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We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth dis-
order potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor
structures with strongly correlated carriers when the mean free path due to electron-electron colli-
sions is sufficiently short. The dominant contribution to magnetoresistance arises from the modifi-
cation of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the
kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic
at weak fields. Although the resistivity is governed by both viscosity and thermal conductivity of
the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables extraction
of viscosity of the electron liquid from magnetotransport measurements.

PACS numbers: 72.10.-d, 73.43.Qt, 73.63.Hs

Low temperatue electron transport in metals and
semiconductors may often be understood semiclassically.
In the classical theory electrical resistivity is related
to the relaxation rate of quasimomentum of electrons,
which is determined by the interplay of electron-impurity,
electron-phonon and electron-electron collisions [1–3]. In
the conventional framework based on the Boltzmann
equation these scattering processes are described by inde-
pendent collision integrals, and the resistivity turns out
to be proportional to the sum of partial momentum relax-
ation rates due to each collision type – the result known
as the Matthiesen’s rule. In this approximation the mo-
mentum conserving electron-electron collisions do not af-
fect the electrical resistivity. However if correlations be-
tween different scattering processes are taken into ac-
count then momentum conserving electron-electron col-
lisions also affect the resistivity. As noted long ago by
Gurzhi [4], the effect of momentum conserving scatter-
ing becomes especially important in the hydrodynamic
regime, where the rate of momentum-conserving scatter-
ing significantly exceeds the rate of momentum-relaxing
processes.

In situations where momentum relaxation occurs at the
sample boundary (as in the Poiseuille flow [5]) or at point-
like scattering centers [6] the electron liquid is isentropic
and the flow in linear response is Stokesian, with the
resistivity being proportional to the shear viscosity of the
electron liquid. Experimental support for the Stokes flow
in electron transport has been reported in thin Potassium
wires [7], and more recently in other metallic systems [8–
10].

Over the past few years, the role of momentum-
conserving scattering and hydrodynamic effects in elec-
trical resistivity of low-dimensional systems was actively
studied in the context of modern high mobility nanos-
tructures. This includes equilibration effects in one-
dimensional wires [11–15], high mobility semiconductor
heterostructures with strongly correlated carriers, such as

p- and n-doped GaAs and SiGe quantum wells, as well as
Si-MOSFETs [16, 17], and graphene devices [18–34]. In
these systems electrons move in the presence of a smooth
disorder potential with long range correlations. As a re-
sult, the electron liquid in equilibrium is not isentropic,
and the hydrodynamic flow becomes non-Stokesian. In
the presence of the flow the liquid develops temperature
gradients that are linear in the current. The resulting re-
sistivity depends not only on the viscosity of the electron
liquid but also on its thermal conductivity. In the context
of semiconductor systems with strongly correlated carri-
ers, a theory of resistivity in this regime was developed
in Ref. 35.

Magnetoresistance (MR) in the hydrodynamic regime
arises from spin-polarization of the electron liquid and
from the orbital effect of the magnetic field. Theory of or-
bital magnetoresistance for the Stokes flow was recently
developed in Ref. 36. In this case MR arises from the
magnetic field dependence of the viscosity of the liquid
and is controlled by the ratio of the electron mean free
path (limited by electron-electron scattering) to the cy-
clotron radius Rc.

For the hydrodynamic flow in a long-ranged disorder
potential the theory of orbital MR has not been devel-
oped. We develop such a theory in the present paper. We
show that although the zero field resistivity depends on
both viscosity and thermal conductivity of the electron
liquid, MR depends only on the shear viscosity. Fur-
thermore, the orbital MR becomes appreciable at much
weaker fields H, at which the viscosity and thermal con-
ductivity may be assumed independent of H. In contrast
to the approach of Ref. 35, which is based on entropy
production, we obtain our results by directly evaluating
the drag force exerted by the disorder potential onto the
flowing electron liquid. This “mechanical” approach is
better suited for consideration of magnetoresistance. It
also enables us to elucidate the physics of the drag force.

