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Abstract 
 
     Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by 

harmonic interatomic forces and masses.  Here we present the effects of functional group mass 

variance on vibrational properties and thermal conductivity (κ) of functionalized graphene from 

first principles calculations.  We use graphane, a buckled graphene backbone with covalently 

bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen 

atoms to simulate the effect of mass variance from other functional groups. We find non-

monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over 

from acoustic-dominated to optic-dominated thermal transport behavior.  We connect this cross-

over to changes in the phonon dispersion with varying mass which suppress acoustic phonon 

velocities, but also give unusually high velocity optic modes.  Further, we show that out-of-plane 

acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic 

modes despite breaking of a reflection symmetry based scattering selection rule responsible for 

their large contributions in graphene.  This work demonstrates the potential for manipulation and 

engineering of thermal transport properties in two dimensional materials toward targeted 

applications. 
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I.  INTRODUCTION 

     Two-dimensional (2D) materials continue to intrigue scientific and engineering communities 

with the variety of interesting fundamental properties and possible applications (varying 

electronic behaviors [1-5], observations of quantum effects [6], transistors [4], etc.) that can be 

obtained in a now wide range of systems, e.g., graphene [1-3], silicene [7], borophene [8], 

phosphorenes [5], transition metal dichalcogenides [4, 9], just to name a few.  Significant 

research interest has been devoted to functionalizing 2D systems, graphene in particular [10-12], 

to engineer these properties (e.g., electronic band gap [13], chemical reactivity [14]) for targeted 

applications in a variety of electronics and chemical delivery systems.   Here we examine the 

effects of varying mass on vibrational and thermal transport properties of functionalized 

graphene systems. 

     Suspended graphene has been reported to have extremely high values for thermal 

conductivity κ ranging from 2000-5300 W/m-K [15-19].  However, interaction of single-layer 

graphene with a supporting substrate [20] and with polymer residue [21] can provide significant 

thermal resistance.  The high κ of graphene and this reduction of κ with substrate interaction can 

be partly understood in terms of large contributions to κ from out-of-plane flexural acoustic (ZA) 

phonons.   In purely flat graphene a scattering selection rule based on reflection symmetry gives 

significantly reduced scattering of such phonons, which thus contribute significantly to thermal 

transport [22].  The influence of a supporting substrate [20], other layers [23, 24] and curvature 

[25] all break this selection rule to some degree, giving more scattering of ZA phonons and 

lower κ.  Chemical functionalization also breaks reflection symmetry of graphene, even in fully-

functionalized crystalline systems, with the presence of covalently bonded atomic groups on the 

surfaces and buckling of the Carbon backbone (no longer strictly sp2 hybridized).  Recent first 



principles calculations gave ~2 times reduction of κ for graphane compared to graphene, and 

found a further κ reduction when comparing to a heavier mass fluorinated graphene system [26].  

It was argued that changes in the phonon dispersion play the dominant role in the κ reduction 

going from graphane to fluorographene.     

     Motivated by that work, here we present first principles κ calculations of graphane with 

varying mass of the Hydrogen atoms to simulate the effects of other functional group masses on 

graphene κ.  In Section II we briefly outline details of the theory and numerical methods 

employed here.  Section III gives the results of our calculations and discussion of these, while 

Section IV summarizes this work. 

II.  THEORETICAL METHODS 

     The structure of fully-covered functionalized graphene systems is shown in the inset to Fig. 1.  

We note that these systems are crystalline, no phonon-defect scattering included.  These systems 

have the same hexagonal structure as graphene; however, the functional groups that alternately 

bond to the top and bottom buckle the Carbon backbone.  The electronic structure of graphane 

(C-1H) was determined within density functional theory [28, 29] using the Quantum Espresso 

package [30, 31] within the local density approximation (LDA) with Perdew-Zunger exchange 

correlation [32] and Von Barth-Car pseudopotentials [33] for core electrons.  A 13x13x1 k-mesh, 

>30 Å vacuum space and 120 Rydberg plane wave energy cutoff were used to determine lattice 

constant = 2.501 Å, buckling height = 0.448 Å and C-H distance = 1.114 Å by energy 

minimization.  These are slightly smaller than those found in Ref. 34 which employed the 

generalized gradient approximation.  LDA calculations typically bind atoms more strongly than 

GGA [35].  Dispersion interactions are not included as all atoms are covalently bonded and only 

single-layer systems are considered. 



