy54,66.
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III. CONSTRAINTS ON THE EXCHANGE

HOLE

The conventional exchange hole is related to the pair
distribution function gx(r, r

′) by

n(r)ρx(r, r
′) = n(r)n(r′)gx(r, r

′). (11)

In general, a semilocal exchange hole can be written as

n(r)ρx(r, r+ u) = n2(r)Jx(s, z, uf), (12)

where J(s, z, uf) is the shape function that needs to be
constructed, with s = |∇n|/(2kfn) being the dimension-

less reduced density gradient, kf = (3π2n)1/3 being the
Fermi wave vector, z = τW /τ , and uf = kfu. Here
τW = |∇n|2/8n is the von Weizäscker kinetic energy den-
sity, and τ is the Kohn-Sham orbital kinetic energy den-

sity defined by τ(r) =
∑N/2

i |∇φi(r)|2.

A. Constraints on the shape function

We will seek for a shape function that satisfies the fol-
lowing constraints:

i. On-top value

J(s, z, 0) = −1/2. (13)

ii. Uniform-gas limit

Junif(uf ) = −9

2

[

sin(uf )− cos(uf )

u3
f

]

. (14)

The uniform-gas limit that will be imposed here is
the non-oscillatory model67 (Eq. (28) for s = 0 and
z = 0).

iii. Normalization

4

3π

∫ ∞

0

duf u2
fJ(s, z, uf) = −1. (15)

iv. Negativity

J(s, z, uf) ≤ 0. (16)

v. Energy constraint

8

9

∫ ∞

0

duf ufJ(s, z, uf) = −FTPSS
x (s, z). (17)

vi. Small-u behaviour

lim
uf→0

∂2J(s, z, uf)

∂u2
f

= L(s, z). (18)

L(s, z) is the curvature of the shape function that
will be discussed below.

vii. Large-gradient limit

lim
s→∞

J(s, z, uf) = JPBE(s, uf ). (19)

In the large-gradient limit, the TPSS enhancement
factor approaches the PBE enhancement factor.
Therefore, the TPSS shape function should also ap-
proach the PBE shape function in this limit.

Among these constraints, (vi) is for the conventional ex-
change hole, while (vii) is a constraint used in the devel-
opment of the TPSS functional. These two constraints
will be discussed in detail below. In previous works52,53,
constraint (vi) was used with integration by parts and
thus is not a constraint for the conventional exchange
hole, and (vii) was not considered.

B. Small-u behaviour and large-gradient limit

Expanding the spherically-averaged exchange hole up
to second order in u yields

〈ρx(r, u)〉sph = −1

2
n+

1

12

[

4

(

τ − |∇n|2
8n

)

−∇2n

]

u2

+ · · · (20)

Since the Laplacian of the density tends to negative in-
finity at a nucleus, the negativity of the exchange hole for
small u will be violated. Therefore, we must eliminate it.
In previous works, the Laplacian of the density is elim-
inated by integration by parts52. In order to model the
conventional exchange hole, here we eliminate it instead
with the second-order gradient expansion of the kinetic
energy density in the slowly varying limit,

τ ≈ τunif + |∇n|2/(72n) +∇2n/6, (21)

This technique has been used in the development of the
TPSS17 and other functionals18,68 as well as in the con-
struction of electron localization indicator69.
Substituting Eqs. (20) into Eq. (12) and eliminating

the Laplacian ∇2n via (21) yields the small-u expansion
of the shape function

J(s, z, uf) = −1

2
+

1

6

(

− 3

10

τ

τuni
+

9

10
− 5

6
s2
)

u2
f

+ · · · (22)

leading to

L(s, z) = −1

3

( 3

10

τ

τuni
− 9

10
+

5

6
s2
)

. (23)

For one- or two-electron densities, L(s, z) reduces to

L(s, z = 1) =
3

2

(1

5
− 8

27
s2
)

, (24)

while for the uniform gas, L(s = 0, z = 0) = 1
5 . Note

that lims→0 L(s, z = 1) = 3/10, while lims→0 L(s, z =
0) = 1/5 (order-of-limit problem).
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In the large-gradient limit, the TPSS shape function
should recover the PBE shape function [Eq. (19)]. This
requires that L(s, z) must be merged smoothly with the
PBE small-u behaviour,

LPBE(s) =
(1

5
− 2

27
s2
)

. (25)

We can achieve this with

LTPSS =
1

2
erfc

(

s2 − s20
s0

)

L(s, z)

+

[

1− 1

2
erfc

(

s2 − s20
s0

)]

LPBE(s), (26)

where erfc(x) is the complementary error function defined
by

erfc(x) = 1− erf(x) =
2

π

∫ ∞

x

dt e−t2 . (27)

s0 = 6 is a switching parameter that defines the point at
which the small-u behaviour smoothly changes from the
TPSS to PBE. This choice of s0 ensures that the small-u
behaviour of our shape function is essentially determined
by Eq. (22), while it merges into the PBE shape function
in the large-gradient limit (Eqs. (35)-(36) of Ref. 67).