We consider an electron fluid in two dimensions sub-
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ject to a smooth random potential V (r). In the collision-
dominated regime, where the equilibration length due to
electron-electron scattering is shorter than the correla-
tion radius of the external potential, the electron system
can be described by the hydrodynamic approach. The
hydrodynamic equations consist of the continuity equa-
tion, the Navier-Stokes equation, and the entropy evolu-
tion equation:

∂tn+ div(nv) = 0, (1)

mn(∂t + v ·∇)v =

−∇P + n(F −∇U)− e

c
[j ×H] + ∇ · σ̂, (2)

nT (∂t + v ·∇)s = div(κ∇T )− κδT. (3)

Here v is the hydrodynamic velocity, m is the band mass
of the electrons, n is the electron density, and j = nv
is the particle current density [43]. The hydrodynamic
approach assumes local thermal equilibrium so that the
pressure P and entropy per particle s may be expressed
via the equation of state in terms of the temperature T
and density n. The viscous stress tensor σ̂ in Eq. (2) has
the standard form

σik = η(∂kvi + ∂ivk) + (ζ − η)δik div v, (4)

where η and ζ are respectively the shear and bulk vis-
cosity coefficients. The derivatives ∂i and components
of velocity field vi are taken with respect to the Carte-
sian coordinates in the plane. A uniform external mag-
netic field H produces a Lorentz force in Eq. (2), while
F = eE is the force exerted on an electron by a uniform
external electric field E driving the flow. The potential
U = V +W in Eq. (2) consists of the external potential V
and the self-consistent Coulomb potential W caused by
the density modulation of the electron liquid. The lat-
ter describes the long range part of the internal stresses
arising in the liquid due to Coulomb interactions. The
left hand side of the entropy evolution equation (3) de-
scribes convective transfer of heat. The first term in the
right hand side of Eq. (3) describes the heat flux relative
to the electron liquid (κ is the thermal conductivity of
the liquid). The second term describes transfer of heat
from the electron liquid to the substrate, with κ being
the appropriate kinetic coefficient.

At zero current the particle density, entropy per par-
ticle, temperature and pressure in the liquid are given
by their equilibrium values, denoted by n, s, T , and P
respectively. In the presence of the current j these quan-
tities acquire corrections; δn, δs, δT and δP . The density
of a uniform external force that must be exerted on the
fluid in order to maintain a steady current can be found
by averaging Eq. (2) over space. At small current den-
sity it is linear in j. Using the fact that internal stresses
produce no net force on the liquid, to linear order in j
we obtain from Eq. (2) the following expression for the

external force density,

F =
1

〈n〉

〈
δn∇V +

e

c
[j ×H]

〉
. (5)

Here 〈. . .〉 denotes spatial averaging. The resistivity ten-
sor ρ̂ is related to F by e2ρ̂ 〈j〉 = F . The second term in
the right hand side of Eq. (5) describes the Hall compo-
nent of the external force and corresponds to the classical
Hall resistivity ρ⊥ = H/〈n〉ec. The determination of the
longitudinal resistivity ρ‖ amounts to evaluation of the
first term. Below we evaluate 〈δn∇V 〉 to the lowest non-
vanishing (second) order in perturbation in the external
potential V . Within this accuracy it is sufficient to de-
termine the nonequilibrium correction to the density δn
to linear order in V .

To this end, we assume δn/n � 1 and simplify
Eqs. (1)–(3) by retaining only terms linear in V and j.
The continuity equation (1) yields div v = −(j ·∇n)/n2.
By taking the divergence and curl of the linearized Eq. (2)
we obtain

∇2

[
δP + nδW +

(η + ζ)

n2
j ·∇n

]
= −en

c
H · curlv, (6)

η∇2 curlv =
e

c
H (j ·∇ lnn) . (7)

Excluding the curl of the velocity field we find

δP + nδW = −
[
η + ζ

n
+

n

l4Hη
∆−2

]
(j ·∇ lnn), (8)

where ∆ denotes the Laplacian and we introduced the
magnetic length lH =

√
c/eH. The long range Coulomb

forces described by δW are determined by the induced
density δn via the Poisson equation (in the Fourier repre-
sentation δWq = 2πe2δnq/q). The nonequilibrium pres-
sure, δP , depends not only on δn, but also on the temper-
ature variation, δT ; δP = (∂P/∂n)T δn+ (∂P/∂T )n δT ,
where δT may be determined by linearizing Eq. (3),

(−κ∇2 + κ)δT = −T
(
∂s

∂n

)
T

(j ·∇n). (9)

Here we used the relation ∇s =
(
∂s
∂n

)
T
∇n.

Combining Eqs. (8), (9) we obtain the nonequilibrium
density in the Fourier representation,

δnq =
−iqνnq (j · q)

q + qTF

[
Tn2

(
∂s
∂n

)2
T

κ + κq2
+
η + ζ

n2
+

1

l4Hq
4η

]
.

