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The ν = 5
2

fractional quantum Hall effect is of experimental and theoretical interest due to the
possible non-Abelian statistics of the excitations in the electron liquid. A small voltage difference
across a sample applied in experiments to probe the system is often ignored in theoretical studies
due to the Galilean invariance in the thermodynamic limit. No experimental sample, however, is
Galilean invariant. In this work, we explore the effects of the probe electric fields in a disk geometry
with finite thickness. We find that weak probe fields enhance the Moore-Read Pfaffian state but
sufficiently strong electric fields destroy the incompressible state. In a disk geometry, the behavior
of the system depends on the polarity of the applied radial field, which can potentially be observed
in experiments using in a Corbino disc configuration. Our simulation also shows that the application
of such a field enhances the coherence length of quasiholes propagating through the edge channels.

Introduction. The ν = 5
2 fractional quantum Hall ef-

fect (FQHE) presents a unique experimental and theo-
retical challenge. It is the only observed FQHE with
an even denominator in electron single-layer systems1–4,
making the non-interacting composite fermion5 and the
related Laughlin pictures6 inapplicable. As a result,
more exotic models are considered, such as composite
fermion pairing7–9. This pairing leads to the Moore-
Read Pfaffian (Pfaffian) and its particle-hole conjugate,
the anti-Pfaffian10–13, that support non-Abelian quasi-
hole/quasiparticle excitations10,14–17 of interest for a
topological quantum computer18–22. These non-Abelian
quasihole excitations are responsible for the transport of
charge through the system along the edge23.

In order to probe these states, small voltages are ap-
plied in experiments. Theoretically, in an infinite plane,
small electric fields can be removed by a Galilean trans-
formation. Experimental samples, particularly in the
Corbino disk configuration, are not Galilean invariant
and we thus expect that these fields will have measur-
able effects upon the ground state of the sample. To
explore the effects of these electric fields, we perform ex-
act diagonalization calculations in a disk geometry with
a finite sample thickness.

We explore the phase diagram as the strength of
the applied electric field, the Landau level (LL) mix-
ing strength and interactions with the neutralizing back-
ground are varied. We find regions where the total angu-
lar momentum makes the Pfaffian state plausible, and
confirm its existence using overlap integrals with the
known Pfaffian wavefunction8,9. In a disc geometry, an
electric field is applied in the radial direction, similar to
the experimental setup in Corbino discs. Our simulations
show that for electric fields in the −r̂ direction, the over-
lap with the Pfaffian state first increases at fields well
below the breakdown voltage before a precipitous drop.
In the +r̂ direction, the overlap instead continuously de-
creases. We next study the edge states of the disk, finding
that the edge state coherence length increases five-fold
with the inclusion of an in-plane electric field, regardless
of direction24. We suggest that exploration of the effects

of an electric field on the excitation gap, especially in
Corbino disc experiments25, may shed light on the na-
ture of ν = 5/2 state and methods to control it.
Model. Our model system consists of a two dimen-

sional electron gas (2DEG) of a thickness w a distance
d above a disk of neutralizing background charge in a
magnetic field B = Bẑ24,26,27. The neutralizing disk con-
fines the electrons to a finite region and breaks particle-
hole symmetry27. Within the ν = 5/2 state quantum
Hall plateau, changing the magnetic field (with match-
ing changes in the electron density) controls the strength

of the LL mixing effects, κ = e2

ε`B
1
h̄ωc

, where `B =
√

h̄c
eB

is the magnetic length and ωc = eB
mc is the cyclotron

frequency. As we are interested in the half-filled first ex-
cited LL, we can fix the filling fraction ν by setting the
radius of the disk R = 2

√
Ne`B

24,26,27, where Ne is the
number of electrons. The first excited LL single particle
eigenstates, in cylindrical coordinates, are

ψ1,m(r, θ, z) =

√
1

2π`2B(m+ 1)!

(
r√
2`B

)m
eimθe

−r2

4`2
B

×Lm1
(
r2

2`2B

)√
2

w
sin

πz

w
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where m is the angular momentum and w is the width of
the rectangular potential well confining the 2DEG.

