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Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped
Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the
self energy and a spin density wave instability at an incommensurate wave vector. The scaling form
unifies the low energy kink and the high energy waterfall feature in the spectral function, while
the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic
paramagnons. We use the frequency dependent four-point correlation function of spin operators to
calculate the momentum dependent correction to the electron self energy. By comparing with the
calculations based on Spin-Fermion model, our results indicate the frequency dependence of the the
quasiparitcle-paramagnon vertices is an important factor to capture the momentum dependence in
quasiparticle scattering.

Introduction. The interplay between quasiparticles
and bosonic collective modes, in particular in the prox-
imity of a quantum critical point (QCP)1,2, is believed to
be a driving force behind the rich phase diagram of many
correlated electronic systems3–5. This paper explores
the connection between the quasiparticles and collective
modes in a doped antiferromagnet within the framework
of local dynamical mean field theory (DMFT)6. It is
known that local DMFT is not fully capable of addressing
the effects of non-local correlation, which are particularly
important for the critical phenomena in low-dimensional
system. In this paper, however, we aim to investigate
to what extent local DMFT can depict the spin fluctua-
tions in a strongly correlated system and the possibility
to construct the non-local effects from local DMFT. In
fact, the formalism for two-particle response functions,
although proposed in the early stage of DMFT6, has
not been well explored to study the dynamical proper-
ties of two-particle fluctuations. Recently, an approach
based on this formalism and random phase approxima-
tion (RPA) has gained success in describing the magnetic
excitations in iron pnictides7–9. In this work, we make
a step beyond the RPA approach by taking full account
of the frequency dependence of the vertex functions, and
compute the momentum dependence of excitation energy
and damping rate of spin fluctuations, in hope of provid-
ing insight and guidance in interpreting the spectra of
correlated materials from neutron and resonant inelastic
X-ray scattering measurements (RIXS)10–16.

With the two-dimensional Hubbard model as a work-
ing example, we use the vertex functions to calculate
the non-local correction to the single electron self energy
in the leading order of quasiparticle-paramagnon inter-
action. We show that the leading order correction re-
produces the momentum-dependent feature that emerges
from self-consistent calculation in cluster extensions of
DMFT17–19. We also compare it with the non-local
correction obtained by the phenomenological approach
based on the Spin-Fermion (SF) model20,21 where the
vertices are replaced by constants. The result highlights
the importance of energy dependence in the interaction

FIG. 1. The energy scales and the phase diagram of the doped
Hubbard model at T = 0.02. EHF is the characteristic en-
ergy scale for the frequency dependence of the self energy.
The solid line is a guide for the eye. EBR = (1− n)W is the
Brinkman-Rice scale. TSDW is the SDW transition temper-
ature. Shading highlights regions with commensurate (C) or
incommensurate (IC) SDW ordering vector QSDW .

vertices to capture the non-local physics in a perturbative
approach.

We study the two-dimensional Hubbard Hamiltonian
on a square lattice with nearest t and next nearest neigh-
bor hopping t′,

H = −
∑
〈i,j〉,σ

tijc
†
i,σcj,σ + U

∑
i

c†i↑ci↑c
†
i↓ci↓. (1)

Taking t = 1 as the unit for energy and temperature, we
set t′ = −0.3 and the Coulomb interaction U = 14. The
non-interacting bandwidth is W = 8. We focus on the
band fillings between n = 0.6 and n = 0.9. To solve the
effective impurity problem in the DMFT self-consistent
condition we adopt the continuous time quantum Monte
Carlo (CTQMC) method22 as implemented in Ref.23.