     Harmonic and third-order anharmonic interatomic force constants (IFCs) of graphane were 

determined by numerical differentiation from forces calculated in perturbed supercells of 324 

atoms using Γ-point-only, 100 Rydberg plane wave energy cutoff electronic structure 

calculations with a 28 Å vacuum distance between periodic layers.  Finite numerical differences 

and truncated atomic interactions require that various symmetries be enforced on ‘raw’ IFCs [36-

38].  Specifically, small changes are applied to the ‘raw’ harmonic and anharmonic IFCs via a χ2 

minimization procedure [36, 39] to ensure that all point group symmetries and translational 

invariance conditions are enforced [40, 41].  Further, Born-Huang equilibrium invariance 

constraints [42] are also imposed on the harmonic IFCs. 

     For each system these graphane harmonic and anharmonic IFCs were used, thus differences 

in phonon scattering and κ arise only from changes in the H atom mass that enters the scattering 

matrix elements and the dynamical matrix: 
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where qr  is the phonon wave vector, lR
r

 is the lattice vector locating the lth unit cell, mσ is the 

mass of the σth atom, α and β are Cartesian components and σσ
αβ

′′Φ l,0  are harmonic IFCs.  We 

note that the masses of the Carbon atoms still play an important role in governing the dispersion 

and scattering, particularly for the acoustic modes of the lighter systems.  For the graphane 

systems considered here the unit cell comprises two Carbon atoms in the buckled backbone and 

two attached Hydrogen atoms for which their mass is varied for each system.  This gives two in-

plane acoustic branches with linear dispersion, transverse (TA) and longitudinal (LA), and nine 

optic branches.  There is also a flexural acoustic (ZA) branch with quadratic dispersion 

characteristically found in 2D systems [38, 43, 44].  Obtaining a perfectly quadratic branch can 



be difficult due to numerical inaccuracies of ‘raw’ harmonic IFCs; however, application of Born-

Huang equilibrium invariance constraints [42] naturally gives this feature in 2D systems. 

     Lattice thermal conductivity is expressed as: 

                                                   αααα τ jq
jq

jqjq vC r
r
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where jqC r  is the volume normalized mode specific heat and αjqv r  is the αth component of the 

phonon group velocity, both of which are obtained from phonon dispersions based on the 

harmonic IFCs.   Here, j is the branch index.  ατ jqr  is the transport lifetime obtained from Fermi’s 

golden rule using anharmonic IFCs and by fully solving the linearized Peierls-Boltzmann 

transport equation [45-47] with a small temperature gradient in the αth direction.  Details of the 

calculations have been described previously [22, 36, 37].  The summations in Eq. 2 and in the 

scattering rate calculations [22, 46, 47] are converted to integrals and solved numerically using 

Gaussian quadrature with 3072 points sampled in the first Brillouin zone.  The layer thickness 

required to determine volume is taken as that typically defined for graphene, 3.35 Å.  The first 

principles κ calculations presented here were also independently verified using a density 

functional tight binding method described previously [48].  

III.  RESULTS AND DISCUSSION 

     Figure 1 gives calculated room temperature κ of functionalized graphene versus mass of the 

functional group.  Again, harmonic and anharmonic IFCs were calculated for graphane (C-1H) 

and are the same for each system presented here.  Previously calculated values of κ for graphane 

and fluorographene [27] compare favorably with those presented here, 6% and 12% differences, 

respectively. As found in Ref. 27, graphane has ~2 times smaller κ than that calculated for 

graphene (~3600 W/m-K [49]) and κ decreases significantly with increasing mass of the 



functional atom.  Increasing mass has the general effect of reducing the overall frequency scale 

of phonon dispersions, as can be seen in Fig. 2 comparing those of C-1H, C-2H and C-3H.  This 