(10)
Here we introduced the thermodynamic density of states,

ν =
(
∂n
∂µ

)
T

= n
(
∂n
∂P

)
T

and the inverse Thomas-Fermi

screening length in two dimensions, qTF = 2πe2ν.

Substituting Eq. (10) into Eq. (5), and using the re-
lation nq = −q νVq/(q + qTF ) from the linear screening
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theory, we obtain the following expression for the longi-
tudinal resistivity

ρ‖ =

∫
d2q

(2π)2
q2|nq|2

2e2

[
T
(
∂s
∂n

)2
T

κ + κq2
+
η + ζ

n4
+

1

n2(qlH)4η

]
.

(11)
In the absence of heat transfer to the substrate, κ = 0,
and at zero magnetic field this expression coincides with
the result, Eq. (6), of Ref. 35. The magnetoresistance
is described by the third term in the right hand side of
Eq. (11). In contrast to the zero field resistance, which
depends on both shear and bulk viscosities and the ther-
mal conductivity of the liquid, the magnetoresistance de-
pends only on the shear viscosity. This enables extraction
of viscosity of the electron liquid from magnetotransport
measurements and in particular test applicabilty of the
Fermi liquid theory in the regime of strong interaction
when rs � 1. An alternative recently proposed approach
involves Corbino disk device, which allows a determina-
tion of the viscosity of a quantum electron liquid from the
dc potential difference that arises between the inner and
the outer edge of the disk in response to an oscillating
magnetic flux [37].

Note that the dominant contribution to MR in Eq. (11)
arises from the long-range modulations of the equilib-
rium density. As a result, in the hydrodynamic regime
this contribution exceeds the one arising from the de-
pendence of the kinetic coefficients of the liquid on the
magnetic field. For example, in the Fermi-liquid regime
the hydrodynamic magnetoresistance in Eq. (11) may be

estimated as ρH ∼ 1
e2

(δn)2

n2
ξ2

R2
ckF l

, where Rc ∼ kF l
2
H is

the cyclotron radius, and ξ is the correlation length of
density modulations. On the other hand, the correction
to, say the shear viscosity, due to the presence of a mag-
netic field is of the order δη ∼ −ηl2/R2

c , where l is the
mean free path due to electron-electron collisions. The
contribution to MR due to the magnetic field dependence
of the viscosity is negative [36] and may be estimated as

δρ ∼ 1
e2
δn2

n4

k3F l
3

ξ2R2
c
. We thus see that in the hydrodynamic

regime, l � ξ, this correction is smaller than the hydro-

dynamic magnetoresistance in Eq. (11); δρ
ρH
∼ l4

ξ4 � 1.

Our derivation of Eq. (11) elucidates the physical ori-
gin of the resistive force F in Eq. (5). In the presence of
the current the external potential V moves relative to the
liquid and produces linear in V modulations in the pres-
sure, temperature and viscous stresses that propagate the
liquid. The coupling of the resulting modulation of the
fluid density to the external potential produces a drag
force (5) in second order in V . This invokes an analogy
with the problem of drag resistivity in the interactively
coupled bilayers [38]. In the latter, thermal fluctuations
of density in the passive layer induce modulations of the
electron density in the active layer. Those, in turn, cou-
ple to the passive layer density fluctuations producing
a drag force. In the hydrodynamic regime both the in-

tralayer and the drag resistivities are given by the sum of
thermal and viscous contributions. As a result they have
similar dependence on the viscosity and thermal conduc-
tivity of the fluid but differ in their respective tempera-
ture dependence [39, 40].

For applications to particular systems it may be con-
venient to express the resistivity in Eq. (11) in terms of
the doping potential. To be specific let us consider an
experimentally relevant setup in which a doping layer is
separated from the two-dimensional electron system by a
distance d. The average density of dopants is equal to the
average density of electrons, n. For the spatially uncorre-
lated dopants the spectral power of the external random
potential induced in the plane of the electron system is

〈|Vq|2〉 = n

(
2πe2

q

)2

exp(−2qd). (12)

For d� n−1/2 the screening is linear, and the equilibrium
density modulation is related to the external potential as
nq = −νqVq/(q + qTF ). Substituting this relation and
Eq. (12) into Eq. (11), and performing now momentum
integrals one finds

