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We present systematic constructions of tensor-network wavefunctions for bosonic symmetry pro-
tected topological (SPT) phases respecting both onsite and spatial symmetries. From the classifica-
tion point of view, our results show that in spatial dimensions d = 1, 2, 3, the cohomological bosonic
SPT phases protected by a general symmetry group SG involving onsite and spatial symmetries are
classified by the cohomology group Hd+1(SG,U(1)), in which both the time-reversal symmetry and
mirror reflection symmetries should be treated as anti-unitary operations. In addition, for every
SPT phase protected by a discrete symmetry group and some SPT phases protected by continuous
symmetry groups, generic tensor-network wavefunctions can be constructed which would be useful
for the purpose of variational numerical simulations. As a by-product, our results demonstrate
a generic connection between rather conventional symmetry enriched topological phases and SPT
phases via an anyon condensation mechanism.
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I. INTRODUCTION

Recently the interplay between symmetry and topol-
ogy in condensed matter physics attract considerable in-
terest both theoretically and experimentally. After the
discovery of topological insulators1–7, it is theoretically
recognized that there exist many new types of symmetric
topological states of matter. In the absence of topolog-
ical order, symmetry could protect different topological
phases, which are often referred to as symmetry protected
topological (SPT) phases8–14. In particular, the bosonic
SPT phases require strong interactions to realize.

Previously SPT phases have been theoretically
investigated using various different theoretical
frameworks12,15,16. In particular, a wide range of
SPT phases protected by onsite symmetry groups have
been systematically classified and investigated12, based
on a definition of short-range-entangled quantum phases.



2

These SPT phases are found to be directly related to
the group cohomology theory, which we will refer to as
cohomological SPT phases.

Generally in condensed matter systems spatial sym-
metries (e.g., lattice space group) are present. It is
known that such symmetries could protect topological
phases such as the topological crystalline insulators in
fermionic systems17,18. In bosonic systems, analogous
but correlation-driven SPT phases protected by spatial
symmetries have been investigated recently, for instance,
using topological field theory analysis19,20 and dimen-
sion reduction techniques21. However, so far the system-
atic understanding of spatial-symmetry-protected SPT
phases is still lacking.

Apart from classification problems, it is certainly very
important to understand whether these SPT phases can
be realized in experimental systems. However, although
it is known that there exist a vast number of correlation-
driven SPT phases in two and higher spatial dimensions,
very few of them are shown to be realized in more or less
simple and realistic quantum models22.

The challenge here, at least to some extent, is due
to the lack of physical guidelines and suitable numerical
methods. In history, the successful discovery of topologi-
cal insulators very much benefits from the band-inversion
picture4, which is a very useful physical guideline. In
this sense, it is highly desirable to develop more physical
guidelines for realizing correlation-driven SPT phases.

In addition, in order to search for SPT phases in cor-
related models, intensive numerical simulations are in-
evitable. It is also desirable to develop new numerical
methods suitable for simulating SPT phases. In particu-
lar, for realistic models, one usually has to perform vari-
ational simulations based on certain choice of variational
wavefunctions. Can one construct generic wavefunctions
for SPT phases that are suitable for numerical simula-
tions?

In this paper, we further develop a symmetric tensor-
network theoretical framework that is powerful to address
the conceptual and practical issues raised above. Let us
firstly describe the results of this paper. We mainly focus
on the bosonic cohomological SPT phases. The major
new results of this work are two-fold. First, we iden-
tify the interpretation of cohomological SPT phases in a
general tensor-network formulation, which allows us to
construct generic tensor-network wavefunctions for SPT
phases protected by onsite symmetries and/or spatial
symmetries (see Sec.III B). Such generic tensor-network
wavefunctions are suitable to perform variational numer-
ical simulations in searching for SPT phases in practi-
cal model systems. Second, this interpretation shows
that, for a general symmetry group SG, which may in-
volve both onsite symmetries and spatial symmetries,
these cohomological SPT phases can be classified by
Hd+1(SG,U(1)). Here the (d+ 1)-th cohomology group
Hd+1(SG,U(1)) are defined such that the time-reversal
symmetry and any mirror reflection symmetries act on
the U(1) group in the anti-unitary fashion, while other

symmetries act on the U(1) group in the unitary fash-
ion.

We would like to point out that the cohomological SPT
phases classified by Hd+1(SG,U(1)) may or may not
host gapless boundary states, related to whether one can
choose a physical edge such that the symmetry protecting
the SPT phase is still preserved along the boundary. For
instance, in 2+1D, the inversion symmetry (equivalent to
180◦ spatial rotation) generate a Z2 unitary group. Be-
cause H3(Z2, U(1)) = Z2, according to our main result,
there is one nontrivial SPT phase protected by inversion
symmetry alone in 2+1D. However, near the edge the
inversion symmetry is always broken and gapless edge
states are not expected to present. This phenomenon is
similar to the inversion symmetry protected topological
insulators in weakly interacting fermionic systems, e.g.,
axion insulators23.

Previously progresses on analytically understanding
SPT phases with onsite symmetries based on the tensor-
network formulation in 2+1D were made24. Compar-
ing with earlier results, the current construction captures
general spatial symmetries and applies in one, two and
three spatial dimensions, and therefore is more general.
In addition, in the current construction, the information
of the SPT phases are encoded in certain local constraints
on the building block tensors, i.e., the local tensors are
living inside certain specific sub-Hilbert spaces. Such lo-
cal constraints can be easily implemented in practical
numerical simulations. We will provide some concrete
examples of such SPT tensor-network wavefunctions in
Sec.III E.

There are several by-products of this paper that are
related to the special cases of the more general results
above. For instance, when SG involves translation sym-
metries in two and higher spatial dimensions d, our
construction related to Hd+1(SG,U(1)) clearly demon-
strates so-called “weak topological indices”, whose phys-
ical origin is related to lower dimensional SPT phases.
As a concrete example, previously we demonstrated that
there are 4 distinct featureless Mott insulators on the
honeycomb lattice at half-filling25. These distinct fea-
tureless Mott insulators now can be nicely interpreted as
the consequence of two weak topological indices.

An more important by-product of this paper is a
generic relation in 2+1D between the SPT phases
and symmetry enriched topological (SET) phases via
an anyon condensation mechanism, which provides
new physical guidelines realizing SPT phases. SET
phases are symmetric phases featuring topological or-
der and anyon excitations. The interplay between
symmetry and the topological order gives rise to so-
called symmetry enriched phenomena such as symmetry
fractionalization26–35.

One can consider an SET phase characterized by a
usual abelian discrete gauge theory, in which gauge
charges feature nontrivial symmetry fractionalizations.
Such an SET phase can be quite conventional in the sense
that there is no robust gapless edge states, and can be
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realized in rather simple model systems36,37. It turns
out that after the gauge fluxes boson-condense and de-
stroy the topological order, the resulting confined phase
must be SPT phase if the condensed gauge fluxes carry
nontrivial quantum numbers and certain Criterion (see
Sec.II) is satisfied.

This by-product signals that the traditional treatment
on confinement-deconfinement phase transitions38 may
worth being revisited when physical symmetries are im-
plemented. Although the general Criterion on the rela-
tion between SPT and SET phases is obtained using the
tensor-network formulation in Sec.III B, a major advan-
tage of this by-product is that it can be understood using
more conventional formulations which we will discuss be-
low.

II. THE CONNECTION BETWEEN SET
PHASES AND SPT PHASES VIA ANYON

CONDENSATION

In this section we discuss a by-product of our gen-
eral results obtained in Sec.III B. Instead of using tensor-
network formulation, here we use (topological) field the-
oretical languages, which does not require the readers
to be familiar with tensor-network formulations. The
discussions in this section suggest that the confinement-
deconfinement phase transitions of gauge theories, e.g. a
usual Z2 gauge theory need to be reconsidered when sym-
metries are present, because different ways to confine the
gauge fields may lead to different SPT phases. For in-
stance, it is well-known that valence bond solids(VBS)
in quantum spin systems can be viewed as the confined
phases of gauge theories. At the end of this section, we
discuss the possible realizations of SPT VBS phases.

Previously a related physical route to realize SPT
phases has been discussed16,22,39, which states that con-
densing vortices in superfluid carrying U(1) quantum
numbers could lead to SPT phases. The current discus-
sion can be viewed as analogous phenomena but in the
context of topologically ordered phases. In addition, in
the current work, general spatial and onsite symmetries
are considered and systematic results are obtained.

A. A criterion to generate general cohomological
SPT phases via anyon condensation

The connection between SET phases and SPT phases
via anyon condensation can be quite general. In fact,
the original study understanding the so-called E8 state
was achieved by condensing bosonic anyons coupled
with multi-layers of p+ ip topological superconductors40.
Later on it was understood that quite systematically,
starting from a fermionic SPT phase, after coupling with
a dynamical gauge field and condense the appropriate
bosonic anyon, one could confine the fermionic degrees
of freedom and obtain a bosonic SPT phase41.

However, in those previous constructions of SPT
phases, before anyon condensation, the SET phases
themselves already feature gapless edge states. Indeed,
before coupling to the dynamical gauge fields, the sys-
tems are already in fermionic SPT phases. In this paper,
we study a different type of generic connections between
SET and SPT phases via anyon condensations. Namely,
the SET phases themselves contain no symmetry pro-
tected edge states. In fact we will consider particularly
simple SET phases: the usual discrete abelian gauge the-
ories with certain symmetries. Here by “usual” we mean
that, for instance, for a Z2 gauge theory we only consider
the toric-code type topological order and do not consider
the double-semion topological order. At the superficial
level, it is unclear how these simple SET phases are con-
nected with SPT phases.

We will state a Criterion to obtain cohomological SPT
phases via condensing (self-statistics) bosonic anyons in
these simple SET phases. A proof of this Criterion based
on tensor-network construction will be given in Sec.III C.
Before providing this tensor-network based argument, in
Sec.II B we present several examples demonstrating the
application of this criterion using the K-matrix Chern-
Simons effective theories42.

The topological quasiparticles in a usual Zn gauge
theory include the gauge charges and the gauge fluxes,
both are self-statistics bosonic. They can generate all
other quasiparticles via fusion. Let’s consider a Zn1

×
Zn2
× ... × Znk

finite abelian gauge theory, in the pres-
ence of a symmetry group SG that could be a combi-
nation of onsite symmetries and spatial symmetries. In
the following discussion, we denote a general gauge flux
as an m-quasiparticle, and a general gauge charge as
an e-quasiparticle (they do not have to be unit gauge
charge/flux). SG can be a combination of onsite and
spatial symmetries. It turns out that SG may transform
the topological quasiparticles according to certain pro-
jective representations — a phenomenon that has been
called symmetry fractionalization.

It is known that the symmetry fractionalization pat-
tern in the above SET phase can characterized by the
following mathematical expression:

Ωg1Ωg2 = λ(g1, g2)Ωg1g2 , (1)

where g1, g2 ∈ SG, and Ωg is the symmetry transforma-
tion on the quasiparticles, while λ(g1, g2) is an abelian
quasiparticle in the theory. Physically, it means that
the operation Ωg1Ωg2 on some quasiparticle-a are dif-
ferent from the operation Ωg1g2 on quasiparticle-a by a
full braiding phase between quasiparticle-a and λ(g1, g2).
The associative condition of symmetry operations dic-
tates the following fusing relation:

λ(g1, g2)λ(g1g2, g3) = λ(g2, g3)λ(g1, g2g3). (2)

Here we particularly focus on situations in which symme-
try operations would not change anyon types of λ(g1, g2).
Because Ωg can be redefined by a braiding phase fac-
tor with a quasiparticle bg, λ(g1, g2) is well-defined up



4

to a fusion with the quasiparticle bg1bg2b
−1
g1g2 (inverse

means antiparticle.). Mathematically Eq.(2) indicates
that λ(g1, g2) is a 2-cocycle in the second-cohomology
group H2(SG,A), where A is the fusion group of the
abelian quasiparticles in the SET phase.

For instance, consider a Z2 gauge theory with an onsite
Ising symmetry group Zonsite2 = {I, g}, in which only the
e-particle features nontrivial symmetry fractionalization:
although g2 = I, when acting on the e-particle g(e)2 =
−1. The −1 phase factor here can be interpreted as the
braiding phase between the e particle with an m-particle.
Consequently this SET phase can be described using the
formulation in Eq.(1) by λ(g, g) = m, while all other λ’s
are trivial.

Starting from the SET phase, our goal is to destroy
the topological order completely by boson-condensing all
the m-particles, while leaving the physical symmetry un-
broken. It is straightforward to show that as long as
one of the condensed m-particles hosts non-trivial sym-
metry fractionalization, the m-condensed phase would
spontaneously break the symmetry.43 Therefore, in order
to be able to preserve the symmetry, all the m-particles
must have trivial symmetry fractionalization. Namely
λ(g1, g2) in Eq.(1) can be chosen such that all λ(g1, g2)
do not contain e-quasiparticles, while they may contain
m-particles and their bound states (meaning that the e-
particles could have non-trivial symmetry fractionaliza-
tion).

All the condensed m-quasiparticles have trivial sym-
metry fractionalization, but they may or may not carry
non-trivial usual symmetry representations (i.e., usual
quantum numbers). One may worry that condensing
bosons carrying non-trivial quantum numbers would also
break the physical symmetry. However, because the
m-quasiparticles are topological excitations, symmetry
breaking does not have to happen. In fact, as long
as the quantum numbers carried by the condensed m-
quasiparticles are such that the identity quasiparticles
generated by fusing them (a local physical excitation)
always carry trivial quantum number, the symmetry is
preserved even after the m-condensation.

Consequently, if we try to preserve the symmetry in
the m-condensation, the quantum numbers carried by
condensed m-particles cannot be arbitrary. First, they
needs to be one-dimensional representations of the sym-
metry since higher dimensional representations can al-
ways fuse into nontrivial representations for the identity
quasiparticle. Let us denote the one-dimensional repre-
sentation for an m-quasiparticle by χm, and ∀g ∈ SG,
χm(g) ∈ U(1). We have:

χm(g1g2) = χm(g1) · χm(g2)s(g1),∀g1, g2 ∈ SG. (3)

Here s(g) = 1 if g is a unitary symmetry and s(g) = −1
if g is an anti-unitary symmetry.

In order to preserve symmetry in the m-condensate
(i.e., all condensed identity particles carry trivial quan-
tum numbers), we have the following constraint on χ:
if two gauge-flux quasiparticles m and m′ fuse into the

quasiparticle m ·m′, then the quantum numbers carried
by all the three quasiparticles must satisfy

χm(g) · χm′(g) = χm·m′(g),∀g ∈ SG. (4)

For example, this condition dictates that χm(g) ∈ Zn if
m is the gauge flux in the Zn gauge theory.

The question is, what is the symmetric phase after the
m-condensation?
Criterion: The above m-condensed phase is a coho-

mological SPT phase characterized by a 3-cocycle:

ωχλ(g1, g2, g3) ≡ χλ(g2,g3)(g1) ∈ H3(SG,U(1)) (5)

From Eq.(5), in order to realize a nontrivial SPT phase,
two ingredients are required in this anyon-condensation
mechanism: (1)the e-quasiparticles have some nontriv-
ial symmetry fractionalizations so that λ’s are formed by
nontrivial m-quasiparticles; and (2) the quantum num-
bers carried by the condensed m-particles χ are nontriv-
ial. We will justify this Criterion using tensor-network
formulation in III B. Here, let us only show three facts
confirming that the Criterion is self-consistent. These
facts are also useful to keep in mind in our discussions
on examples.
(i): ωχλ(g1, g2, g3) is necessarily a 3-cocycle, which

means that it satisfies:

ωχλ(g1g2, g3, g4) · ωχλ(g1, g2, g3g4)

=ωχλ(g2, g3, g4)s(g1) · ωχλ(g1, g2g3, g4) · ωχλ(g1, g2, g3). (6)

But this 3-cocycle condition directly follows from the fu-
sion rule Eq.(2), Eq.(3), and the symmetry-preserving
condition Eq.(4).
(ii): Choosing equivalent 2-cocycle λ(g1, g2) in Eq.(2)

to represent the same physical symmetry fractional-
ization would at most modify ωχλ(g1, g2, g3) by a 3-
coboundary and thus would not change its equivalence
class. This fact is straightforward to show realizing
λ(g1, g2) in Eq.(2) is well defined only up to a 2-
coboundary, i.e.:

λ(g1, g2)→ λ(g1, g2) · ε(g1) · ε(g2) · ε−1(g1g2). (7)

(iii): The quantum number χm(g) in Eq.(3) is also
well-defined up to a 1-coboundary: χm(g) → χm(g) ·
αs(g)

m

αm
, where αm like a gauge choice. It is straightforward

to also show that, if this modification of χm(g) preserve
the relation Eq.(4), then it can only induce a change of
ωχλ(g1, g2, g3) by a 3-coboundary.
Remark-I: Time-reversal symmetry, mirror symme-

tries and the anti-unitary transformation. The above
Criterion need to be used with the following caution in
mind. The Criterion has a straightforward interpretation
when SG only involves unitary symmetries, including
usual onsite symmetries, translational/rotational spatial
symmetries and their combinations. However, the time-
reversal T and mirror symmetries P need to be treated
as anti-unitary transformations. Namely, s(g) = −1 if
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g = T or g = P. And generally if one counts the total
number of T operation and mirror symmetry operations
in g, then s(g) = −1 iff this total number is an odd num-
ber. For instance, the product of two different mirror
planes is a rotational symmetry and should be treated as
a unitary transformation.

More precisely, if we consider the creation operator of
an m-particle as m† ∼ eiφm , then in order to use the
Criterion, we assume that the transformation rules for
the phase variable φm as: g : φm → −φm + θg if g = T
or g = P, where eiθg is a U(1) phase. Because T involves
the complex conjugation while P does not, this leads to:
T : m† → e−iθTm†, and P : m† → eiθPm.

Clearly, with these transformation rules, the T quan-
tum number χm(T ) carried by an m-particle alone is only
a gauge choice and is not well-defined. But, for instance,
the combination of the two transformations: T ·P should
be treated as a unitary transformation and its quantum
number carried by an m-particle is well-defined.