tends to give lower velocities to heat-carrying acoustic phonons and more scatterings of these 

with lower frequency optic branches, both giving reduced κ.  This is demonstrated by the red 

dashed curve in Fig. 1 which gives acoustic mode contributions to the total κ.  A striking feature 

of Fig. 1, however, is the non-monotonic behavior of κ.  With increasing mass beyond 30H κ 

increases from a minimum ~235 W/m-K to peak again at 75H with κ=410 W/m-K before slowly 

decreasing with further increasing mass.  More interesting is the origin of this behavior:  cross-

over from typical acoustic-dominated transport at small mass to unusual optic-dominated 

transport at large mass.  Very recently κ governed by optic phonons has been reported in the 

complex phase change material Ge2Sb2Te5 and was attributed to highly dispersive optic branches 

[50].  Is the origin of this behavior similar for the simpler 2D systems presented here?  How does 

this behavior evolve with increasing mass of the functional atoms? 

     To further elucidate the origin of optic phonon contributions to κ, Fig. 3 gives the 

accumulated κ with increasing frequency for a subset of systems here.  Each curve is scaled by 

the overall κ of the corresponding system.  Figure 3 demonstrates the frequency ranges that 

provide significant contributions to κ for each phonon spectrum.  For instance, for 60H ~25% of κ 

comes from acoustic modes below 5 THz, while ~75% are coming from optic modes between 15 

and 25 THz. To correlate the changes in κ and κ accumulation with varying mass, and thus 

varying phonon frequencies, Fig. 4 gives the dispersion of these systems in the M→Γ  direction 

for the LA branch and the two most dispersive optic branches in the spectrum; Table I gives the 

magnitude of the phonon velocities for the LA (Γ) mode and the most dispersive optical branch 

at the M/2 point along the M→Γ  direction for select systems. The lightest systems considered, 



C-1H, C-2H and C-3H, have very large zone-center LA phonon speeds (Table I), characteristic of 

light systems with strong covalent bonding. The most dispersive optic modes in these lightest 

systems have much smaller speeds.  For this reason, as is typically the case, the acoustic phonons 

carry more heat than optic phonons.  However, as mass continues to increase a curious cross-

over occurs:  these optic modes become more dispersive than the acoustic modes, thus have 

higher velocities.  With increasing mass the zone-center LA velocities continuously decrease, 

while optic phonon velocities continuously increase, as shown in Table I and by Fig.4.  Some 

optic modes are nearly twice as fast as LA modes.  For this reason, large contributions to the 

accumulated κ of Fig. 3 occur in frequency ranges of larger mass materials where these optic 

branches are most dispersive. We note that the trend given by the LA branches, decreasing 

velocity with increasing mass, holds for all three acoustic branches. 

      The optic branches become more dispersive with increasing mass of the functional atoms 

because zone center frequencies decrease, while zone boundary modes have relatively constant 

frequency.  In striving for deeper understanding of the mechanisms of this behavior it is 

instructive to map the frequencies of the governing phonon modes to a simple mass/spring 

harmonic oscillator model.  For such a model the frequency is given by /eff effA k mω =  where 

A is a constant, effk  is an effective spring constant (governed by harmonic IFCs), and meff is the 

effective mass of the system.  Here we define 
2

ˆ∑=
σ

σσ jqeff emm r  as the sum of unit cell masses 

weighted by the eigenmotion of the phonon mode where ˆqjer  is the eigenvector.  In comparing 

particular phonon mode frequencies with varying system mass, harmonic IFCs and thus effk  are 

unaltered, and thus do not contribute to frequency differences.  Table I gives the calculated effm  

for the LA (M) mode and the Γ and M modes of the most dispersive optic branch for select 



systems, as well as phonon frequencies at the Γ and M points for this optic branch.  With 

increasing system mass, meff for the LA (M) increases significantly thus giving smaller zone 

boundary frequencies and smaller velocities.  Similarly for the optic mode at the Γ point,  effm  

increases substantially with increasing system mass thus giving significantly decreasing 

frequencies at this point. However, for the M point effm  increases very little and thus frequencies 

decrease only slightly, giving an increasingly dispersive optic branch with increasing functional 

mass.   