Figure 1 presents a summary of the main results. Near
half filling, the model undergoes a spin density wave
(SDW) transition and the transition temperature TSDW
decreases as more holes are introduced. The ordering
vector for n ≥ 0.9 is commensurate (C), QSDW = (π, π).
When n < 0.9, QSDW becomes incommensurate (IC)
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FIG. 2. Spectral properties for n = 0.85 and T = 0.02. (a)
The imaginary part of the self energy −Σ′′(ω) and the QP
damping ΓQP (ω). The dashed lines represent a quadratic
fit in the region |ω| ≤ 0.05. (b) The quasiparticle residue
ZQP (ω). (c) The density of states (DOS). Also shown are the
DOS for n = 0.69 and n = 0.95. (d) The spectral function
Ak(ω) = −G′′

k(ω)/π.

and at n ' 0.84, TSDW vanishes, defining the quan-
tum critical point (QCP). In the vicinity of the QCP
(0.76 . n . 0.9), the frequency dependent part of the
Green’s function ω−Σ(ω) can be fit by a universal func-
tion of ω/EHF (see Eq. (2)), where EHF is the effec-
tive Fermi energy characterizing the energy dependence
of quasiparticle (QP) damping rate. Near QCP, EHF de-
viates from the Brinkman-Rice scale EBR = (1−n)W 24,
which is the Fermi energy in a slightly doped Mott insu-
lator in the strong coupling limit. The self energy also
leads to strong energy dependence in the QP residue ZQP
in this region (0.76 . n . 0.9), which is not described by
a conventional Landau–Fermi liquid theory.

The single electron Green’s function. The Hub-
bard model has been investigated extensively by the
DMFT community6,17,18,25, with the most attention fo-
cused on the single electron Green’s function Gk(ω) and
the density of states. Since the Green’s function is also an
important ingredient of the SF model, we are compelled
to discuss it first. We start with the local self energy.

The physical meaning of EHF can be grasped from
Figure 2(a): it is the energy scale below which a band
of heavy fermions is formed. These fermions can be
considered as QPs, as at small frequencies |ω| < EHF
their damping rate is quadratic in frequency: ΓQP (ω) =
−ZQPΣ′′ ∼ (ω/EHF )2. The self energy Σ(ω) itself is
quadratic only in a very narrow range of frequencies:
|ω| . ω∗ = 0.05. A strong frequency dependence of
ZQP = (1−dΣ′(ω)/dω)−1, as shown in Figure 2(b), helps

FIG. 3. (a) The QP damping rate; (b) the QP damping
rescaled by the renormalized Fermi energy EHF of the hidden
QPs; (c) the QP residue; (d) the QP residue rescaled by EHF .
Main panels: T = 0.02. Inset in (b) and (d): T = 0.05.

the QPs to remain well defined in the entire frequency in-
terval below EHF . The dashed lines in Figure 2(a) are
quadratic fits of Γ(ω) and Σ′′(ω), suggesting the robust-
ness of the QPs far beyond ω∗. We point out ω∗ is the
energy scale for “kink” structure26 in the spectral func-
tion. For ω < ω∗, the QP dispersion is renormalized
by ZQP ' (1 − n) = EBR/W . When |ω| > ω∗, ZQP
continuously deviates from (1 − n), and so does the QP
band renormalization. EHF ensures the QPs remains re-
silient beyond ω∗. Also noteworthy from the fitting is
that the electron-like QPs (ω > 0) extends to ω ' 0.2,
while hole-like (ω < 0) only to ω ' −0.13. The strong
energy/temperature dependence in ZQP has given rise to
the concept of hidden Fermi liquid (HFL)27–29, in which
the linear resistivity and other anomalous transport prop-
erties of correlated metals are consequences of the strong
temperature dependence of ZQP , but the QPs remain
well defined such that transport can be treated with the
Boltzmann theory.

In our effort to determine the degree of universality
present in the Hubbard model we fit the frequency de-
pendent part of the Green’s function by the scaling form:

ω − Σ̃(ω) = W × g(ω/EHF ), (2)