These transformation rules can be physically inter-
preted as follows. In the usual discrete Abelian gauge
theories, the e-particles and m-particles are dual vari-
ables, and it is a matter of choice to call which particles
as gauge charges(fluxes). However, if one treats e’s as
particles, then the m’s need to be treated as vortices.
Under either T or P, if a particle transforms into a par-
ticle (an anti-particle), then its vortex transforms into an
anti-vortex (a vortex). We assign the above transforma-
tion rules for the m-particles in order for the e-particles
to have well-defined symmetry fractionalizations. We will
come back to this issue with a detailed field-theoretical
discussion shortly in Sec.II B.

Remark-II: Definition of quantum numbers carried
by m-particles. In Eq.(3,5) we introduce the quantum
numbers carried by an m-particle χm(g),∀g ∈ SG. We
firstly emphasize the fact that, apart from the antiunitary
transformations like T ,P, these quantum numbers are
numerically measurable for a low energy m-particle us-
ing tensor-network algorithms (see Sec.III B for details).
However, it would be useful to sharply define these quan-
tum numbers in a way that is independent of the tensor-
network formulation. Below we provide such a defini-
tion using a symmetry-defect argument for on-site uni-
tary symmetries only.

The subtleties to define these quantum numbers for
a given m-particle arise from the fact that an anyon m
is not a local excitation. To define how an m-particle
transforms under a symmetry g, one has to find a way
to define an local symmetry operator Ωg acting on a fi-
nite region A covering the m-particle. It has been argued
that32,44, for an onsite unitary g, Ωg can be interpreted
as the following physical transformation of the wavefunc-
tion: (1) creating a pair of symmetry-g defects; (2) adia-
batically braiding one of the symmetry defect around the
m-particle and finally annihilating with the other sym-
metry defect (the path of the moving symmetry defect
encloses of a region A covering the m-particle); (3) ap-
plying the symmetry transformation g for the physical

degrees of freedom within A only. The quantum num-
ber carried by the m-particle is the Berry’s phase accu-
mulated over this process, relative to the Berry’s phase
obtained via the same process in the ground state.

The ambiguity in defining quantum numbers of the m-
particle using the above symmetry-defect argument can
now be understood. The symmetry defects created in
pair may or may not contain other anyons, e.g., an e-
particle, which have nontrivial braiding statistics with
the m-particle being studied. Different choices of the
symmetry defects used in the above process may lead
to different quantum numbers due to braiding statistics
between the e-particle in the symmetry defects and the
m-particle being studied. Therefore, to well-define the
χm(g) quantum number, one needs to make a particu-
lar choice of the symmetry defects. As will be proved in
Sec.III C and III D, it turns out that the quantum num-
bers χm(g) in the Criterion are defined such that the sym-
metry defects in the above process have trivial symmetry
fractionalizations. We denote this choice of the symme-
try defect as the canonical choice of symmetry defect.
The canonical choice of symmetry defects rules out the
possibility that the g1-symmetry-defects contain extra
e-particles having nontrivial statistics with λ(g2, g3) in
Eq.(5), and thus well-define the χλ(g2,g3)(g1).

However, for spatial symmetries and the time-reversal
symmetry, it is unclear how to systematically create sym-
metry defects. For these symmetries, unfortunately we
currently do not know to define the quantum numbers
χm(g)’s independent of the tensor-network formulation.
We will provide the measurable meaning of these quan-
tum numbers in the tensor-network language in Sec.III D.

B. Examples: anyon condensation induced SPT
phases in the Chern-Simons K-matrix formalism

The purpose of this subsection is to demonstrate the
application of the Criterion Eq.(5) in some simple ex-
amples, within a convenient field-theory description: the
multi-component Chern-Simons theory, or the K-matrix
formulation. In particular, this formulation has been fur-
ther developed by Lu and Vishwanath to successfully de-
scribe the SPT phases and their gapless edge states15.
All the SPT phases studied here can be realized by con-
densing visons in a usual Z2 gauge theory, which may
be useful to motivate microscopic model realizations of
them.

The topological Lagrangian of a general multi-
component Chern-Simons theory is:

L = − 1

4π

∑
I,J

KIJε
µνλaIµ∂νa

J
λ +

∑
I

aIµj
µ
I , (8)

where jµI for I = 1, 2, ..N are the currents of quasi-
particles coupling with gauge fields aIµ. For the usual
Z2 gauge theory, the K-matrix can be chosen to be:

KZ2 =

(
0 2
2 0

)
.
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Physically, this mutual-Chern-Simons theory can be
interpreted as follows. Let us start from a boson super-
fluid phase, formed by boson b, and consider the vortices.
For the purpose of physical arguments below, it is conve-
nient to introduce the boson number conservation U(1)
symmetry which can be removed later. The well-known
boson-vortex duality states that one can describe the sys-
tem as:

L = − 1

2κ
(εµνλ∂νaλ)2 − aµjµv , (9)

where jµv is the current of the vortices. We will use Ψv to
denote the single vortex operator. The gauge flux of aµ
is the density of the original boson b: jµb = 1

2π ε
µνλ∂νaλ.

In the superfluid phase the vortices are gapped and the
U(1) Goldstone mode is described by the photon mode
of aµ (i.e., the Maxwell-like dynamics in the first term in
Eq.(9)).

Now let us consider the vortex condensed phase (i.e.,
the Mott insulator phase of the boson b). One way to
describe the vortex condensation is to introduce an ad-
ditional gauge field av to describe the vortex current:
jµv = 1

2π ε
µνλ∂νa

v
λ. In order to have vortex condensation

captured, the dynamics of av should be Maxwell-like.
Consequently the vortex condensed phase is described
by:

Lv-cond. =− 1

2κ
(εµνλ∂νaλ)2 − 1

2κv
(εµνλ∂νa

v
λ)2

− 1

2π
εµνλaµ∂νa

v
λ (10)

If one ignores the higher order Maxwell dynamics, and
only focus on the topological terms, the Chern-Simons
description of the vortex condensate is found to have the

form of Eq.(8) with Ktriv. =

(
0 1
1 0

)
. The two compo-

nent gauge fields can be identified: a1µ = aµ and a2µ = avµ.

Equations of motion tell that the quasiparticle current jµ1
should be identified with that of 2π-avµ-flux (i.e., vortex

Ψv), and the quasiparticle current jµ2 is that of the 2π-aµ-
flux (the original boson b). As explained in Ref.15, these
quasiparticles could transform nontrivially under global
symmetry, and many SPT phases can be described by
this Ktriv. effective theory by demonstrating the exis-
tence of symmetry protected gapless edge states.

One can now view a Z2 topologically ordered state

described by KZ2 =

(
0 2
2 0

)
as an intermediate phase

between the superfluid phase and the vortex condensed
phase. Instead of directly condensing Ψv, one could
firstly condense the double-vortices Ψ2

v. Such double-
vortex condensate can be again formulated by introduc-
ing the double-vortex current jµdv = 1

2π ε
µνλ∂νa

dv
λ carry-

ing two unit aµ gauge charges (a term −2aµj
µ
dv in the

Lagrangian), and add some Maxwell dynamics for adv,

Ldv-cond. = − 1

π
εµνλaµ∂νa

dv
λ + ... (11)

where ... include Maxwell dynamics for aµ and advµ . The

mutual Chern-Simons term here is just the KZ2 in the K-
matrix formulations. In such a gauge-charge-2 conden-
sate, the bosonic topological quasiparticles include the
unpaired single-vortex: Ψv, or the π-flux of advµ (labelled
as quasiparticle-m), and the quantized π-flux vortex of
aµ (labelled as quasiparticle-e). Note that in this contin-
uum theory, the π-flux and −π-flux are microscopically
distinct, and we label e† as the creation operator the π-
flux of aµ. Consequently e is the operator creating the
−π-flux. In addition, e†e† = b†.

Remark-III: In this formulation, the relation between
the symmetry transformation laws of the quasiparticles
e,m in the double-vortex condensate and the quasiparti-
cles Ψv, b the single-vortex condensate is now established:
the quantum numbers carried by Ψv is the same as those
carried by m, and the quantum numbers carried by b is
twice of those carried by e.45

The bulk Chern-Simons effective theory Eq.8 is accom-
panied with an effective edge theory:

Sedge =
∑
I,J

∫
dtdx

4π
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ + ...

(12)

where the KIJ term is the universal Berry’s phase,
leading to the Kac-Moody algebra [∂xφI(x), ∂yφJ(y)] =

2πiK−1IJ ∂xδ(x − y). The VIJ term is non-universal and
depends on details of the edge, and “...” represents other
symmetry allowed terms describing local dynamics.

The phase variables φI ’s in Eq.(12) can be interpreted
as the phases of quasiparticles: eiφI can be identified with
the quasiparticle creation operator for the current jµI in
Eq.(8). For example, in the double-vortex condensate,
one has K = KZ2 , φ1 = φm and φ2 = φe, where m† ∼
eiφm , e† ∼ eiφe . On the other hand, in the single-vortex
condensate, we have K = Ktriv., φ1 = φv and φ2 = φb,
where Ψ†v ∼ eiφv , b† ∼ eiφb .

As explained in Ref.15 and 31, in the absence
of symmetry, cosine terms describing local dynamics∑
I CI cos(

∑
J KIJφJ + χI) are allowed in the “...” in

Eq.(12) (we only consider bosonic systems in this paper).
And when these terms are large, often the edge states
can be fully gapped by pinning the phase variables to
their classical minima. However, in the presence of sym-
metry,the transformation rules of φI sometimes dictate
that the edge states can only be gapped out after spon-
taneously breaking the symmetry. When this happens
for systems without topological order, i.e. K = Ktriv.,
the bulk state can be identified as an SPT phase with
symmetry protected edge states.

We will apply the Criterion Eq.(5) for the symmetry
groups (SG) in Table I in 2+1D. Here σ is an onsite
unitary Ising symmetry, T is the time-reversal, P is a
mirror reflection symmetry, and T · P is their combina-
tion. According to the Criterion and Remark-I, T and
P should be both treated as anti-unitary, but T · P is
unitary. One can see that although the SG’s of the for-
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SG H3(SG,U(1))

Zonsite
2 ≡ {I, σ} Z2

ZTP
2 ≡ {I, T · P} Z2

Zonsite
2 × ZT

2 ≡ {I, σ} × {I, T } Z2
2

Zonsite
2 × ZP

2 ≡ {I, σ} × {I,P} Z2
2

ZTP
2 × ZT

2 ' ZP
2 × ZT

2 Z2
2

TABLE I. Five examples of SPT phases studied in this sec-
tion.

cocycle ω ω(g1, g2, g3) = −1 iff
ω1 g1 = g2 = g3 = u

TABLE II. SG = Zonsite
2 = {I, σ} or SG = ZTP

2 = {I, T ·P}.
Denoting Zonsite

2 /ZTP = {I, u}, two inequivalent 3-cocycles
ω0(trivial) and ω1 form a Z2 group.

mer two examples (latter three examples) in Table I are
physically very different, at the mathematical group the-
oretical level, they are identical.

The explicit forms of the inequivalent 3-cocycles can
be obtained by direct calculations. In these simple exam-
ples, it turns out that one can always choose the 3-cocycle
ω such that ω(g1, g2, g3) = −1 for certain g1, g2, g3, while
all other ω(g1, g2, g3) = 1. We list the nontrivial cocycles
in Table II,III. The trivial cocycle can be chosen such
that ω(g1, g2, g3) = 1, ∀g1, g2, g3.

Remark-IV: time-reversal and mirror symmetries In
order for the 2-component mutual Chern-Simons theories
of either Ktriv. or KZ2 to be symmetric under T or P, it
is required that the a1µ and a2µ to transform oppositely un-
der these symmetries. Consequently, denoting the densi-
ties of the two types of quasiparticles coupled with a1µ(a2µ)
as ρ1(ρ2), if one has T : ρ1 → ρ1 (P : ρ1 → ρ1), one must
also have T : ρ2 → −ρ2 (P : ρ2 → −ρ2), and vice versa.

For instance, if one requires P : e† → eiαee† , then
P : m† → eiαmm, where eiαe , eiαm are phase factors.
After choosing a P symmetric edge along the x-direction,
these leads to the following rules in the effective theory
Eq.(12): P : φe(t, x, y)→ φe(t,−x, y) +αe;φm(t, x, y)→
−φm(t,−x, y) + αm. As discussed in Remark-I, to use
the Criterion, we always require that under either P or
T , φm flips sign but φe does not.

All SPT phase examples discussed in this section can
be realized via the anyon condensation Criterion start-

cocycle ω ω(g1, g2, g3) = −1 iff
ω[1,0] g1, g2, g3 all contain u
ω[0,1] g1 contains u and g2, g3 both contain η.
ω[1,1] g1 contains u and g2, g3 both contain

either u or η except for g2 = g3 = u · η.

TABLE III. SG = Zonsite
2 × ZT

2 , or SG = Zonsite
2 × ZP

2 ,
or SG = ZTP

2 × ZT
2 . Denoting Zonsite

2 /ZTP = {I, u}
and ZT

2 /ZP
2 = {I, η}, the four inequivalent 3-cocycles

ω[0,0](trivial), ω[1,0], ω[0,1], ω[1,1] form a Z2
2 group. Note that

u is a unitary transformation and η is an anti-unitary trans-
formation.

ing from a SET phase with usual Z2 topological order.
Our strategy is two-step. For a given SPT 3-cocycle
ω(g1, g2, g3), using the Criterion, we look for the Z2 topo-
logically ordered SET phase with desired symmetry prop-
erties χm(g1) and λ(g2, g3). Second, we condense the m-
particle and demonstrate the resulting phase is indeed an
SPT phase by studying its edge effective theory Eq.(12).

1. SG = Zonsite
2

As the simplest example of the Criterion, let us con-
sider the SPT phase corresponds to the 3-cocycle ω1 for
SG = Zonsite2 = {I, g} in Table II. The desired Z2 topo-
logically ordered SET phase can be easily identified:

χλ(g2,g3)(g1) = ω1(g1, g2, g3)

⇒ χm(g) = −1, λ(g, g) = m, (13)

while all other χ, λ’s are trivial. Namely this is an SET
phase in which the gauge charge e features nontrivial
symmetry fractionalization: g(e)2 = −1, and the gauge
flux m has no nontrivial symmetry fractionalization but
carries a nontrivial Ising quantum number χm(g) = −1.

These symmetry transformation properties can be im-
plemented in the K-matrix formulation with K = KZ2

and g : m† → −m†; e† → i ·e†. In the corresponding edge
theory Eq.(12), these lead to:

g : φm → φm + π; φe → φe + π/2 (14)

In this SET phase, it is perfectly fine to have a gapped
edge without breaking physical symmetry. For example,
symmetry allows C · cos(2φm + χm) term in the “...”.
When this term is large enough the edge states will be
gapped out by pinning 2φm to a semiclassical minimum,
which does not break the physical symmetry. Note that
eiφm itself is an anyon operator and does not correspond
to a local order parameter.

Next, we condense the m-particles (the remaining
single-vortices) to destroy the topological order with-
out breaking the symmetry. The resulting single-vortex
condensate is described by K = Ktriv.. According to
Remark-III, we have g : Φ†v → −Φ†v; b

† → −b†. In the
corresponding edge theory Eq.(12), these lead to:

g : φv → φv + π; φb → φb + π. (15)

This is exactly the symmetry properties of the Zonsite2

SPT phase studied in Ref.15, where it is shown that it
is impossible to gap out the edge states without spon-
taneously breaking the Zonsite2 symmetry. In Ref.15,
Eq.(15) was obtained by systematically investigating all
possible self-consistent transformation rules and search-
ing for symmetry protected gapless edge states. But here,
with the help of the Criterion and knowledge of the 3-
cocycle ω1, Eq.(15) is directly obtained. These results
are summarized in Table IV.



8

3-cocycle SET bulk SPT edge

ω1 g : m† → −m†

e† → i · e†
g : φv → φv + π

φb → φb + π

TABLE IV. The symmetry properties of the nontrivial SPT
phase protected by SG = Zonsite

2 = {I, g}, and the SET phase
before the anyon condensation.

2. SG = Zonsite
2 × ZT

2

There are three nontrivial cohomological SPT phases
protected by SG = Zonsite2 ×ZT2 = {I, g}×{I, T }, whose
corresponding nontrivial 3-cocycles are listed in Table III.
We discuss them separately:
•ω[1,0]: We need χm(g) = −1 and λ(g, g) = m in the

SET phase (all other λ’s are trivial). After condensing
m-particles gapless edge states are protected by g alone,
as already discussed in Eq.(15).
•ω[0,1]: We again need an SET phase with χm(g) = −1,

but λ(T , T ) = m (all other λ’s are trivial). The latter
condition dictates that the e-particles are Kramer dou-
blets because they form projective representations under
time reversal: T (e)2 = −1. The symmetry transforma-
tion rules in the bulk effective theory can be implemented
as: g : m† → −m†; e† → e†, while T : m† → m†; e† →
−i · e.. In the corresponding edge theory:

g :φm → φm + π; φe → φe,

T :φm → −φm; φe → φe + π/2. (16)

More precisely, for example, the first rule should be in-
terpreted as φm(t, x, y)→ φm(−t, x, y, ) +π and we have
been ignoring the space-time coordinates to save nota-
tions. After condensing m-particles, the resulting phase
is described by K = Ktriv. with the following symmetry
transformations on the edge degrees of freedom:

g :φv → φv + π; φb → φb,

T :φv → −φv; φb → φb + π. (17)

Clearly the cosine terms cos(φv + χv) and cos(φb + χb)
are not allowed by symmetry and gapless edge states are
protected. This is indeed the symmetry properties of
another SG = Zonsite2 ×ZT2 SPT phase studied in Ref.15.
•ω[1,1]: We need an SET phase in which χm(g) = −1,

and both λ(g, g) = λ(T , T ) = m (i.e. both g(e)2 =
T (e)2 = −1). In the edge theory of this SET phase:

g :φm → φm + π; φe → φe + π/2,

T :φm → −φm; φe → φe + π/2. (18)

After condensing m-particles, the resulting phase is de-
scribed by K = Ktriv. with the following symmetry
transformations on the edge degrees of freedom:

g :φv → φv + π; φb → φb + π,

T :φv → −φv; φb → φb + π. (19)

3-cocycle SET bulk SPT edge

ω[1,0] g : m† → −m†

e† → i · e†

T : m† → m†

e† → e

g : φv → φv + π

φb → φb + π

T : φv → −φv

φb → φb

ω[0,1] g : m† → −m†

e† → e†

T : m† → m†

e† → −i · e

g : φv → φv + π

φb → φb

T : φv → −φv

φb → φb + π

ω[1,1] g : m† → −m†

e† → i · e†

T : m† → m†

e† → −i · e

g : φv → φv + π

φb → φb + π

T : φv → −φv

φb → φb + π

TABLE V. The symmetry properties of the three nontrivial
SPT phases protected by SG = Zonsite

2 ×ZT
2 = {I, g}×{I, T },

together with those of the corresponding SET phases before
anyon condensations.

