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The geometrical intrinsic contribution to the anomalous Hall conductivity (AHC) of a metal
is commonly expressed as a reciprocal-space integral: as such, it only addresses unbounded and
macroscopically homogeneous samples. Here we show that the geometrical AHC has an equivalent
expression as a local property. We define a “geometrical marker” which actually probes the AHC
in inhomogeneous systems (e.g. heterojunctions), as well as in bounded samples. The marker may
even include extrinsic contributions of geometrical nature.
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The Hall conductivity is “anomalous” whenever it is
nonzero in absence of an applied magnetic field. The phe-
nomenon requires the absence of time-reversal symmetry:
it was discovered by Hall himself in 1881 in ferromagnetic
metals. The possibility of observing anomalous Hall con-
ductivity (AHC) in insulators was pointed out in 1988 by
Haldane, who proposed a model Hamiltonian where the
AHC is nonzero and quantized [1]; the AHC value is de-
termined by the topology of the electronic ground state.
In metals extrinsic mechanisms are essential to make the
longitudinal dc conductivity finite. In absence of time-
reversal symmetry extrinsic mechanisms contribute to
the AHC as well: these go under the name of side-jump
and skew-scattering [2]. Since the early 2000s [3, 4] it be-
came clear that an intrinsic effect, only dependent on the
ground wavefunction of the pristine crystal, provides an
important additional contribution to the AHC. The lat-
ter contribution is geometrical in nature; its expression
is the nonquantized version of the corresponding formula
for insulators. In this work we only address the geometri-
cal/topological AHC in metals/insulators, which is cus-
tomarily expressed as the Fermi-volume integral of the
Berry curvature, Eq. (4) below. The standard approach
requires an unbounded crystalline sample where the or-
bitals have the Bloch form; this was extended in Ref. [5]
to “dirty” metals in a supercell framework, where the
geometric contribution includes some extrinsic effects.

Recent work has demonstrated the locality of AHC,
although in the insulating case only [6]. One does not re-
quire lattice periodicity and reciprocal-space parapherna-
lia: the AHC can be defined and computed for bounded
samples and/or for macroscopically inhomogeneous sys-
tems (e.g. heterojunctions). The extension to the metal-
lic case is not obvious, since one of the reasons for the
locality of the (quantized) AHC is the r-space exponen-
tial decay of the one-body density matrix in insulators
(“nearsightedness” [7]). In metals instead such decay is
only power-law, which hints to a possibly different be-
havior. Furthermore the Hall current in insulators may

only flow in the edge region, while in metals the current
flows through the bulk of the sample as well. Our major
result is that even in metals the AHC is a local prop-
erty: for a bounded sample it can be expressed in terms
of the one-body density matrix, evaluated in the sample
bulk. We show this by means of simulations on model
two-dimensional bounded samples (flakes) by adopting
the—by now famous—Haldane model Hamiltonian [1].

We start reviewing the well established expression for
the intrinsic AHC in crystalline insulators and metals;
as said above, the formula is basically the same in both
cases. It yields a quantized (topological) AHC in insu-
lators, and a nonquantized (geometrical) AHC in met-
als. We get rid of trivial factors of two throughout, thus
addressing “spinless electrons”. The crystalline orbitals
have the Bloch form |ψjk〉 = eik·r|ujk〉; here they are
normalized to one over the unit cell. The periodic or-
bitals |ujk〉 are eigenstates of Hk = e−ik·rHeik·r, and we
choose a gauge which makes them smooth in the whole
Brillouin zone (BZ).

The ground-state projector can be written as

〈r| P |r′〉 = Vcell

∫
BZ

[d k] eik·(r−r
′)〈r| Pk |r′〉 (1)

Pk =
∑
j

θ(µ− εjk)|ujk〉〈ujk|, (2)

where µ is the Fermi level, the BZ integration is over
[d k] = dk/(2π)d (d is the dimension, either 2 or 3), and
Vcell is the cell volume (area for d = 2). We will also
need the complementary projectors Q = I−P and Qk =
I − Pk.

The Berry curvature of the occupied manifold is

Ωαβ(k) = −2 Im
∑
j

θ(µ− εjk)〈∂kαujk|∂kβ ujk〉 (3)

= −2 Im
∑
j

θ(µ− εjk)〈∂kαujk| Qk |∂kβujk〉;

it is smooth over the whole BZ is for insulators, while it
is piecewise smooth (and integrable) for metals.
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The intrinsic AHC contribution is

σαβ = −e
2

~

∫
BZ

[d k] Ωαβ(k), (4)

where the BZ integral is actually a Fermi-volume integral
in the metallic case, owing to the θ function in Eq. (2).
Eq. (4) as it stands holds for both d = 2 and d = 3; we
further notice that σαβ—when expressed in e2/h units
(a.k.a. klitzing−1)—is dimensionless for d = 2, while it
has the dimensions of an inverse length for d = 3.