The interacting Hamiltonian is24

H = H1-Body +H2-Body +H3-Body. (2)

The interactions of the electrons with the neutralizing
background are contained in H1-Body, while the electron-
electron interactions are contained in the other two
terms. These are divided into two- and three-body in-
teractions, which are calculated using a diagrammatic
expansion of the Coulomb interaction, allowing virtual
excitations to higher and lower LLs28–33. We introduce
an electric field to this model by applying a constant
voltage between a point contact at the center of the disk
and the edge of the disk. This results in an additional



2

one-body term in Eq. (2),

HU =
∑

m

Umc
†
mcm,

where c
(†)
m are the single electron annihilation (creation)

operators, and matrix elements Um are

Um= U

∫ R

0

∫ 2π

0

∫ w

0

rdrdθdzr|ψ1,m(r, θ, z)|2

= −
√

2U`B
(m+ 1)!

[Γ (jm + 2, ζ)− Γ (jm + 2, 0)

−2(m+ 1) (Γ (jm + 1, ζ)− Γ (jm + 1, 0))

+(m+ 1)2 (Γ (jm, ζ)− Γ (jm, 0))
]
, (3)

U is the strength of the applied field, jm = m + 3/2,

ζ = R2

2`2B
, and Γ(a, x) is the upper incomplete Γ function.

In order to ensure that these terms are relevant in the
thermodynamic limit, we look at their behavior as the
system size grows. The results are shown in Fig. 1a.
We see that there exist two clear regions which appear
as a function of m. The first region describes the bulk
behavior, where Um ∝

√
m. As the edge is approached,

however, there is a sharp drop in Um that results from
the cut off in the field at the edge of the sample. Thus,
as in the bulk Um continues to grow and the edge region
increases with sample size, we find that these fields will
continue to have effects in the thermodynamic limit.

The in-plane electric fields of a quantum Hall state
is limited by the breakdown voltage on the order of

103V/cm34. For energy in units of e2

ε`B
, the field strength

in Eq. (3) varies with κ for fixed U . This variation is

shown in Fig. 1b for the case U = 1 e2

ε`2B
. For U < 0.01

eV/cm, the first-order terms become comparable to the
size of the 2- and 3-body LL mixing corrections, allowing
us to safely discard higher-order corrections which intro-
duce LL mixing as these scale as U228–32. The case κ→ 0
is unphysical, but κ > 0.5, is the experimentally acces-
sible regime. Here we see that the applied field strength
falls below the breakdown voltage for fairly large values
of U when compared to the LL mixing matrix elements.
Making U sufficiently small, we approach the strength of
measurement fields, <∼ 1V/cm.

Phase Diagram. As these effects persist in the thermo-
dynamic limit and we can reasonably consider the effects
of electric fields small enough to be within the measure-
ment regime, we now explore the phase diagram as d, κ
and U are varied while w is fixed at 1`B . To produce
the phase diagram, an exact diagonalization calculation
is performed for each d, κ and U in subspaces with fixed
total angular momentum of the Hilbert space. The state
with the lowest energy in all such subspaces is then the
ground state of the system and the state is labeled with
that angular momentum24,27.

Of primary interest to us here is the Pfaffian state.
This state appears with a a total angular momentum of
MMR = Ne(2Ne − 3)/2. Thus, using the total angular
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FIG. 1. (a) Matrix elements of the external potential for
systems with 25 (red), 50 (blue) and 100 (green) particles.
(b) As κ is varied, the size of the electric potential for a fixed
value for U varies.

momentum of this state and overlap integrals, we identify
regions of our phase diagram which realize the Pfaffian.
In the current work we do not consider the anti-Pfaffian
state as the zero field overlap is significantly smaller than
that for the Pfaffian24.

We apply this process to N =8, 10, and 12 electrons
in S = 2N − 2 single particle states. By limiting the
system to 2N − 2 states, an artificial hard wall potential
is produced which limits edge reconstruction26, allowing
us to access the bulk behavior. The results are shown in
Fig. 2 for several different U and N .