IV. SHAPE FUNCTION FOR THE TPSS

EXCHANGE HOLE

A. TPSS shape function

The shape function for the TPSS exchange hole is as-
sumed to take the following form

JTPSS(ufs, z) =

[

− 9

4u4
f

(

1− e−Au2

f

)

+

(

9A

4u2
f

+B + C(s, z)u2
f +G(s, z)u4

f

+ K(s, z)u6
f

)

e−Du2

f

]

e−H(s,z)u2

f , (28)

where A = 0.757211, B = −0.106364, D = 0.609650
are determined by the recovery of the non-oscillatory
model67 of the uniform electron gas, while the func-
tions C(s, z), G(s, z) and K(s, z) are determined by con-
straints (iii), (v) and (vi). They can be analytically ex-

pressed in terms of H(s, z) as

C =
1

8

(

4L+ 3A3 + 9A2H − 9AD2 − 18ADH

+ 8Bλ
)

(29)

G = −63

8
λ3

(

FTPSS
x +Aln

(β

λ

)

+H ln
( β

H

)

)

− 24

5
λ

7

2

(

3A√
H +

√
β
−
√
π

)

+
603

40
Aλ3

− 19

10
Bλ2 − 11

10
Cλ (30)

K =
8

35
λ

9

2

(

3A√
H +

√
β
−
√
π

)

− 12

35
Aλ4

− 8

105
Bλ3 − 4

35
Cλ2 − 2

7
Gλ, (31)

where λ = D + H(s, z) and β = A + H(s, z). Follow-
ing the procedure of Constantin, Perdew, and Tao52 in
the construction of the original TPSS shape function,
here we determine the s-dependence of H(s, z) by fit-
ting to the two-electron exponential density, because for
two-electron densities, z is identically a constant every-
where in space. It only depends on the density gradient
s. We determine the z-dependence of H(s, z) with the
wave vector analysis of the surface energy in the infinite
barrier model, because in this model, the electron den-
sity, the kinetic energy density, and the exchange hole are
analytically known, and the surface energy is also known
accurately.

B. s-dependence of H(s, z)

In iso-orbital regions where z ≈ 1 (e.g., core and den-
sity tail regions), we assume that the functionH(s, z = 1)
takes the form of

H iso−orb(s, z = 1) =
h0 + h1s

2 + h2s
4 + h3s

6

d0 + d1s2 + d2s4 + d3s6
. (32)

Note that H iso−orb(s, z) has only an even-order gradient
dependence. This is because in the slowly-varying limit,
the spherical average of the exchange hole [Eq. (20)] only
depends upon the even-order gradient terms70. In the
large-gradient regime, the H(s, z = 1) of TPSS should
recover the H(s)67 of PBE

HPBE(s) =
p1s

2 + p2s
4 + p3s

6

1 + p4s2 + p5s4 + p6s6
. (33)

For any density between the two regimes, we take the
interpolation formula,

H(s, z = 1) =
1

2
erfc

(

s2 − s20
s0

)

H iso−orb(s, z = 1)

+

[

1− 1

2
erfc

(

s2 − s20
s0

)]

HPBE(s). (34)
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TABLE I: Parameters of the TPSS shape function H(s, z = 1) of Eq. (34) and the PBE shape function H(s) of Eq. (33)
determined by a fit to the two-electron exponential density.