where Σ̃(ω) = Σ(ω)−Σ(ω = 0). As illustrated by Figure
3(b) and (d), this scaling works very well in the vicinity
of the QCP, namely, for the interval 0.79 < n < 0.88, and
for |ω| < EHF /2. We point out that Eq. (2) is different
from the scaling form near the Mott insulating state pro-
posed by a renormalization group study in Ref.30, where
the scaling is controlled by EBR.
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The strong ω-dependence of ZQP leads to strong
momentum dependency of the QP residue. The lat-
ter fact enables us to explain the famous “waterfall”
phenomenon observed in angular-resolved photoemission
experiments31–34. This phenomenon amounts to vanish-
ing of the spectral weight in the lower Hubbard band in a
particular region of the Brillouin zone. In the strong cou-
pling limit (U → ∞), the high energy excitations with
double occupancy (the upper Hubbard band) carry spec-
tral weight of n/235. Therefore the combined spectral
weight for the QPs and the lower Hubbard band is 1−n/2
(Figure 2(c)). In the shaded region of Figure 2(d) the
QPs with ω > 0.5 exhaust all available spectral weight
leaving nothing for the states below the chemical poten-
tial. Approaching the Fermi surface ZQP decreases, giv-
ing rise to the kink in the QP dispersion and the emer-
gence of the incoherent continuum. The incoherent con-
tinuum at ω < −2 is placed around the bare band dis-
persion and is connected to the QP band by the spectral
intensity in the vertical direction (the “waterfall”).

We see that the high energy waterfall feature, along
with the low energy “kink” feature26 in the QP band,
is a consequence of the ω-dependent self energy which is
characterized by a single energy scale EHF . As far as
we are aware, this connection has not been addressed in
previous works36–41.

Lattice susceptibilities in the spin channel.
Computing the lattice susceptibility of bosonic modes
within local DMFT requires an extra effort6. Firstly,
one needs to determine the local irreducible vertex in the
spin (‘S’) channel ΓSirr(iν, iν

′)iΩ. It is computed by the
Bethe-Salpeter equation:

[
χSloc(iν, iν

′)iΩ
]−1

=
[
χ0
loc(iν, iν

′)iΩ
]−1

+
1

β2
ΓSirr(iν, iν

′)iΩ, (3)

where χSloc(iν, iν
′)iΩ is the local two-particle correla-

tion function in the spin channel and χ0
loc(iν, iν

′)iΩ =
−βGloc(iν)Gloc(iν+iΩ)δνν′ is the local polarization bub-
ble. Gloc(iν) is the local Green’s function fully dressed by
the self energy. χSloc(iν, iν

′)iΩ and Gloc(iν) are sampled
by the CTQMC solver.

The lattice (q-dependent) two-particle correla-
tion function χS(iν, iν′)q,iΩ is constructed from
ΓSirr(iν, iν

′)iΩ and the q-dependent polarization bubble
χ0(iν, iν′)q,iΩ = −β

∑
kGk(iν)Gk+q(iν + iΩ)δνν′ ,

[
χS(iν, iν′)q,iΩ

]−1

= [χ0(iν, iν′)q,iΩ]
−1

+
1

β2
ΓSirr(iν, iν

′)iΩ, (4)

The dynamical susceptibility in the Matsubara frequency
domain is then calculated by closing the fermionic fre-
quencies, χS(q, iΩ) = 1

β2

∑
ν,ν′ χS(iν, iν′)q,iΩ. Finally,

we fit χ(q, iΩ) by the damped harmonic model to deter-
mine the resonance energy ΩS(q) and the damping rate

FIG. 4. (a) and (b): Static susceptibility at T = 0.05 and
T = 0.02. Solid line: χS(q). Dashed line: χS

0 (q) computed
by the polarization bubble. χS

0 (q) is multiplied by 10 or 50
for comparison. (c) and (d) Resonance energy ΩS(q) and the
dispersion of AFM and FM spin wave. Inset of (d): partition
of the Brillioun zone by the nature of spin excitations. (e)
and (f): The relaxation rate ΓS(q) = (ΩS(q))2/γS(q) and
damping rate γS(q). n = 0.85.