The edge theory of this SPT phase was also pointed out in
Ref.15. Again in the current paper, using the Criterion,
all these SPT phases are directly obtained. The results
of this part are summarized in Table V.

3. SG = Zonsite
2 × ZP

2

Again there are three nontrivial cohomological SPT
phases as listed in Table III. Because the analysis is sim-
ilar to the previous case, we only list the results in Table
VI. Note that we will choose a P symmetric edge along
the x-direction, and will again ignore the space-time co-
ordinates to save notations: e.g., P : φ → ±φ + α really
means P : φ(t, x, y)→ ±φ(t,−x, y)+α. We find that the
three nontrivial SPT phases obtained here are consistent
with earlier results in Ref.20 obtained by directly study-
ing the symmetry transformations in the Ktriv effective
theory without resorting to group cohomology.

4. SG = ZTP
2 × ZT

2 ' ZP
2 × ZT

2 and SG = ZTP
2

As mentioned before, both T ,P send φm to −φm up
to phase shifts. These phase shifts are changing under
gauge transformation φm → φm + δ and are not well-
defined. But their combination T · P should be treated
as a unitary transformation sending φm to φm up to a
well-defined phase shift, whose possible values are lim-
ited to 0 and π since (T · P)2 = I assuming m-particles
have trivial symmetry fractionalization. Using the anyon
condensation mechanism (the Criterion) and the cocy-
cles listed in Table III and Table II, one can straightfor-
wardly obtain the three nontrivial SPT phases protected
by SG = ZTP2 × ZT2 ' ZP2 × ZT2 and the one nontrivial
SPT phase protected by SG = ZTP2 = {I, T · P}. Af-
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3-cocycle SET bulk SPT edge

ω[1,0] g : m† → −m†

e† → i · e†

P : m† → m

e† → e†

g : φv → φv + π

φb → φb + π

P : φv → −φv

φb → φb

ω[0,1] g : m† → −m†

e† → e†

P : m† → m

e† → i · e†

g : φv → φv + π

φb → φb

P : φv → −φv

φb → φb + π

ω[1,1] g : m† → −m†

e† → i · e†

P : m† → m

e† → i · e†

g : φv → φv + π

φb → φb + π

P : φv → −φv

φb → φb + π

TABLE VI. The symmetry properties of the three nontrivial
SPT phases protected by SG = Zonsite

2 ×ZP
2 = {I, g}×{I,P},

together with those of the corresponding SET phases before
anyon condensations.

3-cocycle SET bulk SPT edge

ω[1,0] P : m† → −m
e† → i · e†

T : m† → m†

e† → e

P : φv → −φv + π

φb → φb + π

T : φv → −φv

φb → φb

ω[0,1] P : m† → −m
e† → i · e†

T : m† → m†

e† → −i · e

P : φv → −φv + π

φb → φb + π

T : φv → −φv

φb → φb + π

ω[1,1] P : m† → −m
e† → e†

T : m† → m†

e† → −i · e

P : φv → −φv + π

φb → φb

T : φv → −φv

φb → φb + π

TABLE VII. The symmetry properties of the three nontrivial
SPT phases protected by SG = ZTP

2 × ZT
2 ' ZP

2 × ZT
2 =

{I,P}×{I, T }, together with those of the corresponding SET
phases before anyon condensations.

ter choosing a P symmetric edge along the x-direction,
we list the results in Table VII and VIII. One can eas-
ily check that indeed the cosine terms cos(φv + χv) or
cos(φb + χb) are forbidden by symmetry, and the sym-
metry allowed terms like cos(2φv + χv) or cos(2φb + χb)
would spontaneously break the symmetry after gapping
out the edge modes. These SPT phases, to our knowl-
edge, have not been pointed out before.

C. Possible realizations — SPT Valence Bond
Solids

Valence Bond Solids(VBS) can be realized in quan-
tum spin-1/2 model systems36,46–48. They spontaneously

3-cocycle SET bulk SPT edge

ω1 T · P : m† → −m†

e† → −i · e
T · P : φv → φv + π

φb → φb + π

TABLE VIII. The symmetry properties of the nontrivial SPT
phase protected by SG = ZTP

2 , and the SET phase before the
anyon condensation.

break the lattice translational symmetry but preserve the
spin-rotational symmetry/time-reversal symmetry. The
characteristic of a VBS phase is the long-range bond-
bond correlation function. It is quite popular to visualize
these phases as if the neighboring spin-1/2’s form static
spin-singlet valence bond patterns, which suggests that
they may be adiabatically connected to a limit in which
the global wavefunctions are simply direct products of all
the valence bonds.

However , from a general point of view, this picture
of VBS may be misleading: the long-range bond-bond
correlation function does not imply that the wavefunc-
tion can be always adiabatically connected to a direct
product state. Motivated by the examples studied in Ta-
ble VII, below we propose new types of SPT-VBS phases
protected by a mirror symmetry P and the time-reversal
symmetry T . In fact, it is even unclear whether these
SPT-VBS phases are already realized in existing models
featuring VBS phases.

One could understand a VBS phase in spin models with
a half-integer spin per unit-cell by starting from a Z2

quantum spin liquid(QSL) phase. Quite generally, in a
Z2 QSL, the e-particles are the Kramer-doublet spinons,
and the m-particles are the spinless visons. Namely the
fact that the e-particles are Kramer-doublets basically
comes for free. It is well-known that the half-integer spin
per unit-cell would dictate that the visons have nontrivial
translational symmetry fractionalization. Consequently
condensing the visons would break translational symme-
try but preserve the spin-rotational symmetry, resulting
in a VBS phase. But the VBS phase can be still sym-
metric under certain mirror reflection. For instance, the
columnar VBS pattern on the square lattice is symmetric
under the mirror reflection around the line crossing the
bond centers along a column. The vison would certainly
have trivial symmetry fractionalization under the T and
P defined here.

Let us particularly pay attention to the two SPT
phases characterized by ω[0,1] and ω[1,1] in Table VII.
Before the m-particle condensation, the corresponding
two SET phases both have Kramer-doublet e-particles,
and their difference lies in the presence/absence of sym-
metry fractionalization of P. In both case, one could
realize the corresponding SPT phases by condensing the
m-particle (vison) which is odd under the combination
T · P: m† → −m.

Namely, whether the topological trivial VBS or the
SPT-VBS is realized completely depends on which vison
is condensed: the T ·P even vison or the T ·P odd vison.
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This is an energetic question and one need to numerically
measure this quantum number for the low energy visons
near the condensation. However, as mentioned before,
such measurement is nontrivial to perform and we cur-
rently only know how to do it using tensor-network-based
algorithms (see Sec.III C for details).

Note that although we propose the SPT-VBS phases
using the anyon-condensation mechanism from Z2 QSLs,
one does not have to realize the Z2 QSL in spin models
in order to realize the SPT-VBS phases. The anyon-
condensation mechanism is simply one route to ensure
that SPT-VBS phase can be obtained. As stable phases,
SPT-VBS phases may be obtained via other routes49, or
even first-order phase transitions, which do not involve
QSLs.

III. SYMMETRIC TENSOR-NETWORK
CONSTRUCTIONS IN 2+1D

In this section, we develop a general formulation
to construct/classify 2+1D cohomological bosonic SPT
phases protected by both on-site symmetries as well
as spatial symmetries by Projected Entangled Pair
States (PEPS). For each class we provide generic ten-
sor wavefunctions, which are useful for numerical sim-
ulations.

A. A simple example: Z2 SPT

Before developing a general formulation, we will study
a simple example: the SPT phase protected by onsite Z2

symmetry13.
Let us first focus on the fixed point wavefunction of

the nontrivial Z2 SPT phase. Here, we follow the conven-
tion in Ref.50. The system lives on a honeycomb lattice,
where each lattice site contains three qubits, as shown in
Fig. 1 as three circles. The six spin 1

2 ’s around a plaque-
tte are either all in the |0〉 state or all in the |1〉 state,
forming Z2 domains. The fixed point wavefunction for
the nontrivial Z2 SPT phase is

|ψ〉 =
∑
C

(−1)NC |C〉 (20)

where C denotes Z2 domain configurations and NC is the
number of domain walls in C.

The nontrivial SPT state can be represented with
tensors given in Fig. 2. A site tensor has six inter-
nal (virtual) legs, where each internal leg represents a
qubit. Here, we choose tensors to be the same for both
sub-lattices. Notice that a physical leg and the two inner
indices connected to it are always in the same state. So
after contraction, physical legs within one plaquette share
the same state. Further, the extra ±i phase contributes
−1 for each domain wall loop. In this way, one can easily
check that the tensor network state indeed represents the
wavefunction defined in Eq.(20).

FIG. 1. The Z2 symmetric wavefunction on the honeycomb
lattice. Each site contains three qubits. The six qubits around
each plaquette are all in the same spin state. The Z2 symme-
try flips spins, which acts as σx.

FIG. 2. The tensor state representing the nontrivial Z2 SPT
wavefunction defined in Eq.(20). An internal leg support
two dimensional Hilbert space. Physical states are labeled
by numbers in the circle, while virtual states are labeled by
numbers at the end of internal legs.

It is instructive to see how the Z2 symmetry acts on lo-
cal tensors. A local tensor is not invariant under g action,
but the transformed tensor differ from the original one
by some gauge transformation on internal legs, labeled
as Wg (W−1g ), as shown in Fig. 3. For tensors defined on
Fig. 2), we obtain that

Wg = |11〉〈00|+ i|10〉〈01|+ i|01〉〈10|+ |00〉〈11| (21)

We point out here, Wg does not form a Z2 group. Instead,
we have

W 2
g = σz ⊗ σz (22)

So, after applying Ising symmetry twice, we are left with
the σz action on all internal legs, and trivial action on
all physical legs. Notice, the σz action on every inter-
nal leg is a special kind of gauge transformation, which
leaves every single tensor invariant, as indicated by tensor
equations on Fig. 4(a). This kind of gauge transforma-
tions form a group, named as the invariant gauge group
(IGG). IGG is essential for tensor network constructions
of nontrivial phases.

Here, IGG is a Z2 group, since σ2
z = I. In general, a

nontrivial Z2 IGG leads to the Z2 toric code topological
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FIG. 3. Symmetry conditions for the Z2 symmetric state.
Here, X is short for σx, and Wg (W−1

g ) denotes the associ-
ated gauge transformation. For the wavefunction defined in
Eq.(20), Wg = |11〉〈00|+ i|10〉〈01|+ i|01〉〈10|+ |00〉〈11|.

order51–53. However, we claim that the Z2 topological
order is killed due to tensor equations in Fig. 4. To see
this, we first point out that a site tensor is invariant un-
der single-leg σz action on internal legs of one plaquette.
Notice that the single-leg σz action anticommutes with
Wg, while double-leg σz ⊗ σz action commutes with Wg:

Wgσz = −σzWg (23)

The physical meaning of the single-leg σz action is to
create a (topologically-trivial) Z2 symmetry charge exci-
tation. To see this, we first point out that action of Z2

symmetry g on a local patch R is naturally defined as
acting g on physical sites of R and Wg on the boundary
virtual legs of R. If R contains one tensor with a single-
leg σz action, we get an extra minus sign due to Eq.(23),
which is interpreted as a Z2 symmetry charge inside R.

The fact that a site tensor is invariant under two single-
leg σz action indicates the existence of a particular sub-
group of IGG – the “plaquette IGG”, whose elements
only have nontrivial action on internal legs within one
plaquette. By multiplying all nontrivial plaquette IGG
elements of all plaquettes, we recover the nontrivial el-
ement of the original Z2 IGG, which is double-leg σz
action on every internal leg. The decomposition of IGG
element into plaquette IGG elements is essential for the
construction of generic wavefunctions of SPT phases.

As we will see, the toric code topological order is killed
due to the presence of the plaquette IGG. We put the sys-
tem on a torus. The topological degenerate ground states
are captured by inserting the non-contractible σz loops.
Since every tensor is invariant under two single-leg σz
actions, the wavefunction with non-contractable σz loop
turns out to be the same as the original wavefunction.

So, there is no topological ground state degeneracy, and
the state has no topological order.

The physical reason can be interpreted as vison (m)
condensation. A pair of m-particles are created at two
ends of a double-leg σz ⊗ σz string. As indicated in Fig.
4(b), the creation of a pair of bond states of Z2 symmetry
charges and visons leaves the wavefunction invariant. In
other words, these bound states (m-particles carrying Z2

odd quantum number) are condensed, thus killing the
topological order.

There remains one question to be answered: what is
the SET phase (Z2 topological order with Z2 symme-
try) before condensation? To see this, let us re-examine
Eq.(22): two Z2 symmetry defects Wg fuse to a vison,
which means e carries fractional Z2 quantum number and
m has the trivial symmetry fractionalization pattern.

Let us summarise the previous discussion. We start
from an SET phase with Zg2 topological order, where
e-particles carry fractional Zs2 quantum number, as in-
dicated in Eq.(22). Eq.(23) tells us that the single-leg
σz action creates nontrivial Zs2 symmetry charge54. The
plaquette IGG defined on Fig. 4(a) leads to the conden-
sation of visons carrying nontrivial Z2 charges. In the
following, we show that any state satisfying these ten-
sor equations is either a nontrivial Z2 SPT phase, or a
spontaneously symmetry breaking phase in the thermo-
dynamic limit.

One way to see this is to gauge the Zs2 symmetry. It is
known that gauging the nontrivial Zs2 SPT phase gives
us the double semion topological order55. Let us verify
it in the tensor network formulation. As shown in Fig. 5,
for the gauged Z2 SPT state, physical degrees of freedom
live on links. The physical state on the link is deter-
mined by the “difference” of the two internal legs. The
Z2 symmetric condition for g and Wg in Fig. 3 becomes
a new IGG element, as indicated in Fig. 6. Similar to the
ungauged theory, Wg also satisfies Eq.(22) and Eq.(23).

According to Eq.(22), the gauged tensor state actually
holds an Z4 global IGG: {I,Wg, σz ⊗ σz,Wg · (σz ⊗ σz)}.
Z4 flux, labeled as m0 (m†0), are created at ends of Wg

strings. And ends of σz ⊗ σz strings are double Z4 flux,
labeled as m2

0. To see the physical meaning of single leg
action of σz, we first note that it is a self boson. And
braiding m0 around it, one obtain π phase according to
Eq.(23). So, the single leg action of σz corresponds to a
double Z4 charge e20. Due to the existence of nontrivial
plaquette IGG elements, bound states of m2

0 and e20 are
condensed, as shown in Fig. 4(b). And all other parti-
cles sharing nontrivial braiding statistics with m2

0e
2
0 are

confined. Then, the remaining topological order can be
determined by the following table:

charge
flux

0 1 2 3

0 I × b ×
1 × s × s̄
2 b × I ×
3 × s̄ × s
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FIG. 4. (a) Gauge transformations which leave local tensors invariant. Here, Z is short for σz. (b) The condensation of visons
carrying Z2 symmetry charge.

FIG. 5. Tensors representing the double semion fixed point
wavefunction

Here, s and s̄ are semions and b is a self boson. The
fusion and braiding rules of the remaining quasiparticles
are the same as the double semion topological order. So,
the condensed phase holds an double semion topological
order.

Then, we conclude that the ungauged phase is the non-
trivial Z2 SPT. Notice that b boson may condense in the
long wavelength, thus kill the double semion topological
order. In the ungauged theory, this corresponds to the
spontaneously symmetry breaking phase.

B. General Framework

Let us summarize what we have learned from the above
simple example. To construct the SPT state on tensor
networks, we require that

• the tensor network state is symmetric, as shown in

FIG. 6. IGG for double semion topological order

Fig. 3;

• tensors have some nontrivial IGG structure, as
shown in Fig. 4;

• the symmetry transformation rules and IGG ele-
ments are interplaying with each other, as given in
Eq.(22) and Eq.(23).

We will follow the above strategy in this part and develop
a general framework for SPT phases on tensor networks.
The three cohomology classification naturally emerges
from tensor equations.

1. Symmetries

Let us first discuss how to impose symmetries on tensor
networks53,56–62. We focus on the case where the state is
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a 1D representation of symmetry group SG:

g ◦ |Ψ〉 = eiθg |Ψ〉,∀g ∈ SG (24)

Here SG includes both onsite symmetries as well as lat-
tice symmetries.

Consider a PEPS state formed by site tensors. We
assume that for a symmetric PEPS state, the symmetry
transformed tensors and the original tensors are related
by a gauge transformation (up to a U(1) phase factor):

ΘgWgg ◦ T = T (25)

Here, T represents the tensor states with all internal legs
uncontracted. Namely T =

⊗
a T

a, where Ta represents
a local tensor at site a. Wg is a gauge transformation,
which acts on all internal legs of the tensor network:

Wg =
⊗
(a,i)

Wg(a, i) (26)

where (a, i) labels a leg of site a. If leg (a, u) and (b, v) are
connected, according to the definition of gauge transfor-
mation, Wg(a, u) ·W t

g(b, v) = I. Θg is a tensor-dependent
U(1) phase. In the following, we will focus on systems
defined on an infinite lattice, for which we can always ab-
sorb Θg to Wg. So, the symmetric condition for a tensor
wavefunction can be expressed as

Wgg ◦ T = T (27)

To be more clear, we can write the above equation ex-
plicitly as

(Wg(a, u))αα′ .(Wg(a, v))ββ′ . . . g ◦ (T auv...)
i
α′β′...

=(T auv...)
i
α′β′... (28)

where Ta labels a tensor at site a, and u, v . . . labels legs
of tensor T a.