H(s, z = 1) of Eq. (34) H(s) of Eq. (33)
h0 h1 h2 h3 d0 d1 d2 d3 p1 p2 p3 p4 p5 p6

0.0060 2.8916 0.7768 2.0876 13.695 −0.2219 4.9917 0.7972 0.0302 −0.1035 0.1272 0.1203 0.4859 0.1008

-0.3

-0.25
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-0.15

-0.1

-0.05

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2π
N

u
〈n

x
〉(

u
)

[a
.u

.]

u (bohr)

Exact

TPSS-present

TPSS-original

PBE

LSDA

FIG. 1: System averaged exchange hole for the LSDA, PBE
GGA, and TPSS meta-GGA for the two-electron exponen-
tial density. TPSS-original represents the original TPSS hole
model of Constantin, Perdew, and Tao52, while TPSS-present
represents the present TPSS hole model. The area under the
curve is the exchange energy (in hartree): ELSDA

x = −0.5361,
EPBE

x = −0.6117, ETPSS
x = −0.6250, and Eex

x = −0.6250.
Both the original and present TPSS holes yield the same ex-
change energy, due to the same energy constraint.

Finally, we insert Eq. (34) into Eqs. (29)-(31) and per-
form the fitting procedure by minimizing the following
quantity

∑

i

ui

(

〈

ρTPSS
x (ui)

〉

sph
−
〈

ρexactx (ui)
〉

sph

)2

(35)

where 〈ρx(u)〉sph is the spherical system average of the
exchange hole defined by Eq. (8). We can express
〈ρx(u)〉sph in terms of the shape function as 〈ρx(u)〉sph =
(1/N)

∫

d3rn(r)2J(s, z, uf). For numerical convenience,
we replace the integral with discretized summation. All
the parameters for H(s, z = 1) and H(s) are listed in
Table I.

Figure 1 shows the system-averaged exchange hole for
the two-electron exponential density evaluated with dif-
ferent hole models, compared to the exact one. We can
observe from Fig. 1 that the present TPSS hole is slightly
closer to the conventional exact hole than the original
TPSS hole, but it is much closer than the PBE GGA
and LSDA holes.

C. Infinite barrier model and wave vector analysis

for surface energy

As discussed above, in iso-orbital regions, the s-
dependence of H(s, z) is determined by fitting the model
hole to the conventional exact exchange hole for the
two-electron exponential density. In the uniform-gas
limit, our exchange hole should correctly reduce to the
non-oscillatory model67 of the LSDA. This requires that
H(s, z) vanishes in this limit. To fulfill these considera-
tions, we assume that

H(s, z) =
1

2
erfc

(

s2 − s20
s0

)

H iso−orb(s, z = 1)zm

+

[

1− 1

2
erfc

(

s2 − s20
s0

)]

HPBE(s). (36)

wherem is an integer. In order to determine m, we follow
the procedure of Ref.52 to study the wave-vector analy-
sis (WVA) of the surface energy. But instead of using
the jellium surface model with linearly increasing barrier,
here we employ the exactly solvable infinite barrier model
(IBM). Since the single-particle density matrix and hence
the electron density of IBM is analytically known, this al-
lows us to obtain insight into the z-dependence of H(s, z)
from this model more easily.
Let us consider a uniform gas of noninteracting elec-

trons subject to an infinite potential barrier perpendicu-
lar to the x axis (V → ∞ for x < 0). The one-particle
density matrix is given by71,72

γ1(r, r
′) = n̄

[

J(uf )− J

(

√

u2
f + 4xfx′

f

)]

Θ(x)

× Θ(x′) (37)

where Θ(x) is a step function, with Θ(x) = 1 for x > 0
and Θ(x) = 0 for x ≤ 0. n̄ is the average bulk valence

electron density, xf = xkf , x
′

f = x′kf , uf = |r − r
′|kf ,

and

J(ξ) = 3j1(ξ)/ξ, (38)

with j1(ξ) = sin(ξ)/ξ2 − cos(ξ)/ξ being the first-order
spherical Bessel function. The electron density can be
obtained from the single-particle density matrix by tak-
ing u = |r′ − r| = 0 in Eq. (37). This yields

n(x) = n̄[1− J(2xf )]Θ(x). (39)
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FIG. 2: Γ(k) of Eq. (43) and smooth fit.

The WVA for the surface exchange energy density is
given by52

γx(k) =

∫ ∞

0

du 8kfu
2bx(u)

sin(ku)

ku
(40)

where

bx(u) =

∫ ∞

−∞

dx n(x)

[

ρx(x, u)− ρunifx (u)

]

. (41)

The exchange hole ρx(x, u) of IBM can be obtained from
the one-particle density matrix of Eq. (37). With some
algebra, we can express the WVA surface exchange en-
ergy as73

σx =
1

2

∫ ∞

0

dkr γx(kr), (42)

where kr = k/kF , and γx(kr) is given by

γx(kr) =
8

k2f

∫ ∞

0

duf b(uf )u
2
fsinc(kruf )