γS(q),

χS(q, iΩ) =
χS(q)ΩS(q)2

ΩS(q)2 + |Ω|2 + γS(q)|Ω|
(5)

where χS(q) is the static spin susceptibility at Ω =
0. The analytical continuation to real frequencies is
straightforward by taking iΩ → Ω + i0+ in the damped
harmonic model. The RPA approach adopted in Ref.7–9

approximates ΓSirr(iν, iν
′)iΩ in Eq. (4) by a con-

stant, while we retain the full frequency dependence of
ΓSirr(iν, iν

′)iΩ.
Figure 4 shows details of spin dynamics in the damped

harmonic model for T = 0.05 (left column) and T = 0.02
(right column). Figure 4 (a) and (b) compare the “bare”
static susceptibility χ0(q) (the polarization bubble) and
the full static susceptibility χS(q). Without the ver-
tex contribution, χ0(q) is only weakly dependent on q
and temperature, suggesting that the instability does not
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originate from the particle-hole excitations at the Fermi
surface. To find the SDW transition temperature for a
given q, we extrapolate 1/χS(q) to zero as a function of
T . Figure 4 (a) and (b) suggest those q’s with most di-
verging χS(q) form a “ring” around the M point. Then
we pick the q with the highest transition temperature
TSDW as the SDW ordering vector QSDW , with TSDW
the SDW transition temperature of the system. Figure 1
shows the variation of TSDW and QSDW with band fill-
ing. QSDW = (π, π) for n ≥ 0.9 and is incommensurate
for n ≤ 0.9. For instance, for band filling n = 0.85, we
have QSDW ' (π± 0.2π, π) and (π, π± 0.2π). The QCP
for the SDW order is located at n ' 0.84.

The damped harmonic model reveals the partition of
the spin excitations in q-space, as shown in Figure 4(c)
and (d). Near the Γ point the resonance energy ΩS(q)
follows the dispersion of the ferromagnetic (FM) spin
wave. Passing the X point and approaching the M
point, ΩS(q) traces the antiferromagnetic (AFM) spin
wave at T = 0.02 and then enters the critical ring cen-
tered on the M point, where ΩS(q) develops a “mex-
ican hat” shape, with low-lying excitations located on
the ring. The damping rate γS(q) (inset of Figure 4(e)
and (f)) is peaked at the M point, suggesting the FM
paramagnons near Γ are only weakly damped. Pass-
ing the M point, the paramagnons become overdamped
(ΩS(q) < γS(q)/2). The low-lying critical incommensu-
rate paramagnons, characterized by the relaxation rate
ΓS(q) ≡ (ΩS(q))2/γS(q), is shown in Figure 4 (e) and
(f). The coexistence of incommensurate paramagnons at
low energy and overdamped AFM fluctuations at high
energy, along with the signature of FM fluctuations, re-
sembles the spin dynamics in the normal state of cuprate
superconductors as measured by neutron and RIXS ex-
periments10–16.

With the four-point correlation functions and vertex
functions at hand we can calculate the non-local self en-
ergy due to the emission of paramagnons. Although a
self-consistent calculation on the two-particle level re-
quires an extended DMFT framework, such as the dy-
namical vertex approximation17, the dual fermion ap-
proach18,19, or the dynamical cluster approximation42,
the leading order in the q-dependent two-particle full

vertex (FV) function Γ↑↓kk′(iω, iω′)q,iΩ, which can be writ-

ten in terms of the full vertices ΓS/C(iω, iω′)q,iΩ in the
spin (‘S’) and charge (‘C’) channel, provides us with a
convenient way to examine the effect of incommensurate

FIG. 5. Imaginary part of the self energy calculated with the
full vertex (FV) functions and with spin-fermion (SF) models
for antinodal point (1) and nodal point (2) for U = 14 in (a)
and (b), U = 6, 18 in (c) and (d). Non-local corrections to
the local self energy, δΣFV/SF (k, iω) = ΣFV/SF(k, iω)−Σ(iω)
are presented with the local self energy Σ(iω). Also shown are
the values of the effective Coulomb interaction Ueff for the
SF model (Eq. (9)). n = 0.85.

paramagnons,

ΣFV(k, iω)

=
1

2
Un− U

β2

∑
ω′,Ω,q,k′

Gk′+q(iω′ + iΩ)Gk′(iω′)

×Gk+q(iω + iΩ)Γ↑↓kk′(iω, iω
′)q,iΩ

=
1

2
Un+

U

2β3

∑
ω′,Ω,q

χ0(iω′, iω′)q,iΩGk+q(iω + iΩ)

×
[
3ΓS(iω, iω′)q,iΩ − ΓC(iω, iω′)q,iΩ

+ΓCloc(iω, iω
′)iΩ − ΓSloc(iω, iω

′)iΩ
]
. (6)