ρ‖ =
ρQ
16π

[
T

nd2κ

(
∂s

∂ lnn

)2

T

+
3(η + ζ)

2n3d4
+

4 ln
(
L
d

)
nηl4H

]
,

(13)
where ρQ is quantum of resistance. When deriving the
above result we assumed qTF d � 1, neglected external
thermal losses κ → 0, and used the thermodynamic iden-
tities (∂n/∂T )P = n2(∂s/∂P )T = n(∂s/∂µ)T leading to
ν−2(∂n/∂T )2 = (∂s/∂ lnn)2T . Note that for the disorder
potential in Eq. (12) the momentum integral in the last
term of Eq. (11) diverges logarithmically at small q. This
divergence was cut off at a large spatial scale L yielding
the last term in Eq. (13) that defines the margnetoresis-
tance ρH .

The above results depend on the microscopic proper-
ties of the electron fluid only via the magnitude and tem-
perature dependence of kinetic coefficients and thermo-
dynamic properties. A detailed microscopic theory for
the temperature dependence of κ, η, ζ and s of strongly
correlated liquids in the quantum-nondegenerate regime
has not been developed. In contrast, the Fermi-liquid
regime has been studied extensively [41]. At tempera-
tures below the Fermi energy, T < EF , and assuming
rs ∼ 1, one readily finds: κ ∼ cvnlvF ∼ E2

F /T , η ∼
mvFnl ∼ nE2

F /T
2 and cv ∼ T/EF , where l = vF τee is

the electron-electron mean free path with τ−1ee ∼ T 2/EF .
The hydrodynamic description assumes a short mean free
path, l < d, which restricts its range of applicability to
temperatures T > T1 ∼ EF /

√
kF d with kF d � 1. In

this regime Eq. (13) yields the following estimate for the
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FIG. 1: Temperature dependence of the zero-field resistivity
in Eq. (14) plotted for different values of the control param-
eter kF d = 6, 8, 10, 12, representing the curves from top to
bottom respectively.

longitudinal resistivity

ρ‖

ρQ
∼ 1

(kF d)2

(
T

EF

)4

+
1

(kF d)4

(
EF
T

)2

+
ln
(
L
d

)
(nl2H)2

(
T

EF

)2

,

(14)
which is valid in a parametrically wide range of temper-
atures T1 < T < EF . At the onset of the hydrodynamic
regime, T ∼ T1, the viscous (second) term in Eq. (14) ex-
ceeds the thermal conductivity contribution (first term)
by a parametrically large factor kF d � 1 and resistiv-
ity is estimated to be of the order ρ‖/ρQ ∼ 1/(kF d)3. In
fact, viscosity governs resistivity in a window of tempera-
tures T1 < T < T2 and both contributions becomes of the
same order in magnitude at T2 ∼ EF /

3
√
kF d. At higher

temperatures, T2 < T < EF , the thermal conductivity
contribution becomes dominant.

In the context of resistivity measurements carried out
by different groups in various two-dimensional electron
systems with moderate-to-strong interactions and deep
in the metallic regime ρ� ρQ [16, 17], perhaps the most
significant feature of Eq. (14) is that it predicts a min-
imum in the temperature dependence of the resistivity.
At moderately high temperatures above T1 the zero-field
resistivity decreases first to a shallow minimum at around
T ∼ T2 and then increases with T , as illustrated in Fig.
1. We can further estimate the magnitude of the re-
sistivity drop ρ‖(T2)/ρ‖(T1) ∼ 1/ 3

√
kF d. We note that

a minimum and a subsequent high-temperature rise of
the resistivity is observed in many semiconductor devices
with strongly correlated carriers, and usually attributed
to the electron-phonon scattering, see for example Fig.
3(b) of Ref. 42.

In summary, we have developed a hydrodynamic the-
ory of magnetoresistance of correlated electron systems
subjected to long range disorder potential. Our the-
ory applies in the collision-dominated regime, where
the mean-free path due to electron-electron collisions is

shorter than the correlation radius of the disorder po-
tential and is not limited to the Fermi-liquid regime.
The magnetoresistance is positive and depends only on
the shear viscosity of the electron liquid. Assuming the
Fermi liquid behavior we find that the zero-field resis-
tivity, which is governed by the interplay of viscosity
and thermal conductivity contributions displays a non-
monotonic temperature dependence. The description of
the resistivity crossover to a low temperature collisionless
regime of transport requires a separate investigation.
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