=
1

(πrs)3
Γ(kr), (43)

and

bx(uf ) = − n̄2

2kf

∫ ∞

0

dxf ix(xf , uf). (44)

Here sinc(x) = sin(x)/x, and ix(xf , uf) =
∑6

l=1 χl(xf , uf ), with χl(xf , uf) being defined by
Eq. (3.18) of Ref.73.
Figure 3 shows Γ(kr) of Eq. (43). The area under

the curve is proportional to the surface exchange energy.
From the electron density and density matrix of IBM
given by Eqs. (37) and (39), the exact surface exchange
energy can be calculated with the WVA of Eq. (42). Lan-
greth and Perdew73 reported that the value of σx10

3r3s
is 4.0 a.u., where rs is Seitz radius. This value is slightly

-0.3
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-0.1

0
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0.2
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r
)

[a
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.]
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z
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z
3

z
4

z
5

Exact

FIG. 3: Analysis of z-dependence of the WVA for the present
TPSS hole of Eq. (28). z3 curve provides the best fit to the
peak region of the exact Γ(kr) of Eq. (43).

smaller than the value obtained earlier by Harris and
Jones74 and Ma and Sahni75 (4.1 a.u.). Our present work
gives 3.99 a.u., which is closer to that of Langreth and
Perdew.

D. z-dependence of H(s, z)

The z-dependence of H(s, z) [Eq. (36)] can be deter-
mined by fitting the TPSS hole to the wave vector anal-
ysis. We start with the specific expressions for the local
ingredients of the hole model in IBM.

From the electron density of Eq. (39), the reduced den-
sity gradient can be explicitly expressed as

s(xf ) =
3

2xf

|sinc(2xf )− J(2xf )|
[1− J(2xf )]4/3

. (45)

The kinetic energy density can be obtained from the
single-particle density matrix of Eq. (37). This yields

τ(xf ) = k2f n̄

{

3

10
+

1

2
J(2xf ) +

9

4x2
f

[sinc(2xf )

− J(2xf )]

}

. (46)

Finally, the von Weizäscker kinetic energy density can be
expressed as

τW =
9k2f n̄

8x2
f

{

[sinc(2xf )− J(2xf )]
2

1− J(2xf )

}

. (47)

Next, we calculate γx from the TPSS hole. Inserting
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the TPSS model hole into Eq.(41) yields

bx(u) =

∫ ∞

0

dxn(x)
[

ρTPSS
x (x, u)− ρunifx (u)

]

=
ñ2

kf

∫ ∞

0

dxf [1− J(2xf )]

{

[1− J(2xf )]

× JTPSS
(

uf
3

√

1− J(2xf ), s(xf ), z(xf )
)

− Junif(uf )

}

(48)

(Note that Θ(x) is implicit on the electron density.) Sub-
stituting Eq. (48) into Eq. (40), we obtain

γx(k) =
8n̄

3π2

∫ ∞

0

dxf

∫ ∞

0

duf jx(uf , xf , kr), (49)

where

jx(uf , xf , kr) =
[

̺2(xf )J
TPSS

(

uf
3

√

̺(xf ), s(xf ), z(xf )
)

− ̺(xf )J
unif(uf )

]

sinc(kruf )u
2
f (50)

and ̺(xf ) = 1−J(2xf ). Rearrangement of Eq. (49) leads
to the final expression

γx(k) =
1

(πrs)3
ΓTPSS(kr), (51)

where

ΓTPSS(kr) = 2

∫ ∞

0

∫ ∞

0

dxf duf jx(uf , xf , kr). (52)

Figure 3 shows the comparison ofH(s, z) with different
choices of m to the exact one. From Fig. 3, we see that
the best fit to the exact Γ(kr) in the peak region is m =
3. Figure 4 shows that, compared to the WVA of the
LSDA, PBE, and original TPSS holes, the WVA of the
present model is closest to the exact one in the peak
region. To further understand the original and present
TPSS models, we plot the TPSS shape function of the
present and the original models in IBM at z = 0.55, as
shown by Figs. (5) and (6), respectively. From Figs. (5)
and (6), we observe that while the present model hole is
always negative, the original TPSS hole can be positive
in some range of uf and s.
To check our wave vector analysis for the surface ex-

change energy, we have computed σx from

σx =

∫ ∞

−∞

dxn(x)

[

ǫx(n)− ǫunifx (n̄)

]

. (53)