2. Invariant gauge group

The invariant gauge group (IGG) is a sub-group of
gauge transformations, whose element leaves every ten-
sor – or equivalently the tensor state before contraction
(T) – completely invariant51–53. Notice that a general
gauge transformation only leaves the physical wavefunc-
tion invariant, while could transform the site tensors non-
trivially. To make the discussion below clear, we denote
any element in IGG as a global IGG element, since by def-
inition this element is a gauge transformation involving
all virtual legs on the tensor network.

We also introduce a special type of IGG elements –
the plaquette IGG element λp, where λp acts nontriv-
ially only on internal legs of plaquette p, as shown in
Fig. 7(a). The plaquette IGG is a generalization of the
single leg action of σz in Fig. 4. For any given plaquette
p, the collection of plaquette IGG elements {λp} acting

on p forms a subgroup of IGG. To construct SPT, we fur-
ther assume that any global IGG element can always be
decomposed into the product of plaquette IGG elements,
λ =

∏
p λp. Namely, plaquette IGG elements can gener-

ate the full IGG.
For SPT tensor wavefunctions, we have assumed that

the decomposition from a global IGG element to the
product of plaquette IGG elements always exist. One
may ask whether the decomposition is unique. The an-
swer is no. To see this, we consider the decomposition of
the trivial action I on all internal legs. There is a spe-
cial kind of plaquette IGG element: for every plaquette
λl = λu = λr = λd = χ, where χ is a complex number,
as shown in Fig. 7(b). We also label this IGG element
as χp. Then,

∏
p χp = I. We assume that this is the only

way to decompose I. Notice that the identity
∏
p χp = I

directly leads to the fact that the phase factor χ in any
plaquette is the same. So, for any global IGG element,
there is only one global phase ambiguity to decompose
into the plaquette IGG elements λp reads

λ =
∏
p

λp =
∏
p

χpλp (29)

It turns out that this phase ambiguity is essential to get
SPT phases, and naturally gives 3-cohomology classifica-
tion.

3. Cohomology from symmetry equations on PEPS

For group elements g1, g2, we have

T = Wg1g1Wg2g2 ◦ T = Wg1g2g1g2 ◦ T, (30)

Since Wg1g1Wg2g2 and Wg1g2g1g2 only differ by a gauge
transformation, and they both leave T invariant. So, they
should differ up to an IGG element, which we label as
λ(g1, g2),

Wg1g1Wg2g2 = λ(g1, g2)Wg1g2g1g2 (31)

which generalize Eq.(22). According to associativity

(Wg1g1Wg2g2)Wg3g3 = Wg1g1(Wg2g2Wg3g3) (32)

we get

λ(g1, g2)λ(g1g2, g3) = Wg1
g1λ(g2, g3)λ(g1, g2g3) (33)

where we define ab ≡ a · b · a−1. Particularly, for a leg i,
we have(

Wggλ
)

(i) = Wg(i) · λs(g)(g−1(i)) · [Wg(i)]
−1

(34)

where s(g) is complex conjugate if g contains time rever-
sal action.

One can decompose λ’s into λp’s, and due to the phase
ambiguity Eq.(29), λp’s satisfy

λp(g1, g2)λp(g1g2, g3) =

ωp(g1, g2, g3)Wg1g1λp(g2, g3)λp(g1, g2g3) (35)
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FIG. 7. (a) An example of the plaquette IGG element λp. (b) The plaquette IGG element formed by complex number χ and
χ−1. This kind of plaquette IGG exists for any PEPS state. (c) A site tensor lives on the subspace which is invariant under
action of IGGs. Here, p1, p2, p3, p4 are four neighbouring plaquettes around the tensor and α, β, γ, δ denote legs of the tensor.
The last equation indicates that a global IGG element is obtained from multiplication of plaquette IGG elements.

where ωp(g1, g2, g3) is the phase IGG satisfying I =∏
p ωp(g1, g2, g3).
In Appendix B, we prove ωp satisfies three cocycle con-

dition:

ωp(g1, g2, g3)ωp(g1, g2g3, g4) g1ωp(g2, g3, g4)

= ωp(g1g2, g3, g4)ωp(g1, g2, g3g4) (36)

And ωp is defined up to a coboundary:

ωp(g1, g2, g3) ∼ ωp(g1, g2, g3)
χp(g1, g2)χp(g1g2, g3)
g1χp(g2, g3)χp(g1, g2g3)

(37)

The action of g on ωp (χp) follows a very simple rule:

for a leg i, we have (gωp)(i) = ω
s(g)
g−1(p)(g

−1(i)), where s(g)

is complex conjugate if g contains time reversal. Then,
consider ωp, we have

• For unitary onsite symmetry g, gωp = ωp

• For time reversal symmetry T , Tωp = ω∗p

• For translation and/or rotation symmetry Ti and
Ci,

Tiωp = Ciωp = ωp

• For reflection symmetry σ, σωp = ω−1p

4. Methods to construct generic SPT tensor wavefunctions

Now, we have developed a general way to write down
tensor equations for SPT phases: Eq.(31),Eq.(33) and
Eq.(35). The next step is to answer the following ques-
tion: given a symmetry group SG and a cohomology
class [ω], how do we construct generic SPT wavefunc-
tions from tensor equations? This problem actually can
be decomposed to three parts:

1. Figure out the group structure for λ’s, λp’s and
Wg’s to realize the SPT phase.

2. Obtain the representation of the IGG and symme-
try on tensor networks.

3. Find subspace of tensors, which are invariant under
IGG action on internal legs as well as symmetry
actions on both physical legs and virtual legs.

The second part and the third part are relatively easy to
solve, and we give examples in Sec. III E. Here, we focus
on the first part, and we provide two methods in the
following.

The first way is to start from exact solvable models. If
there exists an exact solvable model realizing some SPT
phase, one can construct a fixed point wavefunction by
PEPS. Then, one can extract tensor equations as well as
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the group structure for λ’s λp’s and Wg’s. For example,
as we show in Sec. III A, to realize a nontrivial Zs2 SPT,
λ’s form a Zg2 group. λp’s form group Z2 × U(1) for any
plaquette p. And Wg is a projective representation with
coefficient in Z2, which anticommutes with nontrivial λp.

Notice that the group structure for IGG and Wg does
not depend on whether SG is onsite or spatial. So, we
are also able to figure out IGG and Wg for spatial SPT
phases. For example, as we will show in Sec. III E, for
the nontrivial inversion SPT phase, λ’s form a Zg2 group,
which is the same as the case for Zs2 onsite SPT phase.
The only difference is that for the inversion SPT and Z2

onsite SPT, the IGGs have distinct representations on
internal legs.

For every SPT phase protected by a discrete symmetry
group and also some SPT phases protected by continu-
ous symmetry groups, one can write down exact solvable
models. So one is able to realize those generic SPT wave-
functions by tensors.

The second way is related to a mathematical object
named as crossed module extensions. It is known in
mathematical literatures that crossed module extensions
of SG by U(1) are classified by H3(SG,U(1)). And as
we show in Appendix B, our tensor constructions can be
viewed as a representation of crossed module extensions.
So, given a crossed module extension, we are able to fig-
ure out the group structure for IGG and Wg’s.

C. A by-product: the general anyon condensation
mechanism for realizing SPT phases

Using the above results, here we prove the Criterion of
the anyon condensation mechanism. We will start from
an SET phase with discrete Abelian topological order
and condense m-particles to confine the gauge field, and
demonstrate the Criterion to realize SPT phases. For the
purpose of presentation, we will consider ZN topologi-
cally ordered SET phases with the symmetry group SG,
but one can straightforwardly generalize the discussion
below for SET phases with any discrete Abelian gauge
groups ZN1

× ZN2
....

In order to represent a regular ZN topological order in
the tensor-network formulation, one needs to introduce a
nontrivial global IGG51–53, labeled as H. In particular,
there is a nontrivial global IGG element J ∈ H satisfying
JN = I, and representing the ZN gauge transformation.
Here J is nontrivial means that it is not U(1)-phase mul-
tiplications on the virtual legs. A J string is interpreted
as a ZN flux line, while the ZN gauge flux and its an-
tiparticle are created at two ends of the J string. Besides
the nontrivial ZN IGG, there is always “trivial” IGG X,
whose elements are loops of phases. So, we start from
tensor states with an abelian IGG H ×X.

In the presence of symmetry SG and IGG H ×X, the

tensor equations read

Wg1g1Wg2g2 = ξ(g1, g2)η(g1, g2)Wg1g2g1g2, ∀g1, g2 ∈ SG
(38)

where ξ(g1, g2) ∈ X, and η(g1, g2) ∈ H. ξ’s and η’s both
satisfy the two-cocycle condition:

ξ(g1, g2)ξ(g1g2, g3) = g1ξ(g2, g3)ξ(g1, g2g3)

η(g1, g2)η(g1g2, g3) = Wg1
g1η(g2, g3)η(g1, g2g3) (39)

We point out that η’s label the symmetry fractionaliza-
tion pattern of ZN charges.

How about the symmetry properties for fluxes? To see
this, let us study the symmetry action on ZN flux line J :
WggJ ∈ H × X. Since we are studying phases featuring
symmetry fractionalizations, we require that the anyon
types are invariant under symmetry action:

WggJ = χJ(g) · J (40)

where χJ(g) ∈ X, and (χJ(g))
N

= 1. Further, χJ :
SG→ ZN is a representation of SG, since

Wg1
g1Wg2

g2J = χJ(g1) g1χJ(g2) · J
= ξ(g1,g2)η(g1,g2)Wg1g2

g1g2J = χJ(g1g2) · J (41)

where we use the fact ξ(g1, g2)η(g1, g2) commute with J .
So,

χJ(g1g2) = χJ(g1) g1χJ(g2) (42)

Notice that both time reversal T and reflection P should
be treated as antiunitary operations.

To proceed, we point out that the building blocks for
X are plaquette phase IGGs:

χ =
∏
p

χp,∀χ ∈ X (43)

Here χp ∈ Xp, where Xp ⊂ X is the plaquette IGG of p,
whose elements are loops of phases along virtual legs of
plaquette p. As before, the decomposition to plaquette
phase IGG elements has a single phase ambiguity:

χ =
∏
p

χp =
∏
p

εpχp (44)

Here εp(i) = ε±1, where ±1 pattern follows as Fig. 7(b).
Then, according to Eq.(42) and Eq.(44), we obtain

χp,J(g1) g1χp,J(g2) = ωp,J(g1, g2)χp,J(g1g2) (45)

where ωp,J(g1, g2)(i) = ωJ(g1, g2)±1. Because χJ(g)N =
1, clearly phase factors χp,J(g) and ωp,J(g1, g2) can be
chosen to be ZN elements. It is straightforward to check
that ωp,J satisfies the two-cocycle condition:

ωp,J(g1, g2)ωp,J(g1g2, g3) = g1ωp,J(g2, g3)ωp,J(g1, g2g3)
(46)
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It turns out that ωJ(g1, g2) ∈ ZN labels the symmetry
fractionalization pattern of ZN fluxes.

For onsite symmetries, we can restrict to one internal
leg i. Then, Eq.(45) becomes a relation for phase fac-
tors. We can always tune ωp,J to be trivial by redefining
χp,J(g)→ εJ(g) ·χp,J(g). In other words, onsite symme-
try fractionalization patterns for fluxes are always trivial
for the case IGG equals H ×X. Notice, fluxes can carry
fractional spatial symmetry quantum numbers in general.

Now, let us derive the Criterion to obtain SPT phases
by condensing fluxes. In this tensor formulation, we re-
quire nontrivial plaquette IGG for every plaquette. And
the plaquette IGG for p is labeled as Hp ×Xp.

To kill the topological order, we require the decompo-
sition of J as

J =
∏
p

Jp =
∏
p

εpJp (47)

where Jp is a nontrivial plaquette IGG element for pla-
quette p. Again, the decomposition has an U(1) ambi-
guity εp,J . As shown in Fig. 7(d), the bound state of ZN
fluxes and Jp is condensed according to the above equa-
tion. Notice that there is a canonical choice for Jp such
that JNp = I. So we can choose Hp

∼= ZN , and Hp ×Xp

is an abelian group. Further, as we prove in Appendix B,
elements of plaquette IGG for different plaquettes com-
mute. Thus, we conclude, the whole IGG is abelian.

To see the symmetry action on Jp, or equivalently, the
symmetry quantum number carried by Jp, we have

WggJ =
∏
p

WggJp

=χJ(g) · J =
∏
p

χp,J(g)Jp (48)

Due to the U(1) ambiguity, we conclude

WggJp = εp,J(g)χp,J(g)Jp (49)

We further have

Wg1
g1Wg2

g2Jp = εp,J(g1)χp,J(g1) g1εp,J(g2) g1χp,J(g2) · Jp
= ξ(g1,g2)η(g1,g2)Wg1g2

g1g2Jp = εp,J(g1g2)χp,J(g1g2) · Jp
(50)

where we use the fact that ξη commutes with Jp. Com-
paring with Eq.(45), we conclude

ωp,J(g1, g2) =
εp,J(g1g2)

εp,J(g1) g1εp,J(g2)
(51)

is a two-coboundary. Namely, in this tensor formulation,
symmetry-preserving flux-condensation requires fluxes to
have no symmetry fractionalization.

In the following, we focus on a simple case:

χJ(g) = 1,∀g ∈ SG. (52)

If instead χJ(g) is nontrivial phase factor for symmetry
g, the quantum number carried by the flux will depend
on the details of the region of local-symmetry action as
well as the flux string configuration. Although this situa-
tion is not violating basic principles, it is rather unlikely
in usual models. In addition, the main purpose of this
section is to derive the Criterion for anyon condensation
mechanism, where we assume the quantum numbers of
the flux is independent of the details of local symmetry
action. Consequently, in this section, we do not consider
this situation and focus on the cases given by Eq.(52).

We choose a canonical gauge such that JNp = I, and
ηp = Jmp for η = Jm, ∀m. In particular, we have

ηp · η′p = (η · η′)p (53)

Then, according to Eq.(39), we have

ηp(g1, g2)ηp(g1g2, g3) = ηp(g2, g3)ηp(g1, g2g3) (54)

Let us define

ω1(g1, g2, g3) =
Wg1g1ηp(g2, g3)ηp(g1, g2g3)

ηp(g1, g2)ηp(g1g2, g3)
=

Wg1g1ηp(g2, g3)

ηp(g2, g3)
(55)

which is the quantum number of condensed fluxes. We
also define

ω2(g1, g2, g3) =
Wg1g1ξp(g2, g3)ξp(g1, g2g3)

ξp(g1, g2)ξp(g1g2, g3)
(56)

Following Appendix B, one can prove ω1 and ω2 are both
three-cocycles. And the obtained SPT phase is charac-
terized by [ω] = [ω1] · [ω2], where [·] means equivalent
class up to coboundary. Notice that even before anyon
condensation (without nontrivial plaquette IGG Hp), ω2

is still present – it is “background” SPT index unaffected
by anyon condensation. However, because ω2 is obtained
from the algebra of phase factors (instead of matrices), ω2

can be nontrivial only due to spatial translational sym-
metries (i.e. ω2 is only describing a weak SPT indices).
The strong SPT indices can only appear due to ω1. So
we have proved the Criterion as in Sec. II.

D. Algorithms to measure anyon quantum numbers

It would be useful to be able to numerically mea-
sure the quantum numbers carried by the low energy
m-particles inside the SET phase near the condensation
phase transition. Such measurements, together with the
Criterion, would allow one to predict the nature of the
resulting symmetric phases. Now let us present several
“conceptual” algorithms to measure these quantum num-
bers. Although these algorithms could be implemented
in the existing tensor-network algorithms63 to practi-
cally measure these quantum numbers, here our focus
is mainly to clarify conceptual issues. In particular, the
quantum numbers introduced in the previous section may
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FIG. 8. Measurement of the quantum number χm0(g) carried by an m-particle for a local unitary symmetry g. According to
Eq.(40,52), J commute with Wg, so we conclude that the quantum number is obtained by χm0(g) · Jp = WggJp.

appear somewhat formal, and it would be ideal to explic-
itly demonstrate their measurable meanings.

We again focus on ordinary ZN gauge theories. As dis-
cussed before, the two ends of an open string created by a
sequence of J operations on the virtual bonds actually de-
scribe an elementary m-particle (coined m0) and its anti-

particle (coined m†0). In order to simulate the low energy
excitations within the topological sectors corresponding

to m0 and m†0, one needs to further variationally optimize
the tensors over finite regions (about correlation-length
size) near the centers of these m-particles. Namely, a low

energy excitation state |Ψex〉 hosting m0 and m†0 quasi-
particles is obtained by only modifying these local ten-
sors (coined excited-state-local-tensors) while leaving all
other tensors in the network (coined ground-state-local-
tensors) the same as the ground state (apart from multi-
plying a sequence of J operations on the string).

Our basic scheme is to use the symmetry transforma-
tion rules on the ground-state-local-tensors to obtain the

symmetry properties of m0 and m†0. Let us start from
discussing the measurement of the quantum number of
an onsite unitary symmetry g ∈ SG, as shown in Fig.(8).
For example, let us focus on m0. The local action of g on
m0 is described by applying Wg on a loop of virtual legs

enclosing m0 (but not enclosing m†0), together with ap-
plying the physical transformation g on the physical legs
inside the region enclosed by the Wg-loop. Physically,
such a tensor-network operation corresponds to braiding
a g-symmetry-defect (described by the end point of the
Wg-string) around m0. It turns out that the condition
WggJ = J (i.e. Eq.(40,52)) dictates that the g-symmetry-
defect itself has no symmetry fractionalization. It also
dictates that the m0 is transformed by this local action
back to the same topological sector.

Now quantum number carried by m0: χm0
(g) has di-

rect measurable meaning. After applying the local action
of g on m0, one obtains a new physical state |Ψ′ex〉, cor-
responding to applying symmetry g only on m0 but not

on m†0. Due to symmetry, |Ψ′ex〉 can at most differ from
|Ψex〉 by a phase factor, which is exactly the measurable
meaning of χm0

(g). Note that the variationally deter-
mined excited-state-local-tensors around m0 only intro-
duces a common global phase ambiguity in the physi-
cal state |Ψex〉 and |Ψ′ex〉, and consequently not affecting

FIG. 9. (a) The procedure to create |Ψex〉 which is T · P
invariant. One first creates a pair of m0 and m†0 from ground
state, and then move away from each other. The global phase
of |Ψex〉 by requiring the wavefunction overlap between ad-
jacent states to be real and positive. (b) |Ψ′ex〉 is obtained
by gluing between the original left-half of the tensor-network
with the T ·P transformed left-half tensor-network. The T ·P
transformed left-half tensor-network is obtained by transform-
ing the physical legs of the left-half via T · P, together with
applying WT T ·WP · T −1 on all the virtual legs cut by the
mirror line. χm0(T ·P) is defined as phase difference between
|Ψex〉 and |Ψ′ex〉.

their relative phase χm0
(g).