     Although the changing velocities of acoustic (a) and optic (o) phonons with increasing 

functional mass is the driving factor for κ differences in these systems it is instructive to examine 

phonon scattering processes, which also play a role.  Two features of the dispersions are 

particularly relevant in this regard:  an a-o frequency gap and optic phonon bandwidth, both of 

which govern the interactions of a and o phonons.  Considering energy conservation a large a-o 

gap limits the amount of scattering for two a phonons with one o phonon (aao scattering) [51-

53], while small optic bandwidth limits the amount of aoo scattering [54, 55].  For C-1H there is 

a relatively small a-o gap despite having a large mass ratio of 12.  Thus ~80% of the acoustic 

modes participate in aao processes, despite previous work that demonstrated aao scattering does 

not exist in compound semiconductors with mass ratios >4 [53].  This condition, however, 

depends critically on crystal structure and does not apply to various rocksalt compounds [56], 

nor to the systems here.  As functional atom mass increases the a-o gap relative to the acoustic 

frequency scale remains relatively constant as both a and o modes shift to lower frequencies.  

More importantly, the optic bandwidth relative to the acoustic frequency scale becomes larger 

with increasing functional atom mass.  For C-1H only ~50% of the acoustic phonons can 

participate in aoo processes.  For C-2H this goes up to ~75% and for C-3H and the other heavier 



systems all acoustic phonons can participate in aoo scatterings.  Thus, changing optic bandwidth 

plays a role in the sharp decrease in κ going from C-1H to C-3H, however, is less important in κ 

differences with further increasing mass. 

     The ZA phonons have smaller velocities than those of in-plane modes (LA and TA), but still 

contribute significantly especially for functional group mass smaller than 35 amu, as shown in 

Fig. 5 which gives a further breakdown of the mode contributions to the total κ.  In graphane the 

Carbon backbone is buckled and the presence of the Hydrogen groups breaks the reflection 

symmetry present in purely flat graphene. This breaks a phonon-phonon scattering selection rule 

[22] and allows for more scattering of ZA phonons than in graphene, thus κ contributions from 

ZA modes drop from ~2700 W/m-K in graphene to ~1200 W/m-K in graphane, though drop in 

the percent contribution to κ in Fig. 5 is not as dramatic.  Regardless, in graphane and heavier 

functional mass systems ZA phonons still contribute the largest share of the acoustic mode 

contributions to κ, similar to that found in other buckled monolayer systems [57].  To better 

understand this we note that ZA mode velocities only disappear near the Brillouin zone center.  

For C-1H the average ZA phonon speed in the transport direction, ~3.81 km/s, is comparable to 

that of the TA and LA branches, 4.06 km/s and 4.22 km/s, respectively.  Further, the average 

lifetime of the ZA phonons in C-1H, ~18.9 ps, is over an order of magnitude smaller than that of 

graphene due to relaxing of the selection rule, however, it is still significantly higher than that of 

the TA and LA phonons, 8.5 ps and 7.1 ps, respectively.   

     We also made calculations of κ including phonon-isotope scattering from naturally abundant 

Carbon isotope concentrations (see Fig. 5) via quantum mechanical perturbation theory methods 

described elsewhere [49, 58, 59].  We find that in all systems, even those with κ contributions 



dominated by optic phonons, the additional resistance from naturally-occurring isotopes plays 

only a minor role in determining κ.    

IV.  SUMMARY AND CONCLUSIONS 

     We presented calculations of thermal conductivity (κ) for mass functionalized graphene 

systems based on Peierls-Boltzmann transport equation methods with harmonic and anharmonic 

forces from density functional theory.  With fully-covered Hydrogen functionalized graphene 

(also known as graphane) as the base system we examined the effects of mass variance of the H 

atoms on vibrational and lattice thermal transport properties.  Calculations give a non-monotonic 

behavior of κ with increasing mass that is governed by an unusual cross-over from acoustic-

dominated to optic-dominated heat transport.  With increasing mass of the functional atoms 

acoustic mode velocities expectedly decrease, however, particular optic phonon modes have 

increasing velocity, and thus give larger contributions to κ.  Further we show that out-of-plane 

acoustic phonons give larger contributions to thermal transport than in-plane acoustic modes 

despite broken reflection symmetry, important for determining the lifetimes of these modes.   