By comparing how Fig. 2c,f change with respect to
Fig.2b,d for N = 8 and 10, respectively, we can begin to
understand the effects of system size. For N = 8 parti-
cles, there is no significant changes to the phase diagram

for U = 0.01 e2

ε`2B
, but for U = 10 e2

ε`2B
, we note significant

changes, with the potentialM = 85 Pfaffian region signif-
icantly increasing in size and the collapsed state shrink-
ing. These changes are attributed to the much larger
state space available to the N = 10 case as, comparing
Fig. 2e,i to Fig. 2d,h for N = 10 and 12, respectively,
does not show such significant changes. As a result, we
focus on the computationally simpler N = 10 case for
the remainder of the text.

We find that at the strongest fields explored here,

U = ±0.1 e2

ε`2B
,±0.01 e2

ε`2B
, that the region M = 85, which

is potentially the Pfaffian state, has greatly expanded
compared to U = 0 case. However, while this region has
grown substantially, the overlap with the Pfaffian has
significantly decreased, going ∼ 0 in the positive U case
and ∼ 0.02 in the negative U case, compared to ∼ 0.7
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FIG. 2. The phase diagram as U , d, and κ are varied forN =8,
10, and 12 electrons in S = 2N − 2 states. The green region
highlights the Pfaffian state in all 9 diagrams and a collapsed
state with the lowest angular momentum highlighted in black.
In the first row, N = 8 with (a) U = −0.01, (b) U = 024, (c)
U = 0.01. In the second row, N = 10 with (d) U = 024, (e)
U = 0.0001, (f) U = 0.01. In the third row, N = 12 with (g)
U = 0.0001, (h) U = 0, and (i) U = −0.0001, all U’s are in

units of e2

ε`2
B

.

at U = 0. In the case of a strong positive field, this can
be understood as the center and edge regions having a
potential minima (Fig. 1a), resulting in the electrons ac-
cumulating in these two regions and is well described by
a single Fock state. This is characteristic of a stripe state
which may be written in the single particle state basis as
a binary string of empty and filled states27. Similarly, for
the negative U case, the minimum of the electric poten-
tial now lies in a band between the edge and center of the
disk, depopulating the center and edges of the disk and
decreasing the overlap with the Pfaffian. Unlike the case
for positive U , however, this state may not be written as
a single Fock state.

Turning now to the weak electric field regime, |U | ≤
0.001 e2

ε`2B
, we find that the behavior of the M = 85 region

is dependent upon the direction of the applied field. For
positive U , we see that the overlap increases with increas-
ing field strength, to a maximum of ∼ 0.8 before falling
off rapidly. In contrast, for negative U , the overlap only
falls off with increasing field strength.

This difference arises from how the fields act on the

sample. For increasingly positive U , the center of the
disk and edge present competing attractive potentials,
leading to a more homogeneous electron distribution, as
expected of the Pfaffian, until the system is driven into a
striped state. In the case of an increasingly negative U ,
the minimum of the potential is now what was previously
the maximum, leading to an increasingly inhomogeneous
electron distribution. Thus, negative fields also lead to a
decreasing overlap with the Pfaffian.

From the phase diagram, we see that as the fields in-
crease in strength, the Pfaffian state is destabilized, with
the overlap tending to 0. This behavior is expected from
the observation of the breakdown voltage in experiment.
More interesting, we see that weak fields can lead to an
increase in the overlap with the Pfaffian, increasing from
a maximum of ∼ 0.7 with no field to ∼ 0.8 in the case
of positive U , before the state is destroyed by the break-
down voltage.