Similar discussion can be naturally extended to rota-
tional spatial symmetries, which can be treated as uni-
tary operations. The only modification is that one needs
to choose the position m0 to be invariant under the ro-
tations in order to respect these symmetries.

The more interesting and nontrivial situation is the
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time-reversal T and mirror reflection P. It is straightfor-
ward to show that the assumption Eq. (40,52) leads to
the following transformation rules: T : e → e†,m → m,
and P : e → e,m → m†. And the quantum numbers
χm(g) should be treated as an element in H1(SG,ZN )
but with T and P acting anti-unitarily on ZN . How-
ever, their combination T · P should be treated as uni-
tary and the corresponding quantum number is sharply
measurable. Below we present such an algorithm, which
is depicted in Fig. 9.

Let us choose the positions ofm0 andm†0 to be P image
of each other. For example, we will consider the situa-

tion that m0(m†0) is located in the left(right) half of the
sample, and the mirror is the vertical line. Consequently
|Ψex〉 is T · P symmetric. Our goal is to measure the
quantum number χm0

(T ·P). This quantity may appear
to be strange because we know that the combination T ·P
would send m0 to m†0 — a different quasiparticle. But it
turns out that this is exactly what is required to sharply
measure χm0

(T · P).

Similar to previous example, our plan is to apply T ·P
only on m0 and obtain a new excited physical state |Ψ′ex〉.
But because of the nature of P, the |Ψ′ex〉 should be ob-
tained by gluing (i.e. contracting virtual legs) between
the original left-half of the tensor-network with the T ·P
transformed left-half tensor-network (which is now on the
right-half). Specifically, the T · P transformed left-half
tensor-network is obtained by transforming the physical
legs of the left-half via T · P, together with applying
WT T ·WP · T −1 on all the virtual legs cut by the mirror
line. The procedure to obtain |Ψ′ex〉 is shown in Fig. 9(b).

If one naively uses the phase difference between this
|Ψ′ex〉 and |Ψex〉 to measure χm0(T · P), one will find
that it is not well-defined. The reason is that the global
phase factor of |Ψex〉 is not properly chosen yet. In or-
der to sharply measure χm0(T · P), one needs to fully
determine the global phase factor of |Ψex〉 relative to the
ground state in the following sense. In order to construct
|Ψex〉, one can imagine to firstly create a pair of m0 and

m†0 near each other, and then further move them away
from each other to a large distance, while maintaining
T · P over the whole process, as shown in Fig. 9(a). This
process would create a sequence of states, with ground
state as the first one and |Ψex〉 as the last one. The
global phase factor of |Ψex〉 is determined by requiring
the wavefunction overlap between adjacent states in this
sequence to be positive and real.

Because the global phase factor of |Ψex〉 is fixed, the
only ambiguity in the tensor-network construction of
|Ψex〉 is a global phase factor eiθ on the left-half, and
e−iθ on the right-half. But this relative phase ambiguity
would not affect the phase difference between this |Ψ′ex〉
and |Ψex〉 discussed above. Namely the phase difference
between this |Ψ′ex〉 and |Ψex〉 is now sharply measurable,
which is nothing but χm0

(T · P).

E. Examples

We present some explicit examples for the 2+1D SPT.
Let us consider square lattice with a d = 2 qubit on each
site. For simplicity, we will focus on the case where all
tensors are translationally invariant. We label the legs
of a site tensor as α, β, γ, δ, and plaquette IGG elements
act as λl, λu, λr, λd, as shown in Fig. 7.

1. SPT phases protected by inversion symmetry

Consider nontrivial SPT phases protected by inversion
symmetry I. According to the discussion in the previous
part, the inversion protected SPT phases are classified by
H2(ZI2 , U(1)) = Z2. Namely, there is only one nontrivial
phase.

We start with a tensor network with Z2 global IGG
{I, λ}. Tensor equations for this nontrivial SPT phase
are

WII ·WII = λ
WIIλp = −λp (57)

where λp is the plaquette IGG element. For a single leg
action, we have

IWI(i) = W t
I (I(i)), i = α, β, γ, δ

Iλj = λtI(j), j = l, u, r, d (58)

Here, due to translational invariance, we define λj ,
λp(j), ∀p.

The simplest solution requires internal bond dimension
D = 6. IGG elements are represented as

λ = σ0 ⊕ (−σ0 ⊗ σ0)

λl = λu = σz ⊕ (σz ⊗ σz)
λr = λd = σz ⊕ (−σz ⊗ σz) (59)

and the inversion operation on internal legs is

WI(i) = σx ⊕ (σy ⊗ σx) (60)

Now, let us determine the constraint Hilbert space for
the nontrivial SPT phase. As shown in Fig. 7(c), we re-
quire that the single tensor lives in the subspace which is
invariant under action of plaquette IGG elements, where
the nontrivial plaquette IGG element in Eq.(59). Fur-
ther, we require the single tensor to be inversion symmet-
ric: WII ◦T a = T a, where WI is given in Eq.(60). Then,
by solving these linear equations, we obtain a DI = 74
dimensional (complex) Hilbert space. We point out that
the original Hilbert space for a site tensor is dD4 = 2592
dimensional.

It is also straightforward to check that the only non-
trivial cocycle phase is ω(I, I, I) = −1, which cannot be
tuned away.
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2. SPT phases protected by time reversal and reflection
symmetries

Now, we study a more interesting example: 2D
SPT phases protected by ZP2 × ZT2 (reflection and
time reversal) symmetry. The four group elements are
{I, P, T , PT }, where T = σxK and P is the reflection
along y axis. As we mentioned above, both P and T
should be treated as “anti-unitary” action. Then, PT
should be treated as a unitary action. Namely, we have

H3(ZP2 × ZT2 , U(1)) = H3(Z2 × ZT2 , U(1)) = Z2 × Z2

(61)

The tensor equations for these SPT phases are:

WT TWT T = λ(T , T )

WPPWPP = λ(P, P )

WPPWT T = WT TWPP
WPPWT Tλp = −λp (62)

where λ(T , T ), λ(P, P ) belongs to the global Z2 IGG.
And different choice of λ’s gives different SPT phases.

By definition, the action of symmetry on W ’s and λ’s
are

TWR(i) = W ∗R(i)
PWR(α/γ) = W t

R(γ/α) = (W−1R (α/γ))t

PWR(β/δ) = WR(β/δ) (63)

as well as

Tλj = λ∗j ,
Pλl/r = λ−1r/l,

Pλu/d = (λ−1u/d)
t (64)

To realize these SPT phases, we start from D = 6
PEPS. Without any constraint, a single tensor lives in a
dD4 = 2592 dimensional (complex) Hilbert space. IGG
elements are chosen as

λ = σ0 ⊕ (−σ0 ⊗ σ0)

λl = σz ⊕ (σz ⊗ σz), λr = σz ⊕ (−σz ⊗ σz)
λu = σz ⊕ (σz ⊗ σ0), λd = σz ⊕ (−σz ⊗ σ0) (65)

In the following, we discuss each class in Z2 × Z2 sep-
arately.

1. λ(T , T ) and λ(P, P ) are both trivial. We get a
trivial symmetric phase in this case.

2. λ(T , T ) = I, λ(PT , PT ) is nontrivial. Time rever-
sal and reflection symmetries on internal legs are
represented as

WT (i) = σx ⊕ (σx ⊗ σ0)

WP (α) = WP (β) = σ0 ⊕ (σ0 ⊗ iσy)

WP (γ) = WP (δ) = σ0 ⊕ (σ0 ⊗ (−iσy)) (66)

The constrained sub-space is an 80 dimensional real
Hilbert space.

3. λ(P, P ) = I, λ(T , T ) is nontrivial. Time reversal
and reflection symmetries are represented as

WT (α) = WT (β) = σx ⊕ (iσy ⊗ σ0)

WT (γ) = WT (δ) = σx ⊕ (iσy ⊗ σ0)

WP (i) = σ0 ⊕ (σ0 ⊗ σx) (67)

The constrained sub-space is an 88 dimensional real
Hilbert space.

4. λ(T , T ) and λ(PT , PT ) are both nontrivial. Time
reversal and reflection symmetries are represented
as

WT (α) = WT (β) = σx ⊕ (iσy ⊗ σ0)

WT (γ) = WT (δ) = σx ⊕ (−iσy ⊗ σ0)

WP (α) = WP (β) = σ0 ⊕ (iσ0 ⊗ σy)

WP (γ) = WP (δ) = σ0 ⊕ (−iσ0 ⊗ σy) (68)

The constrained sub-space is an 80 dimensional real
Hilbert space.

3. Weak SPT phases protected by lattice group

In this part, we consider the interplay of translation
with point group. It is known that in the presence of
translation, there are more SPT phases, which are named
as weak indices64. In Ref.65, the authors find that weak
indices can be elegantly incorporated into the cohomol-
ogy formulation by treating translation in the same way
as the on-site symmetry. Weak indices can be explicitly
calculated using Künneth formula. In (2+1)D, assuming
the symmetry group SG = Z2 × G, where Z2 denotes
translational symmetry on the plane, the formula reads

H3[Z2 ×G,U(1)] =H3[G,U(1)]× (H2[G,U(1)])2×
H1[G,U(1)] (69)

where H3[G,U(1)] classify the strong indices,
(H2[G,U(1)])2 are weak indices capture (1+1)D
SPT phases and H0[G,U(1)] simply captures different
charges in a unit cell.

In our tensor construction of SPT phases, we show that
it is indeed natural to treat lattice symmetry in the same
way as on-site symmetry. Not surprising, the interplay
between translation and point group leads to new “weak
SPT” phases.

Let us consider a spin system in a honeycomb lattice,
as shown in Fig. 10. In Ref.25, the authors obtain four
classes of featureless insulators, which can be captured
by two Z2 indices χC6 and χσ. The Z2×Z2 classification
can actually be understood as weak indices, which comes
from the interplay between C6, σ and translation T1, T2.
We leave the detailed calculation in Appendix D.
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FIG. 10. (a) The honeycomb lattice and generators the lattice
symmetry group. u, v labels sites while a, b, c labels bonds in
one unit cell. (b) The IGG element formed by phases. We
require χa · χb · χc = 1.

IV. SPT PHASES IN 3+1D

It is natural to generalize tensor construction of SPT
phases to 3+1D. Before going into this higher dimensions,
we would like to mention that in Appendix A we go to the
lower dimensions and prove our results on 1+1D SPT.

As the same in 2+1D, the symmetric tensor condition
reads

Wgg ◦ T = T (70)

where T labels the 3+1D tensor network before contrac-
tion, and Wg is the gauge transformation associated to
symmetry g.

Then, Wgg satisfies the group multiplication rules up
to an IGG element:

Wg1g1Wg2g2 = λ(g1, g2)Wg1g2g1g2 (71)

Due to associativity, λ(g1, g2) satisfies the two cocycle
condition:

λ(g1, g2)λ(g1g2, g3) = Wg1
g1λ(g2, g3)λ(g1, g2g3) (72)

In general, the nontrivial IGG leads to nontrivial topo-
logical order in 3+1D. In order to kill the topological
order, we introduce cubic IGG {λc}, where λc only acts
nontrivially on the internal legs of cubic c. We further as-
sume, any IGG element λ can be decomposed to product
of cubic IGG elements:

λ =
∏
c

λc (73)

Let us discuss the uniqueness of the above decomposi-
tion. We introduce the plaquette IGG {ξp}, which acts
nontrivially only on legs belonging to plaquette p. Then,
we can define a special kind of cubic IGG {ηc}, where
any ηc can be decomposed as multiplication of plaquette
IGG elements,

ηc =
∏
p∈c

ξcp (74)

If we further require ξc1p = (ξc2p )−1 for p = c1 ∩ c2, then,
we get the decomposition of I as

I =
∏
c

ηc (75)

In other words, the decomposition of a given IGG element
λ is not unique. We can always attach such kind of ηc
to get new decomposition. Then, roughly speaking, the
cubic IGG element λc(g1, g2) should satisfy a “twist” two
cocycle condition, where the “twist factors” take value in
{ηc}.

We can further prove ηc(g1, g2, g3) satisfies condition
similar to three cocycles. We notice that the decompo-
sition of ηc to plaquette IGG elements ξp’s is also not
unique, we can always attach some phase factor to ξp
such that the multiplication of ξp is invariant. Then, ξp
should satisfy a “twist” three cocycle equation, where
the “twist factor” is labeled as ωp. As shown in Ap-
pendix E, through some tedious calculations, we prove
that ωp satisfies the four cocycle condition, where time
reversal and/or reflection symmetries are treated as an-
tiunitary.

ωp(g1, g2, g3, g4)ωp(g1, g2, g3g4, g5)ωp(g1g2, g3, g4, g5) =
g1ωp(g2, g3, g4, g5)ωp(g1, g2g3, g4, g5)ωp(g1, g2, g3, g4g5)

(76)

and ωp are defined up to coboundary.

ωp(g1, g2, g3, g4) ∼

ωp(g1, g2, g3, g4)
χp(g1, g2, g3) · χp(g1, g2g3, g4) · g1χp(g2, g3, g4)

χp(g1g2, g3, g4) · χp(g1, g2, g3g4)
(77)

V. DISCUSSION

In summary, by using tensor networks, we develop a
general framework to (partially) classify bosonic SPT
phases in any dimension, as well as construct generic ten-
sor wavefunctions for each class. We find that for a gen-
eral symmetry group SG, which include both on site sym-
metries as well as lattice symmetries, the cohomological
bosonic SPT phases can be classified by Hd+1(SG,U(1)),
where d + 1 is the spacetime dimension. Here, time re-
versal and reflection symmetries should be treated as an-
tiunitary. An important by-product is a generic relation
between SET phases and SPT phases: SPT phases can
be obtained from SET phases by condensing anyons car-
rying integer quantum numbers.

This work leaves several interesting future directions.
On the conceptual side, it is known there are bosonic SPT
phases beyond group cohomology classification. Famous
examples include time reversal16,66,67 (or reflection21)
SPT phases in 3+1D, which has a Z2 × Z2 classifica-
tion. However, group cohomology only capture a Z2

class: H4(ZT2 , U(1)) = H4(ZP2 , U(1)) = Z2. The other
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Z2 is beyond our framework. It would be interesting to
understand whether our framework can be further gen-
eralized to capture this missing index.

It is also interesting to generalize our formulation to
construct generic wavefunctions for topological ordered
phases as well as SET phases. We first point out that it
is straightforward to “(dynamically) gauge” the on-site
unitary discrete symmetries on tensor networks68. Ten-
sor networks invariant under symmetry g satisfy the ten-
sor equation T = Wgg ◦ T. By gauging symmetry g, the
new tensor equation becomes T = Wg ◦ T, where Wg is
interpreted as gauge flux. Namely, for topological phases,
we require additional global IGG elements, which cannot
be decomposed into plaquette IGG elements. By gaug-
ing onsite unitary symmetries of SPT phases55, we are
able to write down generic wavefunctions for Dijkgraaf-
Witten type69 of topological ordered phases. Similarly,
some SET phases can be obtained by gauging part of the
symmetries28,29,70,71.

As shown in Ref.24 and 72, the SPT phases protected
by onsite symmetries can also be classified by MPO injec-
tive PEPS. It would be interesting to see the connection
between these two approaches.

As conjectured in Ref.73, all topological ordered phases

in 2+1D with gapped boundaries can be realized by ex-
actly solvable models – string-net models, which have
natural PEPS representations74–79, and are described
by tensor equations involving matrix product operators
rather than gauge transformations. Our formulation is
incapable to construct string-net models beyond the co-
homological classes, such as the double Ising theory. Can
we generalize our formulation to capture all string-net
models? In addition, it would be interesting to gener-
alize our formulation to fermionic cases using fermionic
tensor network80–86. We leave all these questions to fu-
ture work.

On the practical side, it would be interesting to per-
form variational numerical simulations based on the
symmetric tensor-network wavefunctions proposed here,
and to test their performance. In particular, efficient
gradient-based variational algorithms on tensor-network
wavefunctions have been proposed87, which are exactly
suitable to carry out these simulations.

We would like to thank Yuan-Ming Lu, Michael Her-
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FIG. 11. Symmetries and IGG in matrix product states.

Appendix A: SPT phases in 1+1D

In this part, we rederive the classification of 1D
SPT8,9,11,88 using the formulation we set in the main
text. In particular, it is clear that time reversal and
reflection symmetries act nontrivially on the two coho-
mology phase.

Consider an infinite MPS state with symmetry SG,
then we can express the symmetric condition for a local
tensor as

T = Wgg ◦ T (A1)

where T represents a tensor network before contraction,
g ∈ SG and Wg is the gauge transformation associated
with g.

Now, let us identify the IGG element. A single tensor
is invariant if we multiply a phase χ to its left leg and χ∗

to its right leg. Therefore, we at least have a U(1) IGG
for a generic MPS. In the following, we will focus on the
U(1) IGG.

Given the symmetry condition as well as the U(1) IGG,
we are able to list the tensor equation as following:

Wg1g1Wg2g2 = ω(g1, g2)Wg1g2g1g2 (A2)

where ω(g1, g2) is an IGG element, which acts
ω(g1, g2) (ω∗(g1, g2)) on the left (right) leg. Due to asso-
ciativity condition, we obtain the two cocycle condition
for ω as

ω(g1, g2)ω(g1g2, g3) = g1ω(g2, g3)ω(g1, g2g3) (A3)

where g1ω , g1·ω·g−11 . For onsite unitary g1, the action is
trivial. If g1 is some anti-unitary operator, such as time
reversal symmetry, g1ω = ω∗. For reflection symmetry
σ, it maps the right (left) leg to the left (right) leg, so
σω = ω∗.