This work shows the important role that phonon dispersion features play in determining κ and 

demonstrates the potential for manipulating thermal transport in two dimensional materials via 

mass functionalization. 
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Table I.  Calculated magnitude of phonon velocity, v, in the M→Γ  direction for the LA (Γ) 

mode and the most dispersive optic branch at the M/2 point for select systems, as well as 

frequencies for the most dispersive optic branch at the Γ and M points.  Also given are effective 

masses (defined in text) for the LA (M) mode and Γ and M modes of the most dispersive optic 

branch.  Comparison of the calculated frequencies and velocities shown here is accurate to the 

given precision; however, numerical uncertainty in the calculation of the harmonic IFCs may 

reduce the overall precision.  

 

 

 

Table I 

  

 v (km/s) 
LA (Γ) 

v (km/s) 
optic (M/2) 

meff (amu) 
LA (M) 

meff (amu) 
optic (Γ) 

ω (THz) 
optic (Γ) 

meff (amu) 
optic (M) 

ω (THz) 
optic (M) 

3H 16.84 8.60 5.24 3.10 20.59 11.60  33.87 

5H 15.81 10.93 6.70  7.10  16.82 11.83  33.58 

10H 13.86 12.22 10.26 10.96 13.54 11.91   33.21 

30H 9.98 12.75 29.76 17.19 10.81 13.04  33.00 

60H 7.60 12.85 59.87 20.04 10.01 13.40 32.52 

200H 4.42 12.92 200.9 22.67 9.41 13.64 32.20 



Figure Captions 

Figure 1:  Calculated room temperature κ for functionalized graphene versus functional group 

mass (black-dotted curve).  The dashed red curve gives the κ contribution from acoustic modes, 

while the dashed blue curve gives that from optic modes.  First principles calculated κ for 

graphane (purple square) and fluorographene (purple triangle) from Ref. 27 are also given.  The 

inset shows the structure of these systems. 

 

Figure2:  Phonon dispersion of graphane (C-1H; solid black curves), C-Deuterium (C-2H; dashed 

red curves) and C-Tritium (C-3H; dotted blue curves) in the M KΓ → → → Γ  high symmetry 

directions.   

 

Figure 3:  Accumulated κ(ω) versus frequency for C-1H (blue curve),  C-3H (black curve), C-5H 

(red curve), C-10H (green curve), C-30H (orange curve), C-60H (purple curve).   Each curve is 

scaled by the corresponding calculated total κ for each system:  1718 W/m-K, 911 W/m-K, 637 

W/m-K, 417 W/m-K, 284 W/m-K, 376 W/m-K, respectively.  The maximum acoustic frequency 

for each system is marked by corresponding colored arrows.  Accumulated κ(ω) is given by 

)()(κ 2
jq

jq
jqjqjq ωvCω r

r

rrr ωθτ αα −=∑  where θ is the Heavyside step function, zero for 0<− jqrωω  and 

one for 0>− jqrωω .  Other terms are defined in the text.   

 



Figure 4:  Phonon dispersion of two highly dispersive optic branches and the LA branch in the 

M→Γ  direction for C-3H (black curves), C-5H (red curves), C-10H (green curves), C-30H 

(orange curves) and C-60H (purples curves).   

 

Figure 5:  Calculated κ contributions for in-plane acoustic modes (green curve), out-of-plane 

acoustic modes (red curve) and optic modes (blue curve) versus functional group mass.  Values 

are scaled by the total κ for each system.  Also given is the calculated κ with phonon-isotope 

scattering from natural Carbon concentrations scaled by κ of the isotopically pure systems (black 

curve). 
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Figure 3 
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Figure 5 
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