The results are shown in Table II. From Table II, we
can see that the surface energy from the WVA of the
TPSS hole (both original and the present version) agrees
very well with the surface energy calculated directly from
the TPSS exchange functional [Eq. (53)]. Furthermore,
the TPSS surface energy is closer to the exact value
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FIG. 4: Comparison of the WVA for the present and origi-
nal TPSS hole models as well as the PBE hole with the ex-
act one. “TPSS-present” represents the present TPSS hole
model, while “TPSS-original“ represents the original TPSS
model.
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FIG. 5: Present TPSS shape function of Eq. (28) for z = 0.55

than those of the LSDA and PBE. The LSDA signifi-
cantly overestimates the surface exchange energy, while
the PBE gives underestimation. These observations are
consistent with those evaluated from the jellium surface
linear potential model45. It is interesting to note that
even the original TPSS shape function in certain range is
positive, the surface energy from the original TPSS hole
is the same as that from the present model. This re-
sult is simply due to the cancellation of the original hole
model between positive values and too-negative values at
certain uf and s values, as seen from the comparison of
Fig. (6) to (5). The IBM surface energy presents a great
challenge to semilocal DFT. It is more difficult to get it
right than the surface energy of jellium model with finite
linear potential, because the electron density at the sur-
face of IBM is highly inhomogeneous, due to the sharp
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FIG. 7: Comparison of the difference of the system averaged
hole between the approximations and the exact curve for the
Ne atom. “TPSS-present” represents the present TPSS hole
model, while “TPSS-original” represents the original TPSS
model.

cutoff at surface, and is too far from the slowly varying
regime where semilocal DFT can be exact (e.g., TPSS
functional).

Figure 7 shows the comparison of the differences of
the system averaged hole between the approximations
and the exact curve for the LSDA, PBE, and the original
and present TPSS exchange hole models of the Ne atom,
in which z is in general different from 0 (slowly varying
density) and 1 (iso-orbital density). The PBE and LSDA
curves are plotted with the hole models of Ref.67. From
Fig. 7 we can see that, except for the small region near
the core, the present TPSS hole model is closer to the
exact one than the original TPSS hole model, but both
the TPSS models obviously improve the system averaged
holes of the LSDA and PBE.

TABLE II: Comparison of the surface exchange energies (in
a.u.) of IBM surface (expressed as σxrs

3103) calculated di-
rectly with exchange energy functionals and with the WVA
formula. Exact value (obtained in this work) is 3.99 a.u.

Eq .(53) WVA integration
LSDA 6.318 -
PBE 2.576 -
TPSS 2.945 2.95 (original hole)

2.95 (present hole)

V. TPSS HOLE IN THE GAUGE OF THE

CONVENTIONAL EXACT EXCHANGE

The shape function explicitly depends on the enhance-
ment factor via the energy constraint of Eq. (17). The
latter may be altered by adding an arbitrary amount of
the Laplacian of the density without changing the to-
tal exchange energy. This ambiguity of the exchange
energy density66 leads to the ambiguity of the semilo-
cal exchange hole. Our primary goal of this work is to
develop a semilocal exchange hole in the gauge of the
conventional exact exchange. This is partly motivated
by the fact that, in the development of range-separated
density functionals, the exact exchange part is usually
provided in the conventional gauge.
The exact exchange energy density in the conventional

gauge can be conveniently evaluated with the Della Sala-
Görling (DSG)76 identity resolution

exconv(r) =
1

2

∑

µν

Qσ
µνχµ(r)χ

∗
ν(r), (54)

where Qσ is the spin block of the DSG matrix54. How-
ever, many semilocal exchange energy densities or en-
hancement factors of Eq. (17) are not in the gauge of
the conventional exact exchange, due to the constraints
such as the Lieb-Oxford bound and the slowly-varying
gradient expansion (with integration by parts) imposed
on the enhancement factor. For example, for the two-
electron exponential density, the conventionally defined
exact enhancement factor is less than 1 near the nucleus,
while the TPSS enhancement factor is FTPSS

x ≥ 1 by de-
sign. In the density tail region, the conventional exact
enhancement factor tends to infinity, but the maximum
value of FTPSS

x is 1.804. To construct the TPSS exchange
hole in the conventional gauge, we can replace the origi-
nal energy density constraint [Eq. (17)], which was used
in the construction of the original TPSS exchange hole52,
with the TPSS exchange energy density or enhancement
factor in the conventional gauge. In this gauge, the TPSS
exchange energy density can be written as54