Notice, the symmetry operation is defined up to an
IGG element. Namely, we have

T = Wgg ◦ T = ε(g)Wgg ◦ T (A4)

So, the equivalence condition for ω(g1, g2) is

ω ∼ ω · ε(g1g2)

ε(g1) g1ε(g2)
(A5)

In other words, ω is defined up to a coboundary.
In summary, the 1D symmetric phase is classified by
H2[SG,U(1)], where time reversal and reflection sym-
metries impose complex conjugation on the U(1) phase
factor.

Appendix B: The three cohomology classification
from tensor equations in 2+1D

First, we discuss commutation relations between the
IGG elements of plaquette p1 and p2 for later conve-
nience:

υp1p2 ≡ (λ1p1)−1(λ2p2)−1λ1p1λ
2
p2 (B1)

υp1p2 still belongs to IGG according to the definition.
Apparently, for the case where p1 ∩ p2 = ∅ or they share
only a common site, λ1p1 and λ2p2 commute. When p1 and
p2 share a common edge v, υp1p2 can only have nontrivial
action on v. However, there is no such kind of nontrivial
IGG, so λ1p1 and λ2p2 still commute. When p1 = p2 ≡ p,
υp ≡ υp1p2 can act nontrivially on legs of p. So υp belongs
to IGG of the plaquette p. To conclude, we have

(λ1p1)−1(λ2p2)−1λ1p1λ
2
p2 = λ′p1δp1p2 (B2)

As shown in the main text, λ’s satisfy the two cocycle
relation:

λ(g1, g2)λ(g1g2, g3) = Wg1g1λ(g2, g3)λ(g1, g2g3) (B3)

According to Eq.(29) and Eq.(B2), we can decompose
IGG elements as

λ(g1, g2)λ(g1g2, g3) =
∏
p

λp(g1, g2)λp(g1g2, g3)

Wg1g1λ(g2, g3)λ(g1, g2g3) =
∏
p

Wg1g1λp(g2, g3)λp(g1, g2g3)

(B4)

Further, due to the phase ambiguity in Eq.(29), we con-
clude

λp(g1, g2)λp(g1g2, g3) =

ωp(g1, g2, g3)Wg1g1λp(g2, g3)λp(g1, g2g3) (B5)

Now, we prove ωp(g, g
′, g′′) satisfies the 3-cocycle con-

dition. We implement two ways to calculate the expres-
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sion λp(g1, g2)λp(g1g2, g3)λp(g1g2g3, g4):

λp(g1, g2)λp(g1g2, g3)λp(g1g2g3, g4)

=ωp(g1, g2, g3)Wg1
g1λp(g2, g3)λp(g1, g2g3)λp(g1g2g3, g4)

=ωp(g1, g2, g3)Wg1
g1λp(g2, g3)ωp(g1, g2g3, g4)·

Wg1g1λp(g2g3, g4)λp(g1, g2g3g4)

=ωp(g1, g2, g3)ωp(g1, g2g3, g4) g1ωp(g2, g3, g4)·
Wg1g1Wg2g2λp(g3, g4)Wg1g1λp(g2, g3g4)λp(g1, g2g3g4)

(B6)

where we use Eq.(B5) to obtain the result. Notice that
in the last line, we use the fact that Wg always commutes
with ωp, so Wggωp = gωp. Using another way to calculate,
we get

λp(g1, g2)λp(g1g2, g3)λp(g1g2g3, g4)

=λp(g1, g2)ωp(g1g2, g3, g4)Wg1g2g1g2λp(g3, g4)λp(g1g2, g3g4)

=ωp(g1g2, g3, g4) λp(g1,g2)Wg1g2g1g2λp(g3, g4)λp(g1, g2)·
λp(g1g2, g3g4)

=ωp(g1g2, g3, g4)ωp(g1, g2, g3g4) λp(g1,g2)Wg1g2g1g2λp(g3, g4)·
Wg1g1λp(g2, g3g4)λ(g1, g2g3g4)

=ωp(g1g2, g3, g4)ωp(g1, g2, g3g4)Wg1
g1Wg2

g2λp(g3, g4)·
Wg1

g1λp(g2, g3g4)λ(g1, g2g3g4) (B7)

Comparing the above results, we conclude ωp satisfies
three cocycle equation:

ωp(g1, g2, g3)ωp(g1, g2g3, g4) g1ωp(g2, g3, g4)

= ωp(g1g2, g3, g4)ωp(g1, g2, g3g4) (B8)

The action of g on ωp follows a very simple rule: for

a leg i, we have (gωp)(i) = ω
s(g)
g−1(p)(g

−1(i)), where s(g)

is trivial (complex conjugate) for unitary (anti-unitary)
symmetry.

According to Eq.(29). We note that λp(g, g
′) is de-

fined up to a complex number. We can define λ′p(g, g
′) =

χp(g, g
′)λp(g, g

′). Then, we have

λ′p(g1, g2)λ′p(g1g2, g3) =

ω′p(g1, g2, g3)Wg1
g1λ′p(g2, g3)λ′p(g1, g2g3) (B9)

Thus, we can always tune ω to be some U(1) phase factor.
In the following, we will restrict ourselves for the case
where ω’s and χ’s are phase factors. Now, let us calculate
ω′p(g1, g2, g3):

λ′p(g1, g2)λ′p(g1g2, g3)

=χp(g1, g2)λp(g1, g2)χp(g1g2, g3)λp(g1g2, g3)

=χp(g1, g2)χp(g1g2, g3)ωp(g1, g2, g3)Wg1
g1λp(g2, g3)·

λp(g1, g2g3)

=
χp(g1, g2)χp(g1g2, g3)
g1χp(g2, g3)χp(g1, g2g3)

ωp(g1, g2, g3)Wg1
g1λ′p(g2, g3)·

λ′p(g1, g2g3) (B10)

where we use the fact that Wgχp = χp in the last line.
Comparing the above two equations, we conclude

ω′p(g1, g2, g3) = ωp(g1, g2, g3)
χp(g1, g2)χp(g1g2, g3)
g1χp(g2, g3)χp(g1, g2g3)

(B11)

It is straightforward to check that ω′p also satisfies three
cocycle condition in Eq.(36). In other words, the ωp is
well defined up 3-coboundary constructed by 2-cochain
χ. So, ωp are classified by 3-cohomology H3(SG,U(1)),
where the symmetry group SG may have nontrivial ac-
tion on coefficient U(1).

Notice that the physical wavefunction is invariant un-
der gauge transformation V as well as the IGG transfor-

mation W̃g = ε(g)Wg, where ε(g) ∈ IGG. If ωp classify
the PEPS wavefunctions, ωp should be invariant (up to
coboundary) under these two kinds of transformations.

For any gauge transformation V , Wg →
VWggV

−1g−1. Then it is straightforward to prove
that ωp is invariant.

Now, let us consider IGG transformation. For W̃g =
ε(g)Wg, we have

W̃g1g1W̃g2g2 = λ̃(g1, g2)W̃g1g2g1g2 (B12)

where λ̃(g1, g2) = ε(g1)Wg1g1ε(g2)λ(g1, g2)ε−1(g1g2).
Restrict to one plaquette, we calculate

λ̃p(g1, g2)λ̃p(g1g2, g3)εp(g1g2g3)

=εp(g1)Wg1
g1εp(g2)λp(g1, g2)Wg1g2

g1g2εp(g3)λp(g1g2, g3)

=εp(g1)Wg1g1εp(g2)Wg1g1Wg2g2εp(g3)λp(g1, g2)λp(g1g2, g3)

(B13)

where we use Eq.(B12) several times. In second line, we
have used the fact that λpεp = λεp as well as Eq.(31). On
the other hand,

W̃g1
g1̃λp(g2, g3)λ̃p(g1, g2g3)εp(g1g2g3)

=εp(g1)Wg1
g1(εp(g2)Wg2

g2εp(g3)λp(g2, g3)ε−1p (g2g3))εp(g1)·
Wg1

g1εp(g2, g3)λp(g1, g2g3)

=εp(g1)Wg1
g1εp(g2)Wg1

g1Wg2
g2εp(g3)Wg1

g1λp(g2, g3)λp(g1, g2g3)

(B14)

According to Eq.(35), we conclude that

λ̃p(g1, g2)λ̃p(g1g2, g3) =

ωp(g1, g2, g3) W̃g1
g1̃λp(g2, g3)λ̃p(g1, g2g3) (B15)

So, one obtains the same 3-cocycle for εp transformation.
We now make a general remark: our tensor construc-

tion for SPT phases in 2+1D is related to crossed module
extension known in the mathematical literature.

Let us first review the SPT phases in 1+1D with sym-
metry group SG, which are classified by different projec-
tive representations of SG, or equivalently, by different
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central extensions of SG:

1→ U(1)→ E → SG→ 1 (B16)

In the tensor network construction, the center U(1) is
mapped to the U(1) phase IGG, and symmetry actions on
all legs of the tensor network Wgg together with the U(1)
IGG form the extended group E. So, the construction of
1+1D SPT phases by MPS can be viewed as a realization
of the central extension.

A crossed module extension is an exact sequence:

1→ U(1)→ N
ϕ−→ E → SG→ 1 (B17)

with a left action of E on N , represented by n 7→ en,
such that ϕ(n)n′ = nn′n−1 as well as ϕ ( en) = eϕ(n)e−1,
for all n, n′ ∈ N and e ∈ E. It is well known89–93 that
the crossed module extensions of SG by U(1) are classi-
fied by H3(SG,U(1)), which is the same object classifies
the 2+1D SPT phases protected by SG. As in the 1+1D
case, our construction can be viewed as a realization of
a crossed module extension by tensor networks. Namely,
given a crossed module extension characterized by a three
cohomology [ω], we can write down tensor equations re-
alize this crossed module extension and construct generic
tensor wavefunctions for the SPT phase characterized by
[ω]. This fact also indicates that our tensor constructions
are able to capture all cohomological bosonic SPT phases
in 2+1D.

Now, let us describe the procedure to obtain tensor
equations from a crossed module extension. Given a
crossed module extension in Eq.(B17), one can decom-
pose it to two short exact sequences as following:

1→ U(1)→ N
φ−→M → 1

1→M
i−→ E → SG→ 1 (B18)

where M is identified as ϕ(N), and i : M ↪→ E is an
inclusion map. Apparently ϕ = i ◦ φ.

We can write down tensor equations to realize these
two short exact sequence. As shown in Eq.(31), symme-
try actions on all legs of tensor networks {Wgg|∀g ∈ SG}
form a projective representation with coefficient in group
{λ}, which we identify as M . In the anyon condensa-
tion context, M is the gauge group characterizing the
topological order before condensation. M together with
{Wgg|∀g} form the extended group E, which captures
the SET physics before anyon condensation. Accord-
ing to the assumption, ∀λ ∈ M can be decomposed
to plaquette IGG elements: λ =

∏
p λp. An element

n ∈ N is identified as a set of plaquette IGG ele-
ments: n = {λp|∀p}, which satisfies

∏
p λp = λ. Then,

N =
{
{λp|∀p}|

∏
p λp = λ ∈M

}
. And mapping φ is de-

fined as

φ : N 7→M,

φ(n) =
∏
p

λp (B19)

It is easy to see that the kernel of φ forms a U(1) group:{
{χp|∀p} |

∏
p χp = I

}
∼= U(1).

Now, let us consider the action of E on N . Set n =
{λp|∀p}, n′ =

{
λ′p|∀p

}
and e = λ(e)Wgg ∈ E, we define

the action as

ϕ(n)n′ ,
{
λλ′p|∀p

}
=
{
λp · λ′p · λ−1p |∀p

}
= n · n′ · n−1

ϕ( en) =
∏
p

λ(e)Wggλp = λ(e)Wggλ = e · ϕ(n) · e−1 (B20)

which indeed satisfies the crossed module condition. In
summary, from a crossed module extension, we are able
to construct tensor equations for SPT phases and vice
versa.

Appendix C: Examples for SPT phases with Z2 × ZT2

In this part, we write down examples for SPT phases
protected by Z2 × ZT2 symmetry on square lattice. We
label group elements as {I, g, T , gT }, where g = σx and
the time reversal acts as complex conjugation. For sim-
plicity, we assume translationally invariant tensors.

First, we have H3(Z2 × ZT2 , U(1)) = Z2 × Z2. The
tensor equations for these SPT phases are

W 2
g = λ(g, g)

WT TWT T = λ(T , T )

WgWT T = WT TWg

Wggλp = −λp (C1)

Here λ(g, g) and λ(T , T ) are IGG elements, which take
value in {I, λ}. So, we totally get Z2 × Z2 classification.

We list the results in the following.

1. λ(g, g) = λ(T , T ) = I. This case corresponds to
trivial phase.

2. λ(g, g) = λ and λ(T , T ) = I. This class can be
realized by D = 4 PEPS, where the local Hilbert
space for a single tensor is dD4 = 512 dimensional.

Elements of IGG are represented as

λ = σ0 ⊕ (−σ0)

λl = λu = σz ⊕ σz
λr = λd = σz ⊕ (−σz) (C2)

Symmetries are represented as

Wg(α) = Wg(β) = W−1g (γ) = W−1g (δ) = σx ⊕ iσy

WT (i) = σ0 ⊕ σ0 (C3)

The constrained sub-space is a 16 dimensional real
Hilbert space.

3. λ(g, g) = λ(T , T ) = λ. This class can be realized
by D = 4 PEPS, where the local Hilbert space for
a single tensor is dD4 = 512 dimensional.
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IGG elements are represented as

λ = σ0 ⊕ (−σ0)

λl = λu = σz ⊕ σz
λr = λd = σz ⊕ (−σz) (C4)

Symmetries are represented as

Wg(α) = Wg(β) = W−1g (γ) = W−1g (δ) = σx ⊕ iσy

WT (α) = WT (β) = W−1T (γ) = W−1T (δ) = σx ⊕ iσy

(C5)

The constrained sub-space is a 16 dimensional real
Hilbert space. Notice, this phase is related to the
previous case by relabelling gT as T .

4. λ(g, g) = I and λ(T , T ) = λ. This class can be
realized by D = 6 PEPS, where the local Hilbert
space for a single tensor is dD4 = 2592 dimensional.

IGG elements are

λ = σ0 ⊕ (−σ0 ⊗ σ0)

λl = λu = σz ⊕ (σz ⊗ σz)
λr = λd = σz ⊕ (−σz ⊗ σz) (C6)

Symmetries are represented as

Wg(i) = σx ⊕ (σx ⊗ σ0)

WT (α) = WT (β) = W−1T (γ) = W−1T (δ) = σx ⊕ (σ0 ⊗ iσy)

(C7)

The constrained sub-space is an 82 dimensional real
Hilbert space.

Appendix D: Examples on “weak indices”

In this part, we discuss weak SPT indices due to inter-
play of point group and translation on honeycomb lat-
tice. The lattice group is defined by group generators
T1, T2, C6, σ, as in Fig. 10(a). And the relation between
this generators are listed as following:

T−12 T−11 T2T1 = e

C−16 T−12 C6T1 = e

C−16 T−12 T1C6T2 = e

σ−1T−11 σT2 = e

σ−1T−12 σT1 = e

σC6σC6 = e

C6
6 = σ2 = T 2 = e (D1)

Consider group relation T−12 T−11 T2T1 = e, the corre-
sponding tensor equation takes the form

W−1T2
(T2(x, y, i))W−1T1

(T1T2(x, y, i))WT2(T1T2(x, y, i))·
WT1

(T−12 T1T2(x, y, i)) = χ12(x, y, i) (D2)

where i ∈ {a, b, c} labels bonds. And χ12(x, y, i) ,
χ12(x, y, u, i) denotes the IGG element action on leg i
of site (x, y, u). By tuning the phase ambiguity WTi

→
εTi
WTi

, we are able to set χ12 = 1. Further, we can
set WT1

= WT2
= I by gauge transformation V . Then,

the remaining gauge transformation V should be trans-
lational invariant: V (x, y, i) = V (i).

Now, let us add rotation symmetry C6. For relation
C−16 T−12 C6T1 = e, we have

W−1C6
(x, y, i)WC6

(x, y + 1, i) = χC6T1
(C−16 (x, y, i))

(D3)

where we use WTi = I. It is easy to see, by choosing
proper εC6 , and redefine WC6 → εC6WC6 , we can set
χC6T1 to be identity. Thus, WC6 are equal in the y direc-
tion:

WC6
(x, y + 1, i) = WC6

(x, y, i) = WC6
(x, 0, i) (D4)

The remaining εC6 should also be y-invariant: εC6(x, y+
1, i) = εC6(x, y, i). Further, as loops of phases, εC6 should
satisfy the Gauss law:

εC6
(x, y, a) · εC6

(x, y, b) · εC6
(x, y, c) = 1

ε∗C6
(x, y, a) · ε∗C6

(x− 1, y, b) · ε∗C6
(x, y − 1, c) = 1 (D5)

Since εC6(x, y − 1, c) = εC6(x, y, c), we conclude the re-
maining εC6(x, y, b) are also x-invariant. Then, we left
with the εC6 redundancy satisfying

εC6
(x, y, a/c) = εC6

(x, 0, a/c)

εC6
(x, y, b) = εC6

(b) (D6)

We consider another relation C−16 T−12 T1C6T2 = e, and
the tensor equation reads

W−1C6
(x, y, i)WC6

(x− 1, y + 1, i) = χC6T2
(C−16 (x, y, i))

(D7)

Since WC6 is y independent, χC6T2(C−16 (x, y, i)) =
χC6T2(C−16 (x, 0, i)). Under εC6 transformation,

χC6T2
(C−16 (x, 0, i))→

χC6T2
(C−16 (x, 0, i)) · εC6

(x, 0, i) · ε∗C6
(x− 1, 0, i) (D8)

We can tune εC6
(x, 0, c) to make χC6T2

(C−16 (x, y, c)) = 1.
The remaining εC6

(x, y, i) = εC6
(i), which do not affect

χC6T1
.