The position operator r is notoriously ill defined within
periodic boundary conditions [8]; nonetheless its off-
diagonal elements over the |ψjk〉 and |ujk〉 are well de-
fined. Exploiting some results from linear-response the-
ory [9], one may prove that

Qkr|ujk〉 = iQk|∂kujk〉 (5)

whenever j labels an occupied state at the given k. We
may thus write the Berry curvature as a trace;

Ωαβ(k) = −2 Im Tr {PkrαQkrβ}. (6)

Using then the definitions of P and Pk (and their com-
plementary), Eqs. (1) and (2), it is easy to prove the
identity

1

Vcell

∫
cell

dr 〈r| PrαQrβ |r〉 =

∫
BZ

[d k] Tr {PkrαQkrβ}.

(7)
This identity is known since a few years [6, 10–14] for
the insulating case—and for the insulating case only. We
stress that the alternate proof provided here applies to
the metallic case as well. The l.h.s. of Eq. (7) has two
outstanding virtues: (i) it is expressed directly in the
Schr̈odinger representation, making no reference to re-
ciprocal space; and (ii) can be adopted as such for super-
cells of arbitrarily large size, thus extending the concept
of geometrical AHC to disordered systems, such as alloys,
as well as “dirty” metals and insulators. We thus recast
Eqs. (4) and (7) in the compact form

σαβ =
2e2

~
Im TrV {PrαQrβ}

= −2e2

~
Im TrV {P [rα,P] [rβ ,P]}, (8)

where “TrV ” means trace per unit volume/area. The two
expressions in Eq. (8) are formally equivalent; the second
one, being a P-only formula, is more suited to numerical
implementations.

We pause at this point to make contact with Ref. [5],
where a supercell approach to dirty metals was actually
proposed: in retrospective, the approach of Ref. [5] is
equivalent to evaluating Eq. (8) over the folded BZ of
the superlattice. Indeed Eq. (8), when applied to a dirty
metal, combines the nominally intrinsic contribution—as

FIG. 1. (color online). A typical “Haldanium” flake. We
have considered flakes with up to 10506 sites, all with the
same aspect ratio; the one shown here has 1190 sites. In
order to probe the AHC locality we evaluate the trace per
unit area either on the central cell (two sites) or on the “bulk”
region (1/4 of the sites). The grey horizontal line (black dots)
highlights the sites chosen for drawing Fig. 4.

defined for the clean metal—to some extrinsic contribu-
tions of geometrical nature. Following the arguments of
Ref. [5] we argue here that Eq. (8) may yield the sum
of the intrinsic and side-jump contributions to the AHC,
while instead it may not include the skew scattering [2].

Our major result so far, Eq. (8), applies to either in-
sulators or metals, either crystalline or disordered, but it
has only been proved for an unbounded and macroscopi-
cally homogeneous system within periodic boundary con-
ditions. The next issue is whether one may adopt Eq. (8)
locally, in order to address inhomogeneous systems (e.g.
heterojunctions) or even bounded samples (e.g. crystal-
lites).

The locality of the AHC was investigated in Ref.
[6], where it was shown—for the insulating case only—
that the topological AHC can indeed be evaluated from
Eq. (8) for bounded and/or macroscopically inhomoge-
neous systems. The concept of “topological marker” was
proposed therein; in the following we are going to show
that Eq. (8) yields an analogous “geometrical marker”,
effective in the metallic case as well. The very important
feature pointed out by Ref. [6] is that—when a bounded
sample is addressed—the trace per unit volume has to
be evaluated using only some inner region of the sample,
and not the whole sample. If the bounded system is a
crystallite, one evaluates e.g. the l.h.s. of Eq. (7) over
its central cell; in the large-crystallite limit one recovers
the bulk value of the AHC. In all the cases dealt with
in Ref. [6] the convergence with size proved to be very
fast: this was attributed to the exponential decay of the
one-body density matrix in insulators (“nearsightedness”
[7]), as already said in the Introduction. For the metallic
case we are going to explore in the following an uncharted
territory by means of case-study simulations.

The paradigmatic model for investigating issues of the
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FIG. 2. AHC as a function of the Fermi level µ for a 3422-site
flake. Top: trivial insulator when µ is in the gap; Bottom:
topological insulator (C1 = −1) when µ is in the gap. See text
about labels: Cell, Bulk, and PBCs. All calculations adopt a
“smearing” s = 0.05.

present kind is the one proposed by Haldane in 1988 [1].
It is a tight-binding 2d Hamiltonian on a honeycomb lat-
tice with onsite energies ±∆, first neighbor hopping t1,
and second neighbor hopping t2 = |t2|eiφ, which provides
time-reversal symmetry breaking. The model is insulat-
ing at half filling and metallic at any other filling. Our
bounded samples are rectangular Haldanium flakes such
as the one shown in Fig. 1; the corresponding simula-
tions for lattice-periodical samples, with Bloch orbitals,
are performed by means of the PythTB code [15]. Oscil-
lations as a function of the flake size occur in the metallic
case; as customary, we adopt a regularizing “smearing”
technique.