eTPSS
x (r) = eTPSS,conv

x (r) +G(r), (55)

where eTPSS
x (r) is the standard TPSS exchange energy

density17 (i.e., λ = 0.92), eTPSS,conv
x (r) is the TPSS ex-

change energy density in the exact conventional gauge
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FIG. 8: Comparison of the system-average holes for the two-
electron exponential density. “Exact” represents the conven-
tional exact system-averaged hole ρexactx (r, u) (red) from Eqs.
(4)-(6), “TPSS” represents the present TPSS system-aver-
aged hole (blue) from Eqs. (28)-(31) and (36) with Table
I and m = 3, ‘Exact-TPSS” represents the system-averaged

hole (green) generated from the TPSS hole but with FTPSS
x (r)

of Eq. (17) replaced by F exact
x (r), and “Exact-gTPSS” repre-

sents the system-averaged hole generated from eex,tpssgx (r) of
Eq. (56).

(i.e., λ = 1), with λ being the general coordinate trans-
formation parameter54,64,65. ex(r) = n(r)ǫx(r). Equiva-
lently, we can also write

eex,tpssgx (r) = eex,convx (r) +G(r), (56)

where eex,tpssgx (r) is the exact exchange energy density in
TPSS gauge and eex,convx (r) is the exact conventional ex-
change energy density evaluated from the single-particle
density matrix [Eqs. (2)-(6).] Based on the uniform and
non-uniform coordinate scaling properties of the exact
exchange energy density, Tao, Staroverov, Scuseria, and
Perdew (TSSP)54 proposed a gauge function

G(r) = a∇ · [f(r)∇ǫ̃], (57)

f =
n/ǫ̃2

1 + c(n/ǫ̃3)2

(

τW

τ

)b

. (58)

Here a = 0.015 and c = 0.04 are determined by a fit
to the conventional exact exchange energy density of the
H atom, and b is an integer which is chosen to be 4,
due to the consideration of sodium jellium sphere clus-
ters. ǫ̃ = −ǫex,convx is the exact exchange energy density
in the conventional gauge. This gauge function is in-
tegrated to zero, i.e.,

∫

d3r G(r) = 0, as required. It
satisfies the correct uniform coordinate scaling relation,
Gλ(r) = λ4G(λr), and non-uniform coordinate scaling
relation Gx

λ(x, y, z) = λG(λx, y, z).
However, in the far density tail (r → ∞) of an atom,

the exact exchange energy density in the conventional

gauge decays as eex,convx ∼ −n/2r, but the original TSSP
gauge function decays as G(r) ∼ n. As a result, the
exchange energy density in this gauge becomes positive
in the density tail region. In order to fix this deficiency,
we impose a constraint on the density tail,

lim
r→∞

G

econvx

= 0. (59)

This can be achieved by requiring that in the r → ∞
limit, G decays as np with p > 1. Here we choose p = 3

2
and take the same form of the TSSP gauge function, but
with f given by

f =

(

n/ǫ̃
7

3

)3/2

1 + c
(

n/ǫ̃3
)5/2

(

τW

τ

)b

. (60)

Here a = 0.01799 and c = 0.00494 are determined by
fitting the TPSS system-averaged hole in the conven-
tional gauge to the exact system-averaged hole of the
two-electron exponential density. The fitting procedure is
the same as that in the determination of the H(s, z = 1)
function. The parameter b = 4 remains the same as that
in the original version [Eq. (58)]. Our new gauge function
retains all the correct properties that the original gauge
function satisfies, including the non-uniform coordinate
scaling property.
Figure 8 shows the comparison of the present TPSS

system-averaged exchange hole and the exact conven-
tional system-averaged exchange hole calculated from the

present TPSS hole model but with FTPSS
x (r) of Eq. (17)

replaced by F exact
x (r) with and without the gauge correc-

tion of Eq. (60) to the exact conventional one [Eqs. (4)-
(6)]. From Fig. 8 we can observe that the exact system-
averaged exchange hole generated from the present TPSS
hole model without the gauge correction significantly de-
viates from the exact system-averaged hole. However,
the agreement has been significantly improved with our
gauge correction [Eq. (60)].
Figure 9 shows the comparison of the TPSS exchange

energy density evaluated with the TPSS functional with-
out and with the gauge correction to the exact conven-
tional exchange energy density for the two-electron ex-
ponential density. From Fig. 9, we can observe that the
effect of the present gauge correction defined by Eq. (60)
is small for the present TPSS hole. However, as observed
in Fig. 8, it is important for the conventional exact ex-
change hole evaluated with the present TPSS hole.