Since χT2C6
are also loops of phases satisfying Gauss

law, χT2C6
(x, y, a) = χ∗T2C6

(x, y, b) ≡ χC6
. Then, we

have

WC6
(x, y, a) = χxC6

WC6
(a)

WC6
(x, y, b) = (χ∗C6

)xWC6
(b)

WC6
(x, y, c) = WC6

(c) (D9)
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For relation C6
6 = e, we have

χ4x+2y−3
C6

·WC6(b) · [W−1C6
(c)]t ·WC6(a) · [W−1C6

(b)]t·
WC6

(c) · [W−1C6
(a)]t

=χC6
6
(x, y, a) = χ∗C6

6
(−x+ 1,−y + 1, a)

=χC6
6
(−x− y + 1, x, u, b) = χ∗C6

6
(x+ y − 1,−x+ 1, u, b)

=χC6
6
(y,−x− y + 1, u, c) = χ∗C6

6
(−y + 1, x+ y − 1, u, c)

(D10)

where we use Eq.(D9) to get the above equation. Then,
we conclude

χC6
6
(x, y, u, a) = χ4x+2y−3

C6
· ξC6

χC6
6
(x, y, u, b) = χ−2x+2y−1

C6
· ξC6

χC6
6
(x, y, u, c) = χ−2x+4y+1

C6
· ξC6

(D11)

where ξC6
, WC6

(b) · [W−1C6
(c)]t · WC6

(a) · [W−1C6
(b)]t ·

WC6(c) · [W−1C6
(a)]t = ±1. Using Gauss law on site

(x, y, u/v), we obtain

χ3
C6

= ξ (D12)

Under gauge transformation V (i),

WC6
(i)→ V (i) ·WC6

(i) · V t(C−16 (i)) (D13)

So, we can make

WC6
(x, y, a) = χxC6

WC6(x, y, a) = (χ∗C6
)x

WC6(x, y, c) = WC6(c) = χ3
C6
W t
C6

(c) (D14)

The remaining V satisfies V (a) = V (c) = [V −1(b)]t.
Now, let us consider reflection symmetry σ. For rela-

tion σ−1T−12 σT1 = e, we have

W−1σ (x, y, i)Wσ(x, y + 1, i) = χσT1
(σ−1(x, y, i)) (D15)

Using εσ ambiguity, χσT1
can be tuned to identity. Thus,

Wσ is y independent. And the remaining εσ satisfies

εσ(x, y, a/c) = εσ(x, 0, a/c)

εσ(x, y, b) = εσ(b) (D16)

For relation σ−1T−11 σT2 = e, we get

W−1σ (x, 0, i)Wσ(x+ 1, 0, i) = χσT2
(σ−1(x, y, i)) (D17)

Then, by tuning εσ, we are able to set

χσT2
(σ−1(x, y, a)) = χ∗σT2

(σ−1(x, y, b)) ≡ χσ
χσT2

(σ−1(x, y, c)) = 1 (D18)

with remaining εσ(x, y, i) = εσ(i). And for Wσ, we get

Wσ(x, y, a) = χxσWσ(a)

Wσ(x, y, b) = (χ∗σ)xWσ(b)

Wσ(x, y, c) = Wσ(c) (D19)

Consider relation σ2 = e, we have

Wσ(x, y, i)Wσ(σ(x, y, i)) = χσ2(x, y, i) = χσ2(σ(x, y, i))
(D20)

By setting (x, y) = (0, 0), we have χσ2(b) = χσ2(c). Fur-
ther we can set χσ2(a) = χσ2(b) = χσ2(c) = 1 by using εσ
ambiguity. Then, we have the remaining εσ(x, y, a) = 1
and εσ(x, y, b) · εσ(x, y, c) = 1.

Inserting Eq.(D19) to Eq.(D20), we get

χσ2(x, y, a) = χx+yσ

χσ2(x, y, b) = (χ∗σ)x

χσ2(x, y, c) = (χ∗σ)y (D21)

Use Gauss law of χσ2 :

χ∗σ2(x, y, a) · χ∗σ2(x− 1, y, b) · χ∗σ2(x, y − 1, c) = 1
(D22)

we conclude χσ = ±1.
For relation σC6σC6 = e, we have

Wσ(x, y, s, i)WC6(σ(x, y, s, i))Wσ(σC6(x, y, s, i))·
WC6

(C6(x, y, i)) = χσC6
(x, y, i) (D23)

Combine with Eq.(D14) and Eq.(D19), we get

χy−1σ χyC6
·Wσ(a·)[W−1σ (b)]t[W−1C6

(c)]t = χσC6
(x, y, a)

=χ∗σC6
(x+ y + 1,−y, a) (D24)

and

χy+1
σ χyC6

Wσ(b)WC6
(c)[W−1σ (a)]t = χσC6

(x, y, b)

=χ∗σC6
(x+ y + 1,−y, a) (D25)

as well as

χ−2yC6
[Wσ(c)][W−1σ (c)]t = χσC6

(x, y, c) = χ∗σC6
(x+ y,−y, c)

(D26)

Then, using Gauss law for χσC6(x, y, i), we obtain

χ2
C6

= 1

Wσ(c) = W t
σ(c) (D27)

So, we conclude χσC6(x, y, c) = 1. By using remaining εσ
ambiguity, we can set χσC6(a) = χσC6(b). Namely

Wσ(a)[W−1σ (b)]t[W−1C6
(c)]t = 1 (D28)

By using V ambiguity, we can set Wσ(c) = Wσ(b) = I.
We are left with overall gauge transformation V , with
V · V t = I.

Now, let us summarize the result. For a spin system
in honeycomb lattice, we construct four types of phases
labeled by two Z2 indices χC6 and χσ. These phases
can be viewed as “weak SPT” for point group, which are
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caused by the interplay between translational symme-
tries together with point group symmetries. By choos-
ing gauge, the symmetry transformation rules on internal
legs are:

WT1(x, y, i) = WT2(x, y, i) = 1

WC6
(x, y, a) = WC6

(x, y, b) = χxC6

WC6(x, y, c) = WC6(c) = χC6W
t
C6

(c)

Wσ(x, y, a) = χxσWσ(a) = χxσχC6
W t
C6

Wσ(x, y, b) = χxσ
Wσ(x, y, c) = I (D29)

To see the relation to the cohomology explicitly, let us
consider ω(T2, C6, C6). According to Eq.(35), we get

λp(T2, C6)λp(T2C6, T1)

=ω(T2, C6, T1)WT2
T2λp(C6, T1)λp(T2, C6T1) (D30)

To get plaquette IGG elements λp’s, we need to figure out
the global IGG elements λ’s before decomposition first.
We set the convention that the group elements is written
as g = T s11 T s22 Cs36 σ

s4 , where s1, s2 ∈ Z, s3 ∈ Z6 and
s4 ∈ Z2. The induced action on tensor networks (both
physical and internal legs) is defined as

Wg = (WT1T1)s1(WT2T2)s2(WC6C6)s3(Wσσ)s4 (D31)

Then, using Eq.D29, we can calculate λ’s related to
ω(T2, C6, C6) as

λ(T2, C6) = λ(T2, C6T1) = I

λ(T2C6, T1)(x, y, a/b) = λ(C6, T1)(x, y, a/b) = χC6

λ(T2C6, T1)(x, y, c) = λ(C6, T1)(x, y, c) = I (D32)

We draw the configuration of λ(T2C6, T1) in Fig 12. It is
easy to verify the “two cocycle” condition for λ’s,

λ(T2, C6)λ(T2C6, T1) = WT2
T2λ(C6, T1)λ(T2, C6T1)

(D33)

where we use the fact that the action of T2 on λ(C6, T1) is
trivial, as shown in Fig. 12(a). However, when we decom-
pose global IGG elements λ’s to plaquette IGG elements
λp’s, λp(C6, T1) is no longer invariant under T2 trans-
formation if χC6

is nontrivial, as shown in Fig. 12(b).
Instead, we get WT2

T2λp(C6, T1) = −χC6
λp(C6, T1).

Namely, ω(T2, C6, T1) = χC6
.

We can perform similar calculation for reflection,
where we get ω(T2, σ, T1) = χσ. Thus, ω belongs to some
nontrivial cohomology class for nontrivial χC6 and/or χσ.

Appendix E: The four cohomology classification
from tensor equations in 3+1D

In this part, we formulate the framework for tensor
construction of SPT phases in 3+1D.

FIG. 12. (a) One configuration of “global” IGG element
λ(T2C6, T1), where the dashed blue line means χC6 action.
It is invariant under translation symmetries. (b) The de-
composition into multiplication of plaquette IGG element
λp(T2C6, T1). The plaquette IGG element is no longer trans-
lationally invariant if χC6 = −1.

If an infinity 3D tensor network is symmetric under
group SG, we have

Wgg ◦ T = T,∀g ∈ SG (E1)

where Wg is the gauge transformation associated to
group element g ∈ SG.

Now, let us turn to the IGG of 3D tensor networks.
We consider the case where all elements of the IGG can
be decomposed to some cubic IGG elements λc’s:

λ =
∏
c

λc (E2)

Here λc only acts nontrivially on legs belonging to cubic
c. In general, λc’s belonging to different cubic c do not
commute, so we should keep track of the multiplication
order.

For later convenience, we also introduce the plaquette
IGG {ξp}, where ξp acts nontrivially only on legs belong-
ing to plaquette p.

Let us discuss commutation relations between differ-
ent elements of IGG. For cubic IGG elements λc’s, we
consider the expression ςcc′ = (λc)

−1(λ′c′)
−1λcλ

′
c′ . Ac-

cording to the definition, ςcc′ belongs to IGG.

1. When c∩ c′ = ∅ or they only share a common site,
ςcc′ = I.
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2. When c ∩ c′ = v, where v is the common edge,
ςv ≡ ςcc′ only has nontrivial action on legs of v.
Then, ςv = I in this case.

3. When c∩ c′ = p, where p is the common plaquette,
according to the definition, we conclude ςcc′ is a
plaquette IGG element.

4. When c = c′, then ςcc′ ∈ {λc}.

To summarize, we have

λ−1c (λ′c′)
−1λcλ

′
c′ =


ξ̃p c ∩ c′ = p

λ̃c c ≡ c′

I otherwise

(E3)

For the plaquette IGG, similar to the 2D case, we have

(ξp)
−1(ξ′p′)

−1ξpξ
′
p′ = ξ̃pδpp′ (E4)

It is also straightforward to see the commutator between
a plaquette IGG element and a cubic IGG element

λ−1c ξ−1p λcξp =

{
I p 6∈ c
ξ̃p p ∈ c

(E5)

Now, we define a special kind of cubic IGG, which
are formed by multiplication of plaquette IGG elements
ηc ≡

∏
p∈c ξ

c
p. For a set of {ηc}, if we further require

ξcp(i) = (ξc
′

p (i))−1 for cubic c and c′ sharing the same
plaquette p (i labels a leg belonging to p), we have∏

c

ηc = I (E6)

We assume it is the only way to decompose identity to
cubic IGG.

Notice that ηc is defined as multiplication of plaquette
IGG elements ξcp, so there are phase ambiguities when we

decompose ηc to ξcp,

ηc =
∏
p∈c

ξcp =
∏
p∈c

χcpξ
c
p (E7)

As we will show later, the phase ambiguities are essential
ingredients to get the four cohomology classification of
3D SPT phases.

Let us define Λc =
∏
c′≤c λc′ . Then, given λ, due to

the ηc ambiguity, we get

λ =
∏
c

λc =
∏
c

Λ−1c−1 · Λc

=
∏
c

Λ−1c−1 · ηc · Λc (E8)

According to Eq.(E3) and Eq.(E5), we conclude

λ−1c (Λ′c′)
−1λcΛ

′
c′ =

{
λ̃c c ≤ c′

η̃c c > c′
(E9)

where λ̃c belongs to cubic IGG, and η̃c is the special
IGG element formed by multiplication of plaquette IGG
elements.

Now, let us consider the symmetry equation on tensor
networks. According to the definition of IGG, we have

Wg1g1Wg2g2 = λ(g1, g2)Wg1,g2g1g2,∀g1, g2 ∈ SG (E10)

where λ’s belong to global IGG, which can always be
decomposed into cubic IGG elements due to our assump-
tion.

From associativity

(Wg1Wg2)Wg3 = Wg1(Wg2Wg3) (E11)

we get

λ(g1, g2)λ(g1g2, g3) = Wg1
g1λ(g2, g3)λ(g1, g2g3) (E12)

We then write the above equation in terms of Λc’s,

∏
c

[Λc−1(g1, g2)Λc−1(g1g2, g3)]−1 · [Λc(g1, g2)Λc(g1g2, g3)]

=
∏
c

[Wg1g1Λc−1(g2, g3)Λc−1(g1, g2g3)]−1 · [Wg1g1Λc(g2, g3)Λc(g1, g2g3)] (E13)

According to Eq.(E8), we conclude that

[Λc−1(g1, g2)Λc−1(g1g2, g3)]−1 · [Λc(g1, g2)Λc(g1g2, g3)]

=[Wg1
g1Λc−1(g2, g3)Λc−1(g1, g2g3)]−1 · [ηc(g1, g2, g3)] · [Wg1

g1Λc(g2, g3)Λc(g1, g2g3)] (E14)
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Further, we get

Λc(g1, g2)Λc(g1g2, g3) =
∏
c′≤c

[Λc′−1(g1, g2)Λc′−1(g1g2, g3)]−1 · [Λc′(g1, g2)Λc′(g1g2, g3)]

=
∏
c′≤c

[Wg1g1Λc′−1(g2, g3)Λc′−1(g1, g2g3)]−1 · ηc′(g1, g2, g3) · [Wg1g1Λc′(g2, g3)Λc′(g1, g2g3)]

= Hc(g1, g2, g3) · Wg1g1Λc(g2, g3)Λc(g1, g2g3) (E15)

where Hc ,
∏
c′≤c ηc′ . So, we have

Λc(g1, g2)Λc(g1g2, g3) = Hc(g1, g2, g3) · Wg1
g1Λc(g2, g3)Λc(g1, g2g3) (E16)

Now, let us determine the condition for Hc. Similar to 2D case, we calculate

Λc(g1, g2)Λc(g1g2, g3)Λc(g1g2g3, g4)

=Hc(g1, g2, g3) · Wg1
g1Λc(g2, g3)Λc(g1, g2g3)Λc(g1g2g3, g4)

=Hc(g1, g2, g3) · Wg1
g1Λc(g2, g3) ·Hc(g1, g2g3, g4) · Wg1

g1Λc(g2g3, g4)Λc(g1, g2g3g4)

=Hc(g1, g2, g3) ·
[
Wg1

g1Λc(g2, g3) ◦Hc(g1, g2g3, g4)
]
· Wg1

g1Hc(g2, g3, g4)·
Wg1

g1Wg2
g2Λc(g3, g4)Wg1

g1Λc(g2, g3g4)Λc(g1, g2g3g4) (E17)

where we define a ◦ b , a · b · a−1. We calculate the above equation in another way as

Λc(g1, g2)Λc(g1g2, g3)Λc(g1g2g3, g4)

=Λc(g1, g2)Hc(g1g2, g3, g4)Wg1g2g1g2Λc(g3, g4)Λc(g1g2, g3g4)

= [Λc(g1, g2) ◦Hc(g1g2, g3, g4)] ·
[
Λc(g1, g2)Wg1g2g1g2 ◦ Λc(g3, g4)

]
·Hc(g1, g2, g3g4) · Wg1g1Λc(g2, g3g4) · Λc(g1, g2g3g4)

= [Λc(g1, g2) ◦Hc(g1g2, g3, g4)] · H̃c(g1, g2, g3, g4) ·
[
Wg1

g1Wg2
g2Λc(g3, g4) ◦Hc(g1, g2, g3g4)

]
·

Wg1
g1Wg2

g2Λc(g3, g4)Wg1
g1Λc(g2, g3g4)Λc(g1, g2g3g4) (E18)

In the last line, we use the following relation:

Λc(g1, g2)Wg1g2g1g2 ◦ Λc(g3, g4)

=Λc(g1, g2)V −1c+1(g1, g2)Λ−1c (g1, g2) ◦ Wg1
g1Wg2

g2Λc(g3, g4)

=H̃c(g1, g2, g3, g4) · Wg1
g1Wg2

g2Λc(g3, g4) (E19)

where we define Vc ,
∏
c′≥c λc′ , so λ = Λc · Vc+1.

Comparing Eq.(E17) and Eq.(E18), we conclude

Hc(g1, g2, g3) ·
[
Wg1

g1Λc(g2, g3) ◦Hc(g1, g2g3, g4)
]
· Wg1

g1Hc(g2, g3, g4)

= [Λc(g1, g2) ◦Hc(g1g2, g3, g4)] · H̃c(g1, g2, g3, g4) ·
[
Wg1

g1Wg2
g2Λc(g3, g4) ◦Hc(g1, g2, g3g4)

]
(E20)

Notice, Hc can be expressed as Hc =
∏
p ξp, where p takes value in

(⋃
c′≤c c

′
)
∩
(⋃

c′′>c c
′′). When decomposing

Hc, there is an associated phase ambiguity χp(i), where χp(i) = χ∗p′(i) if p and p′ share the same leg i. We apply this

observation to Eq.(E20) and choose p = c0 ∩ c1, where c0 ≤ c and c1 > c, then we get

ω−1p (g1, g2, g3, g4) · ξp(g1, g2, g3) ·
[
Wg1g1Λc(g2, g3) ◦ ξp(g1, g2g3, g4)

]
· Wg1g1ξp(g2, g3, g4)

= [Λc(g1, g2) ◦ ξp(g1g2, g3, g4)] · ξ̃p(g1, g2, g3, g4) ·
[
Wg1

g1Wg2
g2Λc(g3, g4) ◦ ξp(g1, g2, g3g4)

]
(E21)

Further, we get Λc ◦ ξp = λc0 ◦ ξp. And there is a canonical choice for ξ̃p(g1, g2, g3, g4), which reads

ξ̃p(g1, g2, g3, g4) = λc0 (g1,g2)λ−1c1 (g1, g2) · Wg1g1Wg2g2λc0(g3, g4) · λc0 (g1,g2)λc1(g1, g2) · Wg1
g1Wg2

g2λ−1c0 (g3, g4) (E22)
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So the equation becomes

ω−1p (g1, g2, g3, g4) · ξp(g1, g2, g3) ·
[
Wg1

g1λc0(g2, g3) ◦ ξp(g1, g2g3, g4)
]
· Wg1

g1ξp(g2, g3, g4)

= [λc0(g1, g2) ◦ ξp(g1g2, g3, g4)] · ξ̃p(g1, g2, g3, g4) ·
[
Wg1

g1Wg2
g2λc0(g3, g4) ◦ ξp(g1, g2, g3g4)

]
= [λc0(g1, g2) ◦ ξp(g1g2, g3, g4)] ·

[
λc0

(g1,g2)Wg1g2
g1g2λc0(g3, g4) ◦ ξp(g1, g2, g3g4)

]
· ξ̃p(g1, g2, g3, g4)

(E23)

Further, we have

ξ̃p(g1, g2, g3, g4) · ξp =
[
λc0

(g1,g2)Wg1g2
g1g2λc0(g3, g4)Wg1

g1Wg2
g2λ−1c0 (g3, g4) ◦ ξp

]
· ξ̃p(g1, g2, g3, g4)

ξp · ξ̃p(g1, g2, g3, g4) = ξ̃p(g1, g2, g3, g4) ·
[
Wg1

g1Wg2
g2λc0(g3, g4) λc0

(g1,g2)Wg1g2
g1g2λc0(g3, g4)−1 ◦ ξp

]
(E24)

where we use

Wg1
g1Wg2

g2ξp = λ(g1,g2)Wg1g2
g1g2ξp = λc0

(g1,g2)λc1
(g1,g2)Wg1g2

g1g2ξp (E25)

Let us calculate the following expression.