In Fig. 2 we plot—as a function of the Fermi level
µ—the dimensionless quantity

−4π Im TrA{P [rα,P] [rβ ,P]} =
h

e2
σxy, (9)

where “TrA” means trace per unit area. The quantity in
Eq. (9) equals minus the Chern number C1 in the quan-
tized insulating case [16]: nonzero C1 reveals the non-
trivial (topological) nature of the insulating ground state.
Each panel displays the trace per unit area, Eq. (9), eval-
uated in three different ways: over the central two sites
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FIG. 3. Convergence of AHC evaluated locally as a function
of the flake size. Parameters as in the top panel of Fig. 2, and
µ = −2.5. The quantity σxy(∞) is obtained via extrapolation
in the large flake limit. A smearing s = 0.05 is adopted.

(labeled “Cell”), evaluated over 1/4 of the sites (labeled
“Bulk”), and evaluated as the usual integral of the Berry
curvature for an unbounded sample (labeled “PBCs”).
The plots show that averaging over the bulk region pro-
vides a better convergence. The two plots refer to two
different sets of parameters: in both cases we set t1 = 1
and φ = 0.25, while ∆ = 2 the for top plot and ∆ = 1/3
for the bottom plot. It is perspicuous from the figure that
when µ is in the gap region the former choice yields a triv-
ial insulator, and the latter a topological one (C1 = −1).

Fig. 2 proves our major claim: the geometri-
cal/topological AHC, for both metals and insulators, is
indeed a local property of the electronic ground state and
can be evaluated for a bounded sample, where the or-
bitals are square-integrable and the concept of reciprocal
space does not make any sense. What differentiates in-
sulators from metals is only the kind of convergence with
the system size: exponential in the former case, power-
law in the latter. We show a typical convergence study
in Fig. 3, where we have chosen a metallic flake with
µ = −2.5 and the Hamiltonian for which the correspond-
ing insulator is trivial: top panel of Fig. 2. As for the
previous figure, averaging over the bulk region provides
a better convergence than taking the trace on the central
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FIG. 4. Local AHC for an heterojunction, where the left- and
right-half of the flake are two different metals (see text). For
this calculation the flake has 10506 sites; our local function
is shown on a line of 102 sites (grey area in Fig. 1). The
two horizontal lines (labeled “PBCs”) show the corresponding
Berry-curvature calculations.

two-site cell. Interpolations in both panels clearly show
that the AHC convergence to the bulk value is of the
order L−3, where L is the linear size of the flake.

We have focused so far on the imaginary part of Eq. (7)
only; here we briefly address the real part of the l.h.s.
as well. It is known that—in the large-system limit—it
converges to a finite value in insulators, while it diverges
in metals [17]. Simulations and heuristic arguments alto-
gether suggest that the metallic divergence is of the order
L in any dimension: d = 1, 2 or 3 [18–20]. Reasoning by
analogy we conjecture that even the AHC convergence
is likely to be dimension-independent, i.e. L−3 for both
d=2 and 3.

Finally, we demonstrate the AHC locality on the
case study of an heterojunction, where the two met-
als in the left- and right-half of the rectangular flake
are different. In both regions we adopt an Hamilto-
nian like the one in the top panel of Fig.2, and we set
µ = −2.2; then we add a constant onsite energy equal
to +1 on the right. We show in Fig. 4 the func-
tion −4π Im 〈r| P [rα,P] [rβ ,P] |r〉, normalized over the
atomic area, along a direction normal to the heterojunc-
tion: the grey central line in Fig. 1. The macroscopic av-
erage (i.e. two-site average) of our function in the bulk of
each region clearly yields the corresponding AHC, closely
matching two standard k-space calculations for the same
2d metals, where µ = −2.2 and µ = −3.2, respectively.

In conclusion, we have shown that the geometrical con-
tribution to the AHC does not need a reciprocal-space
approach to be defined and computed. We have pro-
vided a “geometrical marker” defined in r space, Eq. (8).
The marker probes the electron distribution locally, and
may therefore address inhomogeneous systems (e.g. het-
erojunctions), bounded samples, alloys, and dirty met-
als. The conventional geometric contribution to AHC is
defined in the clean-metal limit only [2], while instead
our geometrical marker, when applied to a dirty metal,
includes extrinsic contributions of geometrical nature as
well.
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