We point to Ref.17 and reference therein for the
derivation of Eq. (6). The Feynman diagram for
ΣFV(k, iω) is sketched in Figure 6 (a). The full vertices
ΓS/C(iω, iω′)q,iΩ are calculated from the irreducible local

vertex functions Γ
S/C
irr (iω, iω′)iΩ via

[
1

β2
ΓS/C(iω, iω′)q,iΩ

]−1

=

[
1

β2
Γ
S/C
irr (iω, iω′)iΩ

]−1

− χ0(iω, iω′)q,iΩ. (7)

Instead of isolated hot spots, the soft paramagnon fluc-
tuations connect continuous segments of the Fermi sur-
face, forming a hot region marked by purple in the in-
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FIG. 6. Feynman diagrams for the self energy with (a) full
vertices (FV) and with (b) the Spin-Fermion (SF) model.

set of Figure 5(a) and (b). We depict the local self en-

ergy Σ
′′
(iω) and the non-local correction δΣ

′′

FV (k, iω) =

Σ
′′

FV (k, iω)−Σ
′′
(iω) calculated by Eq. (6) for k’s at the

antinodal point (1) and the nodal point (2) in Figure 5.
For comparison, we also show the non-local correction
calculated with the dynamical susceptibility χS(q, iΩ),

δΣ
′′

SF (k, iω) = Σ
′′

SF (k, iω)− Σ
′′
(iω), (8)

where

ΣSF(k, iω) =
U2
eff

β

∑
Ω,q

χS(q, iΩ)Gq+k(iΩ + iω), (9)

as is done in the Spin-Fermion (SF) model20,21. The
Feynman diagram for ΣSF (k, iω) is shown in Figure 6
(b). The effective Coulomb interaction Ueff is chosen to

get the best fit to the Σ
′′

FV (k, iω) at high frequency.
Figure 5 shows the results for U = 6, 14, and 18.

The FV and SF calculations lead to diminishing high
frequency tails at both antinodal and nodal point, indi-
cating that the non-local correction is significant only at

low energy. At large U = 14, 18 the difference between
the FV and SF results becomes quite pronounced at small
energies. Although in both FV and SF model the self en-
ergy shows strong frequency dependence, the momentum
dependence is different. At the nodal point, the energy
dependence of δΣ

′′

FV (k, iω) resembles that of a Fermi

liquid, while at the antinodal point, δΣ
′′

FV (k, iω) gives
strong scattering. It is noteworthy that this momentum
dependence of δΣ

′′

FV (k, iω) also emerges from recent cal-
culations using dynamical cluster approximation43, sug-
gesting the leading order in the vertex functions captures
the essential physics of the quasiparticle-paramagnon in-
teraction. On the other hand, the SF model, which
does not take into account the frequency dependence
of the vertex function, overestimates the scattering in
δΣ

′′
(k, iω) at both antinodal and nodal point. It should

also be noted that to achieve the convergence between
the FV and the SF at high energy we need to adopt a
very large value for Ueff . Admittedly, the success of
the SF approach20,21,44 should not be underestimated by
a first order perturbative calculation in Eq. (9). By the
comparison demonstrated in Figure 5, we emphasize that
the two-particle approach based on vertex calculations
in local DMFT is a convenient starting point to study
the dynamics of spin fluctuations in correlated materials,
given the availability of numerical packages23,45 combin-
ing local DMFT and first principles methods, and their
success in predicting the electronic structures of various
correlated materials46–49.

Conclusions. Using the example of the Hubbard
model, we have demonstrated how the standard DMFT
procedure can be augmented by the inclusion of correc-
tions from interactions of quasiparticles with collective
excitations. Our calculation points to the pivotal role of
incommensurate critical paramagnons in a doped anti-
ferromagnet, making contact with recent neutron scat-
tering and RIXS measurements10–14. Such corrections
become significant near the QCP, as predicted by the
phenomenological SF model. Our calculations indicates
that the frequency dependence of the interaction vertices
is necessary to capture the non-local corrections.
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