[ξ(g1, g2, g3)] ·
[
Wg1g1λ0(g2, g3) ◦ ξ(g1, g2g3, g4)

]
·
[
Wg1

g1ξ(g2, g3, g4)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4)Wg1g1λ0(g2, g3g4)◦

ξ(g1, g2g3g4, g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4) ◦ Wg1g1ξ(g2, g3g4, g5)

]
·
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
=ω(g1, g2, g3, g4)ω(g1, g2, g3g4, g5) · [λ0(g1, g2) ◦ ξ(g1g2, g3, g4)] · [ξ̃(g1, g2, g3, g4)]·[

Wg1
g1Wg2

g2λ0(g3, g4)λ0(g1, g2) ◦ ξ(g1g2, g3g4, g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4) λ0(g1,g2)Wg1g2

g1g2λ0(g3g4, g5) ◦ ξ(g1, g2, g3g4g5)
]
·[

Wg1
g1Wg2

g2λ0(g3, g4) ◦ ξ̃(g1, g2, g3g4, g5)
]
·
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
=ω(g1, g2, g3, g4)ω(g1, g2, g3g4, g5) · [λ0(g1, g2) ◦ ξ(g1g2, g3, g4)] ·

[
λ0(g1, g2)Wg1g2

g1g2λ0(g3, g4) ◦ ξ(g1g2, g3g4, g5)
]
·[

λ0(g1,g2)Wg1g2
g1g2(λ0(g3, g4)λ0(g3g4, g5)) ◦ ξ(g1, g2, g3g4g5)

]
· [ξ̃(g1, g2, g3, g4)] ·

[
Wg1

g1Wg2
g2λ0(g3, g4) ◦ ξ̃(g1, g2, g3g4, g5)

]
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
=ω(g1, g2, g3, g4)ω(g1, g2, g3g4, g5) · [λ0(g1, g2) ◦ ξ(g1g2, g3, g4)] ·

[
λ0(g1, g2)Wg1g2

g1g2λ0(g3, g4) ◦ ξ(g1g2, g3g4, g5)
]
·

[λ0(g1, g2)Wg1g2g1g2 ◦ ξ(g3, g4, g5)] ·
[
λ0(g1,g2)Wg1g2

g1g2
(
Wg3

g3λ0(g4, g5)λ0(g3, g4g5)
)
◦ ξ(g1, g2, g3g4g5)

]
·[

λ0(g1, g2)Wg1g2g1g2 ◦ ξ−1(g3, g4, g5)
]
· [ξ̃(g1, g2, g3, g4)] ·

[
Wg1

g1Wg2
g2λ0(g3, g4) ◦ ξ̃(g1, g2, g3g4, g5)

]
·[

Wg1
g1Wg2

g2ξ(g3, g4, g5)
]

=ω(g1, g2, g3, g4)ω(g1, g2, g3g4, g5)ω(g1g2, g3, g4, g5) · [λ0(g1, g2)λ0(g1g2, g3) ◦ ξ(g1g2g3, g4, g5)] ·[
λ0(g1, g2) λ0(g1g2,g3)Wg1g2g3

g1g2g3λ(g4, g5) ◦ ξ(g1g2, g3, g4g5)
]
·
[
λ0(g1,g2)λ0(g1g2,g3)Wg1g2g3

g1g2g3λ0(g4, g5)·

λ0(g1,g2)Wg1g2
g1g2λ0(g3, g4g5) ◦ ξ(g1, g2, g3g4g5)

]
·
[
λ0(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λ0(g1, g2)Wg1g2g1g2 ◦ ξ−1(g3, g4, g5)

]
·

[ξ̃(g1, g2, g3, g4)] ·
[
Wg1

g1Wg2
g2λ0(g3, g4) ◦ ξ̃(g1, g2, g3g4, g5)

]
·
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
(E26)
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We use another way to calculate the above expression in the following.

[ξ(g1, g2, g3)] ·
[
Wg1

g1λ0(g2, g3) ◦ ξ(g1, g2g3, g4)
]
·
[
Wg1

g1ξ(g2, g3, g4)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4)Wg1

g1λ0(g2, g3g4)◦
ξ(g1, g2g3g4, g5)

]
·
[
Wg1

g1Wg2
g2λ0(g3, g4) ◦ Wg1

g1ξ(g2, g3g4, g5)
]
·
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
= [ξ(g1, g2, g3)] ·

[
Wg1

g1λ0(g2, g3) ◦ ξ(g1, g2g3, g4)
]
·
[
Wg1

g1λ0(g2, g3)Wg1g1λ0(g2g3, g4) ◦ ξ(g1, g2g3g4, g5)
]
·[

Wg1g1ξ(g2, g3, g4)
]
·
[
Wg1g1

Wg2g2λ0(g3, g4) ◦ ξ(g2, g3g4, g5)
]
·
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
= g1ω(g2, g3, g4, g5) · [ξ(g1, g2, g3)] ·

[
Wg1

g1λ0(g2, g3) ◦ ξ(g1, g2g3, g4)
]
·
[
Wg1

g1λ0(g2, g3)Wg1g1λ0(g2g3, g4) ◦ ξ(g1, g2g3g4, g5)
]
·[

Wg1g1λ0(g2, g3) ◦ Wg1g1ξ(g2g3, g4, g5)
]
·
[
Wg1g1

λ0(g2,g3)Wg2g3g2g3λ0(g4, g5) ◦ ξ(g2, g3, g4g5)
]
·
[
Wg1g1ξ̃p(g2, g3, g4, g5)

]
= g1ω(g2, g3, g4, g5)ω(g1, g2g3, g4, g5) · [ξ(g1, g2, g3)] ·

[
Wg1g1λ0(g2, g3)λ0(g1, g2g3) ◦ ξ(g1g2g3, g4, g5)

]
·[

Wg1g1λ0(g2, g3) λ0(g1,g2g3)Wg1g2g3g1g2g3λ0(g4, g5) ◦ ξ(g1, g2g3, g4g5)
]
·
[
Wg1g1λ0(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)

]
·[

Wg1g1λ0(g2, g3)Wg1g1Wg2g3g2g3λ0(g4, g5)Wg1g1λ−10 (g2, g3) ◦ Wg1g1ξ(g2, g3, g4g5)
]
·
[
Wg1g1ξ̃p(g2, g3, g4, g5)

]

= g1ω(g2, g3, g4, g5)ω(g1, g2g3, g4, g5) · [λ0(g1, g2)λ0(g1g2, g3) ◦ ξ(g1g2g3, g4, g5)] ·
{
λ0(g1,g2)λ0(g1g2,g3)Wg1g2g3g1g2g3λ0(g4, g5)◦

[ξ(g1, g2, g3)] ·
[
Wg1g1λ0(g2, g3) ◦ ξ(g1, g2g3, g4g5)

]
·
[
Wg1g1ξ(g2, g3, g4g5)

]
·
[
ξ−1(g1, g2, g3)

] }
· [ξ(g1, g2, g3)] ·[

Wg1g1λ0(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)
]
·
[
Wg1g1ξ̃p(g2, g3, g4, g5)

]
= g1ω(g2, g3, g4, g5)ω(g1, g2g3, g4, g5)ω(g1, g2, g3, g4g5) · [λ0(g1, g2)λ0(g1g2, g3) ◦ ξ(g1g2g3, g4, g5)] ·[

λ0(g1, g2) λ0(g1g2,g3)Wg1g2g3g1g2g3λ0(g4, g5) ◦ ξ(g1g2, g3, g4g5)
]
·[

λ0(g1,g2)λ0(g1g2,g3)Wg1g2g3g1g2g3λ0(g4, g5) λ0(g1,g2)Wg1g2g1g2λ0(g3, g4g5) ◦ ξ(g1, g2, g3g4g5)
]
· [ξ(g1, g2, g3)] ·[

Wg1g1λ0(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)
]
·
[
Wg1g1ξ̃p(g2, g3, g4, g5)

]
·
[
Wg1g1Wg2g2Wg3g3λ0(g4, g5) ◦ ξ−1(g1, g2, g3)

]
·[

Wg1g1Wg2g2Wg3g3λ0(g4, g5) ◦ ξ̃(g1, g2, g3, g4g5)
]

(E27)

Next, let us prove the following equation:[
λ0(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λ0(g1, g2)Wg1g2g1g2 ◦ ξ−1(g3, g4, g5)

]
· [ξ̃(g1, g2, g3, g4)]·[

Wg1
g1Wg2

g2λ0(g3, g4) ◦ ξ̃(g1, g2, g3g4, g5)
]
·
[
Wg1

g1Wg2
g2ξ(g3, g4, g5)

]
= [ξ(g1, g2, g3)] ·

[
Wg1

g1λ0(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)
]
·
[
Wg1

g1ξ̃p(g2, g3, g4, g5)
]
·
[
Wg1

g1Wg2
g2Wg3

g3λ0(g4, g5) ◦ ξ−1(g1, g2, g3)
]
·[

Wg1
g1Wg2

g2Wg3
g3λ0(g4, g5) ◦ ξ̃(g1, g2, g3, g4g5)

]
(E28)

Before that, let us mention some useful relations. First, we have

λc0λc1λc2 = λc1λc0λc2 , if c0 6= c1 6= c2 (E29)

Then, we conclude

ξ̃(g1, g2, g3, g4) =
[
λ0(g1,g2)λ−11 (g1, g2) ◦ Wg1

g1Wg2
g2λ0(g3, g4)

]
·
[
Wg1

g1Wg2
g2λ−1c0 (g3, g4)

]
=
[
λ0(g1,g2)λ−11 (g1, g2)λ(g1, g2) ◦ Wg1g2

g1g2λ0(g3, g4)
]
·
[
Wg1

g1Wg2
g2λ−1c0 (g3, g4)

]
=
[
λ/c1

(g1,g2)Wg1g2
g1g2λ0(g3, g4)

]
·
[
Wg1

g1Wg2
g2λ−10 (g3, g4)

]
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where λ/c1 , Λc1−1Vc1+1.

In order to proceed, we consider the following relation according to Eq.(E14):[
Λ−1c0−1(g1g2, g3) ◦ λ0(g1, g2)

]
· [λ0(g1g2, g3)]

=
[(

Wg1
g1Λc0−1(g2, g3)Λc0−1(g1, g2g3)

)−1 ◦ η0(g1, g2, g3)
]
·
[
Λ−1c0−1(g1, g2g3) ◦ Wg1

g1λ0(g2, g3)
]
◦ [λ0(g1, g2g3)] (E30)

According to the commutation relation Eq.(E3), Eq.(E4) and Eq.(E5), we conclude

λ0(g1, g2)λ0(g1g2, g3) = η′0(g1, g2, g3)Wg1
g1λ0(g2, g3)λ0(g1, g2g3) (E31)

where

η′0(g1, g2, g3) =

 ∏
p∈{c′<c0}∩c0

ξ′p(g1, g2, g3)

 ·
 ∏
p∈{c′>c0}∩c0

ξp(g1, g2, g3)

 (E32)

where the prime label is due to nontrivial commutation relation.
Further, we have

λ/c1(g1, g2)λ/c1(g1g2, g3) ◦ λ0

=

(Λc0−1(g1, g2) ◦ λc0(g1, g2))
(
λ/c0/c1(g1, g2)Λc0−1(g1g2, g3) ◦ λ0(g1g2, g3)

) ∏
c6=c0,c1

λc(g1, g2)λc(g1g2, g3)

 ◦ λ0


=

η′′c0(g1, g2, g3)Wg1g1λc0(g2, g3)λc0(g1, g2g3)

η′c(g1, g2, g3)
∏

c 6=c0,c1

Wg1g1λc(g2, g3)λc(g1, g2g3)

 ◦ λ0


=ξc0∩c1(g1, g2, g3)Wg1
g1λ/c1(g2, g3)λ/c1(g1, g2g3) ◦ λ0 (E33)

In the second line, we use Eq.(E29). In the third line, we have

η′′c0(g1, g2, g3) = ξc0∩c1(g1, g2, g3) ·
∏

p∈c0∩{c6=c1}

ξ′′c0∩c(g1, g2, g3) (E34)

The last line is from the observation that λ/c1(g1, g2)λ/c1(g1g2, g3) = ηc1
Wg1

g1λ/c1(g2, g3)λ/c1(g1, g2g3) for some ηc1 . And

only ξc0∩c1 has nontrivial action on some λ0. This plaquette IGG element should equal to ξ(g1, g2, g3) up to some
phase factor, due to the above derivation.

Now let us calculate the following expression[
λ/c1(g1, g2)λ/c1(g1g2, g3)Wg1g2g3g1g2g3 ◦ λ0(g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ λ0(g3, g4g5)

]
=
[
λ/c1(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2Wg3g3 ◦ λ0(g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ λ0(g3, g4g5)

]
=
[
λ/c1(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ (η′0)−1(g3, g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ λ0(g3, g4)

]
·[

λ/c1(g1, g2)Wg1g2g1g2 ◦ λ0(g3g4, g5)
]

=
[
λ/c1(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ (η′0)−1(g3, g4, g5)

]
·
[
ξ̃(g1, g2, g3, g4)

]
· [Wg1g1Wg2g2 ◦ λ0(g3, g4)] ·[

ξ̃(g1, g2, g3g4, g5)
]
·
[
Wg1g1Wg2g2λ0(g3g4, g5)

]
=
[
λ/c1(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ (η′0)−1(g3, g4, g5)

]
·
[
ξ̃(g1, g2, g3, g4)

]
·
[
Wg1g1Wg2g2λ0(g3, g4)◦

ξ̃(g1, g2, g3g4, g5)
]
· [Wg1g1Wg2g2 ◦ η′0(g3, g4, g5)] ·

[
Wg1

g1Wg2
g2Wg3

g3λ0(g4, g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4g5)

]
=
[
λc0(g1, g2) ◦ ξ̃(g1g2, g3, g4, g5)

]
·
[
λc0(g1, g2)Wg1g2g1g2 ◦ ξ−1(g3, g4, g5)

]
·
[
ξ̃(g1, g2, g3, g4)

]
·
[
Wg1

g1Wg2
g2λ0(g3, g4)◦

ξ̃(g1, g2, g3g4, g5)
]
· [Wg1g1Wg2g2 ◦ ξ(g3, g4, g5)] ·

[
Wg1

g1Wg2
g2Wg3

g3λ0(g4, g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4g5)

]
(E35)
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We can calculate the above equation in another way as[
λ/c1(g1, g2)λ/c1(g1g2, g3)Wg1g2g3g1g2g3 ◦ λ0(g4, g5)

]
·
[
λ/c1(g1, g2)Wg1g2g1g2 ◦ λ0(g3, g4g5)

]
=
[
ξ(g1, g2, g3)Wg1

g1λ/c1(g2, g3)λ/c1(g1, g2g3)Wg1g2g3g1g2g3 ◦ λ0(g4, g5)
]
·
[
ξ̃(g1, g2, g3, g4g5)

]
·
[
Wg1

g1Wg2
g2λ0(g3, g4g5)

]
= [ξ(g1, g2, g3)] ·

[
Wg1

g1λ/c1(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)
]
·
[
Wg1g1λ/c1(g2, g3)Wg2g3g2g3 ◦ λ0(g4, g5)

]
·
[
ξ−1(g1, g2, g3)

]
·[

ξ̃(g1, g2, g3, g4g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4g5)

]
= [ξ(g1, g2, g3)] ·

[
Wg1

g1λ/c1(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)
]
·
[
Wg1

g1 ξ̃(g2, g3, g4, g5)
]
·
[
Wg1

g1Wg2
g2Wg3

g3λ0(g4, g5)
]
·
[
ξ−1(g1, g2, g3)

]
·[

ξ̃(g1, g2, g3, g4g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4g5)

]
= [ξ(g1, g2, g3)] ·

[
Wg1

g1λc0(g2, g3) ◦ ξ̃(g1, g2g3, g4, g5)
]
·
[
Wg1

g1 ξ̃(g2, g3, g4, g5)
]
·
[
Wg1

g1Wg2
g2Wg3

g3λ0(g4, g5) ◦ ξ−1(g1, g2, g3)
]
·[

Wg1
g1Wg2

g2Wg3
g3λ0(g4, g5) ◦ ξ̃(g1, g2, g3, g4g5)

]
·
[
Wg1

g1Wg2
g2Wg3

g3λ0(g4, g5)
]
·
[
Wg1

g1Wg2
g2λ0(g3, g4g5)

]
(E36)

According to the above discussion, we prove that ω satisfies four cocycle condition:

ωp(g1, g2, g3, g4)ωp(g1, g2, g3g4, g5)ωp(g1g2, g3, g4, g5) = g1ωp(g2, g3, g4, g5)ωp(g1, g2g3, g4, g5)ωp(g1, g2, g3, g4g5) (E37)

Here the action of symmetry operator g is similar as the case in 2+1D. Namely, for time reversal symmetry as well
as reflection (inversion) symmetry, g acts antiunitary on the U(1) phase.

Further, since ξp’s are defined up to U(1) phases χp, one can show ω’s are equivalent up to coboundary according
to Eq.(E23):

ωp(g1, g2, g3, g4) ∼ ωp(g1, g2, g3, g4)
χp(g1, g2, g3) · χp(g1, g2g3, g4) · g1χp(g2, g3, g4)

χp(g1g2, g3, g4) · χp(g1, g2, g3g4)
(E38)
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