VI. APPLICATION TO RANGE-SEPARATED

EXCHANGE FUNCTIONAL

As a simple application, we apply the present TPSS
hole model to construct a range-separated functional.
In general, there are two ways to construct a range-
separated functional, simply depending on the need. For
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example, we may employ a semilocal DFT as the long-
range part, while the exact exchange is used for the short-
range part, as pioneered by Heyd, Scuseria and Ernzer-
hof14. This kind of range-separated functional is devel-
oped largely for solids, particularly useful for metallic
solids, because usual hybrids requires much larger mo-
mentum cutoff for metallic systems with electrons non-
localized. Nevertheless, this range-separated functional
is also accurate for molecules. We may also employ a
semilocal DFT for the short-range part, while the ex-
act exchange is used for the long-range part, as devel-
oped by Henderson et al.

67 on the basis of the PBE hole.
This kind of range-separated functionals are usually de-
veloped for molecular calculations, because the improved
long-range part of the exchange hole will improve the de-
scription of molecular properties. Many range-separated
functionals have been proposed48,77–81. In the follow-
ing, we will explore the TPSS hole-based range-separated
functional with the TPSS exchange functional being the
long-range (LR) part and the Hartree-Fock exchange be-
ing the short-range (SR) part, aiming to improve the too-
small band gaps and reaction barrier heights of the TPSS
functional.
The idea of the construction of our TPSS-based range-

separated functional is rooted in the construction of usual
one-parameter hybrid functionals, which, in general, can
be written as

Ehybrid
xc = aEHF

x + (1− a)Esl
x + Esl

c , (61)

where a is the mixing parameter that controls the amount
of exact exchange mixed into a semilocal (sl) functional.
Following the prescription of Heyd, Scuseria and Ernz-

erhof (HSE)14, we write the TPSS-based range-separated

TABLE III: Band gaps (in eV) calculated with the LSDA,
PBE, TPSS, HSE and TPSS-based range-separated func-
tional with a = 0.25 and ω = 0.10 (PW = present work),
compared to experiments.

LSDA PBE TPSS HSE PW Exp
C 4.17 4.2 4.24 5.43 5.48 5.48
CdSe 0.31 0.63 0.85 1.48 1.82 1.90
GaAs 0.04 0.36 0.6 1.11 1.44 1.52
GaN 2.15 2.22 2.18 3.48 3.5 3.50
GaP 1.56 1.74 1.83 2.39 2.53 2.35
Ge - 0.13 0.32 0.8 0.99 0.74
InAs 0 - 0.08 0.57 0.85 0.41
InN 0 0 0 0.72 0.75 0.69
InSb - 0 - 0.47 0.73 0.23
Si 0.53 0.62 0.71 1.2 1.31 1.17
ZnS 2.02 2.3 2.53 3.44 3.78 3.66
ME −.89 −0.86 −0.76 −0.12 0.14
MAE 0.89 0.86 0.76 0.15 0.17

TABLE IV: AE6 atomization energies (in kcal/mol) calcu-
lated with the LSDA, PBE, TPSS, TPSSh, HSE, and TPSS-
based range-separated functional with a = 0.25 and ω = 0.10
(PW = present work), compared to experimental values84.

LSDA PBE TPSS TPSSh HSE PW Expt
SiH4 347.4 313.2 333.7 333.6 314.5 333.6 322.4
SiO 223.9 195.7 186.7 182.0 182.1 175.4 192.1
S2 135.1 114.8 108.7 105.9 106.3 101.9 101.7
C3H4 802.1 721.2 707.5 704.4 705.9 699.9 704.8
C2H2O2 754.9 665.1 636.0 628.0 635.3 616.4 633.4
C4H8 1304 1168 1156 1154 1152 1152 1149
ME 77.4 12.4 4.1 0.75 −1.2 −4.0
MAE 77.4 15.5 5.9 6.1 4.8 8.8

functional as

Exc = aEHF,SR
x + (1− a)Esl,SR

x + Esl,LR
x + Esl

c , (62)

where EHF,SR
x is the Hartree-Fock (HF) exchange serving

as part of the short-range contribution, while Esl,SR
x is

the TPSS exchange that provides the rest of the short-
range contribution. Esl

c is the TPSS correlation. The
long-range contribution is provided fully by the TPSS
exchange Esl,LR

x . They are given, respectively, by

ǫHF,SR
x =

1

2

∫ ∞

0

du 4πu2ρHF
x (r, u)

erfc(ωu)

u
, (63)