Edge States. We now turn to the effects of the electric
field on the edge states. So far we used 10 electrons in 18
states to suppress potential edge reconstruction, allow-
ing bulk effects to dominate24,26,27. Now, we allow these
edge effects to be prominent so that we may study the
edge behavior of the system. This is done by expanding
the single-particle Hilbert space to 22 states, creating a
softer edge potential. We then find the wavefunctions
and calculate the overlap integral with wavefunctions of
the edge modes of the Pfaffian. We find that the over-
laps are > 0.1 at zero field, but once we apply the electric
field, the overlap of some of the edge modes fall below 0.1.
In contrast, we find that the application of the electric
field increases the overlap with the ground state, regard-
less of the direction of the applied field. This difference
in behavior when compared to the bulk is the result of
the applied negative U potential acting as a confining
potential, suppressing edge reconstruction effects.

The spectra for 10 electrons in 22 states are shown in
Figs. 3a,b,c when d = 1`B and κ = 0.3. For reference,
the edge spectrum from Ref. 24 is shown in Fig. 3b.
Comparing this to the spectra shown in Figs. 3a,c we see
the same general features emerge: the Bose modes, carry-
ing charge, are well mixed with the bulk, while the Fermi
edge modes, carrying the quasiparticle statistics, are gen-
erally separated from the bulk. In all cases, the expected
edge structure has been found, with the series 1,1,3,5,...
with 0,0,1,1,2,... purely Fermi edge modes clearly sepa-
rated from the bulk region.

Where the spectra differ from the U = 0 case most
significantly is the energy spacing. The electric field in-
creases the excitation energy from the ground state to
the edge modes. This increase results from the persistent
current along the edge of the disk caused by an electric
field. As the Bose and Fermi modes carry components of
the quasiholes along the edge, their energy also increases.

The effects of this acceleration are seen from compar-
ison of Figs. 3d,f to Fig. 3e, reproduced here from Ref.
24. The increase in energy is shown by the larger slope in
the dispersion of the Fermi and Bose modes when com-
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pared to the U = 0 case. Also from the dispersion re-
lations, we find evidence of the Bose modes distinctly
carrying charge, as the behavior of the Bose mode dis-
persion changes with the polarity of U while the behavior
of Fermi modes is unaffected.

From the edge dispersion, we can also calculate the
coherence length24,27,35 Lφ. For the U = 0 case, Lφ '
2.82µm24. With the application of the electric field, we

find that the coherence length increases to Lφ ' 9.7µm
and ' 10.7µm for positive and negative U respectively.
Thus, the application of the electric field and the result-
ing edge currents substantially improve the edge coher-
ence lengths of the quasiholes.
Conclusion. Applying an external electric field with

a magnitude exceeding a nominal probe field to a quan-
tum Hall fluid with broken Galilean invariance has many
beneficial effects. When edge effects are suppressed the
behavior is dependent upon the polarity of the field, with
negative U decreasing the overlap and positive U raising
the overlap with Pfaffian state long before the breakdown
voltage is reached. At high voltage, the Pfaffian state col-
lapses, with the strongly positive U case going to a stripe
state with the 2DEG in isolated bands at the center and
very edge of the disk, while the strongly negative U case
sees the 2DEG collapse between the edge and center of
the disk. These direction-dependent changes from the
U = 0 case are the result of the form of the matrix ele-
ments of radial electric field potential.

For experimentally accessible edge states, small ap-
plied fields strengthen the Pfaffian state. With the re-
laxation of the hard wall conditions, the case of weak
negative U shows an increase in the ground state overlap
as a result of an additional confinement of electrons to the
disk, similar to the effects of LL mixing as the 2DEG is
moved further from the neutralizing background. Weak
fields also lead to significant improvement of the edge co-
herence length. Thus, the in-plane fields can be used to
fine-tune the ground state and improve the edge proper-
ties of the non-Abelian states.

It is therefore of interest to explore the effects of in-
creasing voltages used to measure the quantum Hall sig-
nals. Similar to recent experiments applying hydrostatic
pressure to the sample36, this offers means of dynamically
tuning the ground state of the half-filled first excited LL
between the incompressible Pfaffian and a compressible
stripe state. A Corbino disc configuration would be of
particular interest as the effects of the orientation of the
electric field can be probed.
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