ǫsl,SRx =
1

2

∫ ∞

0

du 4πu2ρTPSS
x (r, u)

erfc(ωu)

u
, (64)

ǫsl,LRx =
1

2

∫ ∞

0

du 4πu2ρTPSS
x (r, u)

erf(ωu)

u
, (65)

where ω is a range-separation parameter, and erf(x) is
the error function defined by Eq. (27). From Eqs. (62)-
(65), we can see that the amount of exact exchange mix-
ing is controlled by two parameters a and ω. Determina-
tion of them is discussed below. To test this functional,
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we have implemented it into the developmental version
of Gaussian 0982.
In the TPSS-based hybrid functional TPSSh33, a = 0.1

was fitted to 223 G3/99 atomization energies. In other
words, the optimal value of a is 0.1 for TPSSh. If we only
consider atomization energy, then the best value of ω in
the TPSS-based range-separated functional should be 0,
if a = 0.1 is chosen. Since in the range-separated func-
tional, some amount of the exact exchange (here the long-
range part) in the TPSSh is replaced by the TPSS func-
tional, to compensate for this, we need a value of a larger
than 0.1. Then we can find the best range-separated pa-
rameter ω by fitting to some electronic properties. This
situation is different from PBE-based range-separated
functionals, in which the mixing parameter a = 1/4 in
PBE013 can be retained. To avoid possible overfitting,
here we choose a = 1/4, a value that was recommended
by Perdew, Ernzerhof, and Burke83 and adopted with
the PBE0 functional13. The parameter ω is determined
by a fit to the band gap of diamond (C). This yields
ω = 0.1. Then we apply this range-separated functional
to calculate the band gaps of 10 semiconductors. The re-
sults are listed in Table III. From Table III, we see that
the band gaps of this range-separated functional is re-
markably accurate, with a mean absolute deviation from
experiments of only 0.17 eV, about the same accuracy of
HSE functional. We can also see from Table III that the
TPSS-based range-separated functional will be expected
to yield more accurate description for large band-gap ma-
terials, and therefore provides an alternative choice for
band-gap and other solid-state calculations.
Next, we apply our range-separated functional to cal-

culate atomization energies of AE6 molecules. The re-
sults are listed in Tables IV. From Tables IV, we can see
that, our range-separated functional only worsens the at-
omization energies of the TPSS functional for this special
set by about 3 kcal/mol. This error is still smaller than
many other DFT methods such as the LSDA, PBE, and
PBEsol.
Reaction barrier heights are decisive quantity in the

study of chemical kinetics. However, semilocal function-
als tend to underestimate this quantity. As another ap-
plication, we apply our range-separated functional to cal-
culate six representative reaction barrier heights BH6,
which consists of three forward (f) and three reverse (r)
barrier heights. The results are listed in Table V. For
comparison, we also calculated these barrier heights us-

ing the PBE, TPSS, TPSSh, and HSE. From Table V,
we obserce that our range-separated functional provides
a substantially improved description for barrier heights,
compared to the TPSS and TPSSh functionals.

VII. CONCLUSION

In conclusion, we have developed a conventional
semilocal exchange hole underlying the TPSS exchange
functional. The hole is exact in the uniform-gas limit and
accurate for compact iso-orbital densities. It satisfies the
constraints that the TPSS exchange functional satisfies.
It also satisfies the constraints on the conventional ex-
change hole. The hole can be regarded as an interpo-
lation between the two-electron exponential density and
the IBM jellium surface. Numerical tests on the H and
Ne atoms show that the hole mimics the conventional
exact exchange hole quite accurately. In particular, with
our new gauge function correction, the hole model can
generate the exact system-averaged hole accurately.
As an immediate application, we have employed the

exchange hole model to construct a range-separated func-
tional. Our tests show that this functional can yield ac-
curate band gaps, in particular for insulators, and re-
action barrier heights, without losing much accuracy on
atomization energies. Since TPSS is more accurate than
PBE for many properties and since the PBE hole has
been thoroughly explored in recent years, development
of TPSS hole-based range-separated functionals is of gen-
eral interest. Recently, Arbuznikov and Kaupp21 found
that the gauge function has some effect on local hybrid
functionals. It is expected that the new gauge function
can be useful in the development of nonlocal functionals.
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